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This paper is dedicated to Claude Lemaréchal on the occasion of his 65th birthday.

We take this opportunity to thank him deeply for the great moments we have had discussing

with him (not only about math). His vision and his ability to put ideas into words has helped

us deepen our understanding of optimization. This work builds on one of his lines of re-

search: using convex analysis and nonlinear optimization for combinatorial optimization.

Abstract This article presents a family of semidefinite programming bounds, obtained by

Lagrangian duality, for 0-1 quadratic optimization problems with linear or quadratic con-

straints. These bounds have useful computational properties: they have a good ratio of tight-

ness to computing time, they can be optimized by a quasi-Newton method, and their final

tightness level is controlled by a real parameter. These properties are illustrated on three

standard combinatorial optimization problems: unconstrained 0-1 quadratic optimization,

heaviest k-subgraph, and graph bisection.

Keywords Lagrangian duality, combinatorial optimization, 0-1 quadratic programming,

nonlinear programming, semidefinite programming, branch-and-bound, quasi-Newton

1 Introduction, motivations

1.1 On the bridge between combinatorial optimization and nonlinear optimization

Along with cutting and branching, bounding is one of the fundamental paradigms of com-

binatorial optimization. As advocated by Claude Lemaréchal (see e.g. the review [Lem01]),

Lagrangian duality (or Lagrangian relaxation) is the essential methodology to create bounds.

The duality opens the door towards convex optimization, revealing a fundamental connec-

tion between nonlinear optimization and combinatorial optimization. This paper fits into

these themes that have been some of Claude’s recent lines of research. In this paper, we
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study new bounds for combinatorial optimization, obtained by Lagrangian duality and com-

bined with nonlinear optimization. To some extent, these bounds generalize and enhance the

usual semidefinite programming bounds.

Semidefinite programming (SDP) is a prolific branch of convex optimization (see hand-

books [SVW00] and [AL12]). Since the ’90s, and in particular since the celebrated pa-

per [GW95] about max-cut, semidefinite programming has become a fundamental bound-

ing technique for combinatorial optimization. The recipe to formulate SDP relaxations of

combinatorial problems [PRW95] has an illuminating interpretation by Lagrangian duality,

as explained by Claude Lemaréchal in the pedagogic paper [LO99]. Recent research has

spawned a focus on the power and the limitations of semidefinite programming for solv-

ing combinatorial optimization problems. The current sentiment is, roughly speaking, that

semidefinite programming bounds have good tightness, but demand much time to be com-

puted, which often prevents their direct use in branch-and-bound algorithms or other exact

resolution schemes. To answer this challenge, a strategy is to use the problem structure, for

example by exploiting sparsity (see e.g. [KKW09]), by reducing the size of problems by

using hidden symmetries (see e.g. [dKS10]), by developing new algorithmic schemes (see

e.g. [MPRW09]), or by adapting algorithms to special problem classes (see e.g. [RRW10]).

In this paper, we use a different approach: we do not consider the standard SDP bounds;

rather we construct new SDP-based bounds that are less tight (they deteriorate the usual

SDP bounds) but are easier to compute (they are amenable to efficient standard nonlin-

ear optimization techniques). The influence of Claude Lemaréchal is visible from the basic

approach (Lagrangian duality [Lem01]) to the practical resolution (limited memory quasi-

Newton method [GL89]); we also extensively use convex analysis [HUL93].

1.2 A family of SDP bounds for 0-1 quadratic problems leading to a quasi-Newton method

This article presents a family of semidefinite bounds for binary quadratic problems subject

to linear or quadratic constraints, that is, a general problem of the form







min x⊤M0 x+m0
⊤x

x⊤M j x+m j
⊤x+ c j = (or≤)0 j = 1, . . . ,m

x ∈ {0,1}n

(1)

with m j ∈ R
n, c j ∈ R and symmetric matrices M j. This general form contains for exam-

ple 0-1 quadratic problems with linear constraints (when M j = 0), and 0-1 linear problems

(when moreover M0 = 0), that are in particular models for various problems in operations re-

search. Notice that the equality and inequality constraints in (1) can be both constraints aris-

ing when modeling the problem, or redundant constraints added to strengthen the bounds.

To illustrate our approach, we consider in this paper three combinatorial optimization prob-

lems of the form (1): unconstrained 0-1 quadratic programming problems, heaviest subgraph

problems, and graph bisection problems (see details and references in Section 2.2).

The objective of this article is to develop bounding techniques for (1), trading computing

time for a deterioration of the quality of the usual semidefinite bounds, in order to enhance

the efficiency of exact resolution schemes. We introduce a new family of SDP-based bounds

constructed by duality after handily rewriting the rank-one constraint appearing in the SDP

reformulation of the problems (see Section 2.4). The computation of these bounds relies

on robust tools of linear algebra and nonlinear optimization (more precisely, computing the

bounds amounts to an eigendecomposition of a matrix, and improving the tightness can be

done with Newton-like algorithms; see Section 4.3). The bounds turn out to have good ratios
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of tightness to computing time (see Section 5), which is a key property in view of being used

as a bounding procedure within branch-and-bound methods to solve 0-1 quadratic problems

to optimality. Another important property is that we have a real parameter (α in the sequel)

that controls the tightness level and the computing cost of these bounds.

Some of the underlying ideas in this work are not completely new: they are present in

[Mal07], and used in the recent paper [MR11] to solve to optimality a special hard combi-

natorial optimization problem. The main goals of the present paper are the following:

– to clarify and simplify the approach by introducing a family of semidefinite bounds with

direct interpretation from Lagrangian duality;

– to give a general methodology to construct and to use these semidefinite bounds for

general 0-1 quadratic programming;

– to make a numerical study of these bounds: illustrating their features, comparing them

with the usual bounds (in terms of tightness, computing time, and the balance of both),

and advocating that they have interesting qualities in view of being embedded within

branch-and-bound algorithms.

Here is the outline of the paper. In Section 2, we introduce the notation, three problems

of the form (1), and transformations to come up with an equivalent SDP formulation of

the problem (see forthcoming equation (15)). In Section 3, we apply the mechanism of La-

grangian duality to the reformulation, which gives us the new bounds. We study in Section 4

the properties of this family of bounds and discuss how to use them in practice. Section 5

reports numerical tests of these bounds on various standard test-problems.

2 Semidefinite reformulations of 0-1 quadratic problems

2.1 Notation, projections in symmetric matrix spaces

Let Sp be the space of p× p symmetric matrices, equipped with the norm ‖ · ‖ associated

with its usual inner product

〈A,B〉 := ∑i, j Ai jBi j = trace(AB).

This inner product is relevant for our purposes through the relation x⊤Ax = 〈A,xx⊤〉 for

all x ∈ R
p and A ∈ Sp. In other words, one can transform quadratic functions on R

p to

linear functions on Sp with respect to the rank-one symmetric matrix X = xx⊤. This will be

used to obtain the forthcoming SDP formulation (15). Note also that the binary constraint

xi ∈ {−1,1} reads Xii = 1 on X = xx⊤. Introducing the operator diag : Sp → R
p and the

vector of all ones e ∈ R
p, this gives us the constraint diag(X) = e that appears in (15). For

more details on SDP formulations of combinatorial problems, see [PRW95] and [LO99].

The projections (with respect to ‖ · ‖) of a matrix A ∈Sn onto the closed convex cone

S +
p and its polar cone S −

p are denoted, respectively, by

A+ := argmin
X�0

‖X−A‖ and A− := argmin
X�0

‖X−A‖.

Moreau’s theorem (see [HUL93, Chap. III]) states that the projections are characterized by

〈A+,A−〉= 0 and A = A+ +A− . (2)

In fact, it is well-known (see e.g. [Hig88]) that we have an explicit formula for these projec-

tions as follows. Let A = ∑i λi pi pi
⊤ be a spectral decomposition of A with eigenvalues λi
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and eigenvectors pi, assumed to be pairwise orthogonal and of length one; then

A+ = ∑
λi>0

λi pi pi
⊤ and A− = ∑

λi<0

λi pi pi
⊤.

Note finally that we have for A ∈Sp

(−A)− =−A+ . (3)

2.2 Examples of binary quadratic optimization problems

The developments of this paper apply to general binary quadratic problems of the form (1).

We illustrate them on the following three classical combinatorial optimization problems.

Example 1 (Unconstrained quadratic 0-1 problem) Consider the problem of minimizing a

quadratic function with binary variables

{

min x⊤M0 x+m0
⊤x

x ∈ {0,1}n.
(4)

This problem is known to be NP-hard in general, and to have numerous applications (see

e.g. an application in medical field in [PIS+04]). We also mention the celebrated max-cut

problem on a (undirected) graph (see e.g. [GW95]) which can be formulated as

{

min x⊤Lx

x ∈ {−1,1}n (5)

with L the Laplacian matrix of the graph. It is well-known that these two problems (4)

and (5) are equivalent. In particular, (4) can be reformulated as a max-cut on a graph with

unrestricted weights. ⊓⊔

Example 2 (Heaviest subgraph) Consider an undirected weighted graph G = (V,E) with n

vertices, and denote by W = (wi j)i j its weight-matrix (which is a symmetric n×n matrix).

For an integer k in {1, . . . ,n}, the heaviest k-subgraph problem (also called k-cluster prob-

lem; see references in [MR11]) consists in determining a subset S of k vertices such that

the total edge weight of the subgraph induced by S is maximized. This problem is directly

modeled in the form (1)
{

max x⊤W x

e⊤x = k, x ∈ {0,1}n.
(6)

In view of having better bounds when relaxing, we introduce the n so-called “product con-

straints” (standard reinforcement constraints, see e.g. [SA90], [LS91])

(e⊤x− k)xi = 0, for i = 1, . . . ,n. (7)

In some sense, adding these n equality constraints is optimal (see e.g. [LO99],[FR07]). This

leads again to a problem of the form (1)







max x⊤W x

e⊤x = k, x ∈ {0,1}n,
x⊤Aix− k xi = 0, for i = 1, . . . ,n

(8)

with the appropriate matrices Ai ∈Sn (see [MR11, Eq. (3)] for more details). ⊓⊔
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Example 3 (Graph bisection) With the notation of the previous example, the graph bisection

problem consists in dividing the nodes of G into two subsets of k and n−k vertices such that

the total weights of edges that have end-points in different sets is minimal. This problem can

be formulated as
{

min x⊤W x

e⊤x = 2k−n, x ∈ {−1,1}n.
(9)

Similarly to heaviest subgraph problem (8), the constraints can be strengthened as






min x⊤W x

e⊤x = 2k−n, x ∈ {−1,1}n,
x⊤Aix− (2k−n)xi = 0, for i = 1, . . . ,n.

(10)

Moreover this problem can be obviously written as (1) after a change of variables. SDP

techniques have been used for solving this problem to optimality (see [KRC00]). ⊓⊔

2.3 Reformulation with a rank-one constraint (semidefinite lifting)

We apply the standard lifting up to the symmetric matrix space by equivalently writing the

0-1 quadratic problem (1) as a linear SDP problem with a rank-one constraint (see more in

[SVW00]). Though all the development can be made with {0,1}-variables, it is simpler to

work with {−1,1} variables when introducing the “spherical constraint” (see next section).

There are two equivalent ways to proceed when changing variables and lifting to SDP:

1. Lift and change. First, apply the “recipe” (see e.g. [PRW95] or [LO99]) to transform the

0-1 quadratic problem (1) to a SDP problem with respect to

Y =

[

1 x⊤

x X

]

∈Sn+1.

Second, apply the change of variables X ←UYU⊤ given by the block-matrices

U :=

[

1 0
1
2
e 1

2
In

]

and U−1 =

[

1 0

−e 2In

]

.

2. Change and lift. We can also do it the other way around. First, apply (if necessary) the

change of variable {0,1} → {−1,1} to (1). In fact, the transformation [1;x] = U [1;y]
with the above U can be used to make the change of variables and to homogenize the

quadratic forms q j(x) = x⊤A j x+b j
⊤x+c j at the same time. Second, lift the problem to

the matrix space with a semidefinite rank-one matrix of the form X = xx⊤ ∈Sn+1.

The two above transformations are known to be equivalent (see e.g. [HPRW95], [Hel00]).

Note that there are several degrees of freedom in the reformulation (although all the oper-

ations can be done automatically). For example, the constants c j can be treated in different

ways. The formulation choices may have an impact on the behavior of solvers.

Finally we get the following linear SDP problem with respect to X ∈Sn+1






min 〈Q0,X〉
〈Q j,X〉= (or≤)q j j = 1, . . . ,m
diag(X) = e, X � 0, rank(X) = 1

(11)

with γ j,q j ∈R such that γ j−q j = c j, and with the (n+1)× (n+1)-matrices Q j defined by

Q j := U⊤
[

γ j
1
2
m j
⊤

1
2
m j M j

]

U.
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For example, problem (4) has the equivalent SDP formulation







min 〈Q,X〉
diag(X) = e

X � 0, rank(X) = 1

with Q := 1
4

[

e⊤M0e+2m0
⊤e e⊤M0 +m0

⊤

M0e+m0 M0

]

. (12)

The combinatorial difficulty of the initial problem (1) is now concentrated in the rank-

one constraint of (11). The SDP relaxation of this problem consists of dropping the rank-one

constraint; the resulting problem is thus the linear SDP problem







min 〈Q0,X〉
〈Q j,X〉= (or≤)q j j = 1, . . . ,m
diag(X) = e, X � 0.

(13)

In this paper, we do not drop the rank constraint, and we follow instead the idea of [Mal07]

to write this constraint in a more handy way, as a norm constraint.

2.4 Reformulation of the rank-one constraint (as a spherical constraint)

An interesting property [Mal07, Th. 1] is that, for X � 0 with diag(X) = e, we have

‖X‖ ≤ n+1 and moreover
(

‖X‖= n+1 ⇐⇒ rankX = 1
)

. (14)

Therefore we can replace the rank-one constraint in formulation (11) by the equivalent con-

straint ‖X‖2 = (n + 1)2, called the “spherical constraint” in [Mal07]. Our problem (1) can

thus be equivalently written as:







min 〈Q0,X〉
〈Q j,X〉= (or≤)q j j = 1, . . . ,m
diag(X) = e, X � 0, ‖X‖2 = (n+1)2.

(15)

In other words, we have transformed a quadratic problem in R
n+1 with quadratic constraints

into a linear SDP problem with one single quadratic constraint. This quadratic constraint

carries the nonconvexity and the combinatorial difficulty of the initial problem. Obviously,

dropping it take us back to the SDP relaxation (13).

3 Semidefinite bounds by Lagrangian duality

In this section, we attack the last reformulation (15) of the quadratic binary problem (1),

by Lagrangian duality. We will apply, simply and directly, the usual duality mechanism

(see e.g. [BV04, Chap. 5] and [HUL93, Chap. XII]). To do so, we separate the m affine

constraints of (15) into mI inequalities and mE equalities (with mI + mE = m, and mE ≥ n

since there are already the n constraints Xii = 1). So we work from now on with















min 〈Q,X〉
〈Ai,X〉 ≤ ai , i = 1, . . . ,mI

〈Bi,X〉= bi , i = 1, . . . ,mE

X � 0, ‖X‖2 = (n+1)2

(16)
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which is (15) with new notation. We emphasize that there has not been any relaxation so far;

in other words, the optimal value of (16) is equal to the one of the original problem (1):

val (16) = val (1).

We introduce the dual space D := R
mI
+ ×R

mE ×S
−

n+1×R, and define the Lagrangian,

a function of the primal variable X ∈Sn+1 and the dual variables (λ ,µ,Z,α) ∈D

L(X ;λ ,µ,Z,α) = 〈Q,X〉 +
mI

∑
i=1

λi(〈Ai,X〉−ai)+
mE

∑
i=1

µi(〈Bi,X〉−bi) (17)

+
α

2
(‖X‖2− (n+1)2)+ 〈Z,X〉.

The associated dual function is the concave function defined as

θ(λ ,µ,Z,α) := inf
X∈Sn+1

L(X ;λ ,µ,Z,α). (18)

We already know by the weak duality result ([HUL93, XII.2.1.5]), that each value of θ gives

a lower bound on the optimal value of (16); in other words, we have for all (λ ,µ,Z,α) ∈D

θ(λ ,µ,Z,α)≤ val (16). (19)

The best of these bounds is the optimal value of the associated dual problem

sup
(λ ,µ,Z,α)∈D

θ(λ ,µ,Z,α). (20)

So far, we have just given definitions and general properties; the approach has a real interest

only if we can compute (some of) these bounds. In general, solving the optimization problem

(18) - and therefore (20) a fortiori - is not easy as it has a nonlinear objective function and a

semidefinite conic constraint. In fact, the computability of this problem essentially relies on

the sign of α , as follows.

First of all, when α < 0, observe that θ(λ ,µ,Z,α) =−∞ so that this “bound” is useless.

Second, the case when α = 0 deserves a special treatment. Indeed note that the Lagrangian

L(X ;λ ,µ,Z,0) corresponds to the standard Lagrangian for linear SDP programming. Thus

we have an explicit expression of θ(λ ,µ,Z,0) that gives us the usual linear SDP dual prob-

lem (which corresponds to the dual of (13))







max −a⊤λ −b⊤µ
A(λ )+B(µ)+Q+Z = 0

Z � 0

(21)

where we set

A(λ ) =
mI

∑
i=1

λiAi and B(µ) =
mE

∑
i=1

µiBi.

In other words, the best of the bounds θ(λ ,µ,Z,0) for the dual variables (λ ,µ,Z) is simply

the usual SDP bound of (1). There exist many efficient algorithms and software to compute

this SDP bound (see e.g. [HRVW96], [HR00]). In our numerical experiments, we use the

two software packages [Bor99] and [Hel04] known to be among the best ones.

Finally, problem (18) with α > 0 can be solved explicitly, as shown by the next two

results. We denote the positive real numbers by R++.
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Theorem 1 (Dual function) Given dual variables (λ ,µ,Z,α) ∈ D with α > 0, the dual

function can be written

θ(λ ,µ,Z,α) =−a⊤λ −b⊤µ−
1

2α
‖Q+A(λ )+B(µ)+Z‖2−

α

2
(n+1)2.

This expression is differentiable with respect to (λ ,µ,Z,α) ∈ R
mI ×R

mE ×Sn+1×R++,

and we know the partial differentials; in particular:

∂λi
θ(λ ,µ,Z,α) = −

1

α
〈Ai,Q+A(λ )+B(µ)+Z〉−ai

∂µi
θ(λ ,µ,Z,α) = −

1

α
〈Bi,Q+A(λ )+B(µ)+Z〉−bi.

Proof Note that the Lagrangian (17) can be written as

L(X ;λ ,µ,Z,α) = α‖X‖2/2+ 〈X ,Q1(λ ,µ,Z)〉+q(λ ,µ,α)

with the help of

Q1(λ ,µ,Z) := Q+A(λ )+B(µ)+Z, and q(λ ,µ,α) :=−
α

2
(n+1)2−a⊤λ −b⊤µ.

As a function of X , the Lagrangian is obviously strongly convex and differentiable; thus it

admits a unique minimizer characterized by 0 = ∇X L(X ;λ ,µ,Z,α) = αX + Q1(λ ,µ,Z).
This gives

θ(λ ,µ,Z,α) =−
1

2α
‖Q1(λ ,µ,Z)‖2 +q(λ ,µ,α) (22)

which is the form we wanted. This function is clearly differentiable with respect to all the

dual variables; the expressions of the differentials follow from standard calculus rules. ⊓⊔

Theorem 2 (Simplified dual function) Given dual variables (λ ,µ,α) with α > 0, the dual

function can be maximized over Z: the simplified dual function is

Θ(λ ,µ,α) := max
Z�0

θ(λ ,µ,Z,α)

= −a⊤λ −b⊤µ−
1

2α

∥

∥(Q+A(λ )+B(µ))−
∥

∥

2
−

α

2
(n+1)2.

This expression is differentiable at any (λ ,µ,α) ∈ R
mI ×R

mE ×R++, and we have

∂λi
Θ(λ ,µ,α) = −

1

α
〈Ai,(Q+A(λ )+B(µ))−〉−ai

∂µi
Θ(λ ,µ,α) = −

1

α
〈Bi,(Q+A(λ )+B(µ))−〉−bi.

Proof Isolate matrix Q2(λ ,µ) = Q + A(λ ) + B(µ) in the expression of θ(λ ,µ,Z,α) of

Theorem 1. Observe that the solution of

min
Z�0
‖Q2(λ ,µ)+Z‖

is the projection (−Q2(λ ,µ))− =−Q2(λ ,µ)+ by (3). Therefore the minimum value is then

‖−Q2(λ ,µ)+ + Q2(λ ,µ)‖ = ‖Q2(λ ,µ)−‖ by (2). With the expression of θ(λ ,µ,Z,α) of

Theorem 1, this gives the expression of Θ(λ ,µ,α).
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To differentiate Θ , we want to use the theorem of differentiability of a max (or min)

function (see e.g. [HUL93, VI.4.4.5]) which asks for compactness of the “index set” on

which the maximum is taken. Fix any (λ̄ , µ̄, ᾱ) ∈ R
mI ×R

mE ×R++ and consider a closed

ball V around them. Observe now that the set U =−(Q2(V ))+ is compact as well (since Q2

and the projection are both continuous) and that we can write

Θ(λ ,µ,α) = max
Z∈U∩S −n+1

θ(λ ,µ,Z,α) for all (λ ,µ,α) ∈V.

Since the maximum is now taken on a compact set, [HUL93, VI.4.4.5] gives the differentia-

bility around (λ̄ , µ̄, ᾱ) together with the expression of partial differentials.

Let us make the calculation of the partial differential with respect to λi explicit. By

[HUL93, VI.4.4.5], we have ∂λi
Θ(λ ,µ,α) = ∂λi

θ(λ ,µ,−Q2(λ ,µ)+,α). The expression

of ∂λi
θ of Theorem 1 yields, with the help of (2)

∂λi
Θ(λ ,µ,α) =−

1

α
〈Ai,Q2(λ ,µ)−Q2(λ ,µ)+〉−ai =

1

α
〈Ai,Q2(λ ,µ)−〉−ai

We obtain the other partial differentials the same way. ⊓⊔

This theorem shows that for any dual variables (λ ,µ,α) with α > 0 we have an explicit

expression of the dual lower bound Θ(λ ,µ,α). In the remainder of this paper, we study

these new bounds – theoretically and numerically.

4 Study of the family of semidefinite bounds

Consider the bounds for the 0-1 quadratic problem (1) formulated as (16), introduced by

duality in the previous section; we study in this section the family of bounds

Θ(λ ,µ,α) =−a⊤λ −b⊤µ−
1

2α

∥

∥(Q+A(λ )+B(µ))−
∥

∥

2
−

α

2
(n+1)2 (23)

with respect to (λ ,µ,α) ∈D+ where

D+ := R
mI
+ ×R

mE ×R++.

Obviously, these are indeed lower bounds of the optimal value of (1), since in view of (19)

and Theorem 2 we have

Θ(λ ,µ,α)≤ val (16) = val (1). (24)

We study in this section some important properties of the bound Θ(λ ,µ,α) (computation

cost in Section 4.1, tightness in Section 4.2) and we discuss how to use them in practice

within a branch-and-bound procedure (Section 4.3). A numerical study on our three test-

problems is done afterwards in Section 5.

4.1 Computing of the bounds

The bounds Θ(λ ,µ,α) are computed by standard linear algebra:

1. The initial quadratic problem is reformulated as (16) by a sequence of elementary oper-

ations that could be fully automatized (to be implemented in SDP S [Rou04]).

2. The main operation is then to assemble the matrix Q + A(λ ) + B(µ) and to project it

onto the cone of semidefinite negative matrices S
−

n+1.
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As recalled in Section 2.1, projecting onto S
−

n+1 is done by computing an eigendecompo-

sition of the matrix to project. The dominant cost of the computation of Θ(λ ,µ,α) is thus

of order O(n3). This may prevent the use of these bounds for large graphs. Since we aim

at developing a bouding technique to be embedded within a branch-and-bound algorithm,

this is not a limitation: regarding exact resolution of our three test-problems, medium-size

problems (n≤ 500) are already challenging instances, to say the least. In this case, the eigen-

decomposition can be performed quickly by efficient linear algebra routines. Thus, the new

bound are not too expensive in view of our targeted use; but, of course, they are of relevance

only if they are not too weak. This is studied in the next section.

Before moving to tigthness, let us make the bounds for one of our test-problems explicit

for illustration. This will also highlight the connection with [MR11].

Example 4 (Bounds for the heaviest subgraph problem) Particularizing bound (23) for prob-

lem (8) yields, for µ = (µ1,µ2) ∈ R
n+1×R

n+1 and α > 0,

Θheav(µ,α) :=−b⊤µ−
1

2α
‖(Q+Aheav(µ))−‖

2−
α

2
(n+1)2,

where we set

Q = U⊤
[

0 0

0 −W

]

U and Aheav(µ) := Diag(µ1)+U⊤







0 k
2

µ2
⊤

k
2

µ2 −
n+1

∑
i=1

(µ2)iAi






U.

We note that the above bounds have already appeared in [MR11]: more specifically,

these are not the bounds introduced in [MR11, Sec. 3], but they are essentially the same as

the ones used in practice, implicitly given by [MR11, Lemma 3] as

Θ ′heav(µ,α) := α
(

−b⊤µ +
1

2
‖(−Q/α +Aheav(µ))+‖

2−
1

2
(n+1)2

)

.

Indeed we have Θheav(µ,α) = Θ ′heav(−µ/α,α). In addition to the direct interpretation by

duality, one could see a numerical interest in using the formulation Θheav instead of Θ ′heav to

compute the bound. To get Θheav indeed, we compute the eigendecomposition of a matrix

whose entries are of the same scale as the data of the problem, whereas the entries of the

matrix in Θ ′heav are badly scaled when α gets small. ⊓⊔

4.2 How tight are the bounds?

This section shows that the new SDP bounds (23) are always less tight than the usual SDP

bounds, but that one can approximate them in arbitrary precision. The first theorem goes one

step further than (24) by showing that the new SDP bounds are in fact lower bounds on the

usual SDP bound of the initial problem.

Theorem 3 (Less tight bounds) For any (λ ,µ,α)∈D+, the bound Θ(λ ,µ,α) is less tight

than the usual SDP bound:

Θ(λ ,µ,α)≤ val (13)≤ val (1).
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Proof Denote by C the constraint set of the SDP relaxation (13), that then becomes
{

min 〈Q,X〉
X ∈ C .

(25)

Recalling that (16) is just (15) written with other notation, observe that the feasible set of

(16) is included in C , so that

val (25)≤ val (16) = val (1). (26)

Consider now α > 0 fixed, and gather together the terms 〈Q,X〉 and α(‖X‖2− (n+1)2)/2

in (17) and (18): we then observe that

{

max θ(λ ,µ,Z,α)
(λ ,µ,Z) ∈ R

mI
+ ×R

mE ×S
−

n+1,
(27)

is the dual problem of

{

min 〈Q,X〉+ α
2
(‖X‖2− (n+1)2)

X ∈ C .
(28)

By weak duality we have val (27)≤ val (28). Since any X ∈ C is positive semidefinite with

ones on the diagonal, (14) gives α(‖X‖2 − (n + 1)2) ≤ 0, so that we have furthermore

val (28)≤ val (25). Putting together the inequalities, we have

Θ(λ ,µ,α)≤ val (27)≤ val (28)≤ val (25)
(

= val (13)
)

,

which allows us to conclude with (26). ⊓⊔

The next result somehow compensates the bad news of the previous one: it states that

we can get close to the SDP bound with Θ(λ ,µ,α). To prove the result, we need existence

of solutions to (21), so we make a Slater-type assumption.

Theorem 4 (Arbitrarily tight bounds) Set Λ := R
mI
+ ×R

mE , and assume that there exists

a matrix X̄ ∈Sn+1 such that

X̄ ≻ 0, 〈Ai, X̄〉 ≤ ai, i = 1, . . . ,mI and 〈B j, X̄〉= b j, j = 1, . . . ,mE (29)

Then the bounds Θ(λ ,µ,α) satisfy the following two properties:

(i) for 0 < α ≤ β ,

max
(λ ,µ)∈Λ

Θ(λ ,µ,β )≤ max
(λ ,µ)∈Λ

Θ(λ ,µ,α)≤ val (21) ;

(ii) the upper bound is reached when α > 0 vanishes:

lim
α→0

max
(λ ,µ)∈Λ

Θ(λ ,µ,α) = val (21).

Proof Using a standard result of convex optimization (apply e.g. [HUL93, VII.2.2.5] with

c0(X) = λmax(−X)), the weak Slater assumption (29) gives the existence of dual solutions

(i.e. solutions to (21) in our case), and together with existence of primal solution (the primal

feasible set is compact), it also gives no duality gap (i.e. val (21) = val (13)). We use now the

notation of the proof of Theorem 3 and we introduce the function

T (α) := max
(λ ,µ)∈Λ

Θ(λ ,µ,α) = max
(λ ,µ,Z)∈R

mI
+ ×R

mE×S
−
n+1

θ(λ ,µ,Z,α)
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Note first that the Slater point of (13) is also a Slater point of (28) (that has the same con-

straint set, denoted C ). Therefore, the optimal values of (27) and (28) coincide, in other

words, T (α) = val (28). Look now at (28): the constraint set C is compact (it is closed by

definition and bounded by (14)), and the objective function is strongly convex (since α > 0).

Therefore, there exists a unique solution X∗ ∈ C , and we can use the theorem of differentia-

bility of a max function (see e.g. [HUL93, VI.4.4.5]): T is differentiable and

T ′(α) = (‖X∗‖2− (n+1)2)/2 ≤ 0.

The above negativity comes from (14) since matrices lying in C are in particular positive

semidefinite with ones on the diagonal. Thus we have that T is nonincreasing on R++, and

this proves (i) (since the last inequality in (i) comes from Theorem 3).

We now turn to (ii). We denote by (λ ∗,µ∗,Z∗) a solution to (21) (that exists by assump-

tion); there holds θ(λ ∗,µ∗,Z∗,0) = val (21). On the other hand, we have for α > 0

θ(λ ∗,µ∗,Z∗,α)≤Θ(λ ∗,µ∗,α)≤ max
(λ ,µ)∈Λ

Θ(λ ,µ,α)≤ val (21). (30)

by definition of Θ and Theorem 3. Recall that θ is concave and upper-semicontinuous since

it is defined in (18) as an infinum of linear functions L(X ; ·, ·, ·) (see e.g. [HUL93, IV.2.1.2]).

Moreover, the domain of θ contains D+ as well as the point (λ ∗,µ∗,Z∗,0). We deduce that

θ is continuous when α > 0 tends to zero; more specifically, we have

lim
α→0

θ(λ ∗,µ∗,Z∗,α) = θ(λ ∗,µ∗,Z∗,0) = val (21).

This limit together with (30) allows us to conclude the proof. ⊓⊔

Experiments in Section 5 illustrate this result: the optimal value of (21) is well approx-

imated by taking α small (between 10−2 and 10−4 depending on the problem). Let us also

mention that this convergence is accentuated in practice by rounding. The optimal value

of 0-1 problem (1) is integer if the entries of the M j and m j are integers as well, so that

rounding up Θ(λ ,µ,α) still gives a lower bound to (1). Rounding up the SDP bound and

Θ(λ ,µ,α) for very small α would give the same bound (except in pathological cases).

Individually, the lower bound Θ(λ ,µ,α) could have good tightness, but for a given

triple (λ ,µ,α), we still have no control on the quality of the bound. We explain in the next

section how to use these bounds in practice.

4.3 How to use the bounds in practice?

Maximizing bounds. We note first that Theorem 4 yields another way to compute the SDP

bound, specifically by solving

max
(λ ,µ,α)∈D+

Θ(λ ,µ,α) = val (21).

However we do not use directly this property because the constraint α > 0 in D+ com-

plicates the picture: the constraint set is not closed, and handling it would require extra

technicalities. We proceed otherwise, as follows.

Property (i) of Theorem 4 suggests that α acts like a control parameter to set the level

of tightness. Fixing α > 0 yields a simpler optimization problem

max
λ∈R

mI
+ , µ∈R

mE

Θ(λ ,µ,α) (31)



13

with a differentiable objective function (by Theorem 2) and just nonnegativity constraints on

the dual variable λ . This problem can be solved by any algorithm of nonlinear optimization

(handling box constraints).

Newton-like algorithm. Though Θ is differentiable, it is not twice differentiable due to the

projection onto the cone of negative semidefinite matrices in (23). Direct application of the

Newton method is not possible, so we turn to Newton-like methods: quasi-Newton methods

(see e.g. [BGLS03]), or (inexact) semismooth Newton methods (see [QS93] and [NW99]).

In our numerical experiments, we use the limited memory quasi-Newton of [GL89] to

solve (31). It proves to have good numerical behavior, as shown in the next section. Using a

limited-memory version allows us to deal with problems (1) with possibly many constraints.

In particular, one could add without concern redundant constraints to sharpen the bounds,

as is done with the product-constraints in (8).

The parameter α controls the tightness level of the bounds. We also notice that (31) can

be solved to various levels of accuracy, so that the stopping criterion of the quasi-Newton

solver is a secondary practical parameter impacting the quality of the bound. In Section 5,

the stopping criterion is set from 1e-4 to 1e-7 depending on the type of problem and on

the value of α . We also mention that we scale the data initially to have better control on the

stopping criterion: the constraints 〈Bi,X〉= bi are scaled so that Bi are of norm 1.

We finally underline an important point. Throughout the run of the chosen maximizing

algorithm, the current objective value Θ(λk,µk,α) is obviously a bound. So in practice

within branch-and-bound, the run is stopped when the current value gets above the threshold

given by the best known solution of (1). Only few iterations are often necessary to be able

to prune the branch-and-bound tree (see the experiments with branch-and-bound in [MR11]

using Θ ′heav of example 4).

Choosing the tightness parameter α . The question reduces now to how to choose the tight-

ness level α . On the one hand, reducing α enhances the final gap obtained by the maxi-

mization (Theorem 4 (i)). On the other hand, reducing α also yields numerical difficulties.

We can guess by the expression of Θ and its gradient (Theorem 2) that very small values

of α can cause ill-conditioning. Numerical experiments confirm that solving the problem

becomes more difficult as α decreases (see Section 5.2).

The goal now is to adapt α to deteriorate the tightness of the SDP bound in order to save

computing time. Thus a balance has to be found when reducing α . In practice, one could do

preliminary testing (as in Section 5.2) to choose an appropriate α for each problem.

5 Computational study and comparison

We illustrate the properties of the family of bounds Θ(λ ,µ,α) on the three examples of

Section 2.2. We denote the bounds (23) respectively by

– Θuqp for the unconstrained 0-1 quadratic programming problem (4),

– Θheav for the heaviest subgraph problem (2),

– Θbis for the graph bisection problem (3).

Section 5.2 shows the profiles of the improvement in tightness when using α to control

tightness. Afterwards, numerical experiments of Section 5.3 compare these new bounds with

the standard semidefinite programming ones.
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5.1 Machine, criterion and data

The numerical experiments have been carried out on a Pentium IV 2.2 GHz with 1 GB of

RAM under Linux. The reported computing times are in seconds. In section 5.2, we evaluate

the tightness of the bounds by the relative gap between the bound rounded up to the next

integer, and the best known value of the initial problem. The best known solution can be

either the optimal (computed by an exact resolution scheme), or suboptimal (computed by

heuristics, when all exact schemes failed); more details are given for each case.

Unconstrained 0-1 quadratic programming. We consider some of the biggest and most

difficult problems of [BE07]: randomly generated instances created with the generator of

[PR90] where n is the number of variables and d is the density of matrix M0 in (4). For each

couple of parameters among

n = 100,150,200 and d = 30%,80%,100%

we have 10 instances of those problems. In tables 1 and 4, each reported result is thus the

mean of the 10 instances for given n and d. The solution of (4) used to evaluate the gap for

different bounds is as in [BE07]: it is the exact solution for n = 100, and the best feasible

available feasible solution for n = 150,200.

Heaviest subgraph problems. We consider randomly generated instances used by several

papers [Bil05], [BEP09] and [MR11]. The parameters of these instances are: the size of the

graph n, the graph density d, and the value of k. For each combination of parameters among:

n = 80,100,300 d = 25%,50%,75% and k = n/4,n/2,3n/4,

we have 5 instances of problems. In tables 2 and 5, each reported result is the mean of the

15 instances for given n and d. For n = 80 and n = 100 the best known solutions are optimal

(taken from [BEP09]). For n = 300, we used the heuristic of [MR11] (a greedy algorithm

followed by a “two-opt” procedure) to generate a good feasible solution. Thus the real gaps

between the bounds Θheav and the optimal value are certainly smaller.

Graph bisection problem. We consider some of the problems of [KRC00]. We have 8 graphs

of size n between 84 to 204; two of them are the weighted graphs ex84f and ex132f, the

others (denoted ex*a) are unweighted. We get 32 instances of the bisection problem taking

k = ⌊n/2⌋,⌊3n/4⌋,⌊7n/12⌋,⌊13n/24+1/2⌋.

Note that for k = ⌊n/2⌋, we obtain the well-studied equicut problem. In the forthcoming

tables 3 and 6, each reported result corresponds to one instance. The best known solutions

are taken from [KRC00], except for n≥ 156. These solutions are optimal when n = 84 and

are at most at 1% for n = 108 and n = 132. For n≥ 156, we compute a suboptimal solution

with a simple heuristic (“two-opt” procedure from randomly generated bisections).

5.2 Comparison of the bounds; role of α as a control parameter

We test and analyze the impact in terms of quality of the bound and computing time required

for different choices of α . Such preliminary testing allows one to adjust α for each problem

type. The three tables of this section report the time to optimize the bounds for a given

value of α and the final gap between the bound and the best known solution of the initial

combinatorial problem.
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Fig. 1 Comparison (axis: value of the bound vs cputime), for different values of α , of the bounds Θuqp(µ,α)
for a problem (4) of size n = 150.

Problem Θuqp with α = 10−1 Θuqp with α = 5.10−2 Θuqp α = 10−2

n d time (s) gap(%) time (s) gap(%) time (s) gap(%)

100 100% 0.14” 9.53% 0.15” 8.57% 0.22” 7.82%

150 30% 0.33” 12.92% 0.35” 10.62% 0.43” 8.86%

150 80% 0.31” 11.67% 0.36” 10.28% 0.46” 9.21%

200 30% 0.57” 14.32% 0.70” 11.59% 1.03” 9.48%

200 80% 0.62” 11.76% 0.84” 10.19% 1.10” 8.96%

mean 0.39” 12.04% 0.48” 10.25% 0.65” 8.87%

Problem Θuqp with α = 10−3 Θuqp with α = 5.10−3 Θuqp with α = 10−4

n d time (s) gap(%) time (s) gap(%) time (s) gap(%)

100 100% 0.44” 7.65% 0.69” 7.64% 1.06” 7.64%

150 30% 0.92” 8.46% 1.47” 8.45% 2.23” 8.43%

150 80% 0.99” 8.95% 1.60” 8.94% 2.57” 8.93%

200 30% 1.76” 9.02% 2.84” 9.00% 4.52” 8.99%

200 80% 2.01” 8.70% 3.29” 8.68% 5.11” 8.68%

mean 1.22” 8.56% 1.98” 8.55% 3.10” 8.53%

Table 1 Numerical results for the unconstrained quadratic problem (4) (each entry is the mean of 10 re-

sults). The table reports the computing time of Θuqp and gap(%) the averaged relative difference between the

computed bounds and the best known solution of (4).

For unconstrained 0-1 quadratic programming, six different values of α are compared

in table 1. Figure 1 gives an illustration of the convergence for a particular instance with

n = 150 and d = 0.3. We note that using α = 10−4 is more expensive than α = 10−3 for

only a small improvement of the gap.

For heaviest subgraph problems and for bisection problems, the picture is different. Ta-

bles 2 and 3 shows that the tightness greatly increases when α vanishes. In particular, taking

α = 10−4 provides a SDP-like bound in both cases. The computing cost differs though: for

the heaviest subgraph problems, this is obtained within a reasonable computing time (when

n ≤ 100), whereas it is more costly for graph bisection problems of the same sizes. More
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generally, we shall see in Section 5.3, that our best bounds are SDP-like for the three prob-

lems. Thus the corresponding gaps in Tables 1, 2, and 3 are almost equal to the SDP ones.

Problem Θheav with α = 10−2 Θheav with 5.10−3 Θheav with 10−3 Θheav with 10−4

n k time (s) gap(%) time (s) gap(%) time (s) gap(%) time (s) gap(%)

80 20 0.04” 29.77% 0.07” 17.00% 0.10” 9.64% 0.18” 8.07%

40 0.03” 18.16% 0.05” 4.65% 0.07” 2.45% 0.11” 2.00%

60 0.07” 3.13% 0.09” 1.73% 0.10” 0.83% 0.15” 0.65%

100 25 0.05” 32.49% 0.09” 17.38% 0.14” 9.46% 0.24” 7.77%

50 0.04” 13.55% 0.07” 5.67% 0.09” 2.47% 0.16” 1.98%

75 0.07” 3.40% 0.09” 1.79% 0.15” 0.82% 0.17” 0.63%

300 75 0.43” 46.48% 1.12” 19.59% 1.85” 9.63% 3.62” 7.43%

150 0.49” 24.22% 0.68” 4.23% 0.85” 2.40% 1.11” 1.67%

225 0.43” 6.02% 0.55” 4.04% 1.09” 2.28% 3.05” 0.50%

mean 0.18” 19.69% 0.31” 8.46% 0.49” 4.44% 0.97” 3.41%

Table 2 Numerical results for the heaviest subgraph problem (8) (each entry is the mean of 15 results). The

table reports the computing time of Θheav and gap(%), the averaged relative difference between the computed

bounds and the best known solution of (8).

Problem Θbis with α = 10−2 Θbis with α = 5.10−3 Θbis with α = 10−3 Θbis with 10−4

graph k time (s) gap(%) time (s) gap(%) time (s) gap(%) time (s) gap(%)

ex84a 42 0.09” 5.26% 0.11” 4.31% 0.20” 3.50% 0.29” 3.37%

63 0.08” 7.12% 0.08” 6.02% 0.13” 4.93% 0.22” 4.74%

49 0.11” 5.83% 0.14” 4.99% 0.15” 4.16% 0.26” 4.02%

46 0.10” 5.58% 0.13” 4.63% 0.17” 3.81% 0.28” 3.67%

ex84f 42 0.18” 1.33% 0.18” 1.26% 0.28” 1.20% 0.47” 1.20%

63 0.15” 1.99% 0.18” 1.90% 0.29” 1.81% 0.45” 1.80%

49 0.18” 1.54% 0.17” 1.47% 0.27” 1.39% 0.54” 1.38%

46 0.18” 1.43% 0.21” 1.36% 0.35” 1.28% 0.49” 1.27%

ex108a 54 0.18” 5.13% 0.18” 4.17% 0.24” 3.45% 0.40” 3.29%

81 0.17” 6.23% 0.18” 5.03% 0.23” 4.04% 0.53” 3.29%

63 0.16” 5.39% 0.18” 4.39% 0.27” 3.65% 0.52” 3.83%

59 0.17” 5.34% 0.19” 4.37% 0.26” 3.64% 0.40” 3.48%

ex132a 66 0.28” 4.67% 0.33” 3.66% 0.47” 2.92% 0.71” 2.76%

99 0.24” 5.44% 0.27” 4.21% 0.40” 3.26% 0.81” 3.05%

77 0.32” 4.88% 0.33” 3.89% 0.36” 3.12% 0.83” 2.96%

72 0.28” 4.92% 0.36” 3.96% 0.42” 3.21% 0.57” 3.05%

ex132f 66 0.51” 1.27% 0.58” 1.14% 1.07” 1.07% 1.34” 1.07%

99 0.39” 1.65% 0.43” 1.54% 0.63” 1.45% 1.25” 1.43%

77 0.41” 1.19% 0.52” 1.10% 0.68” 1.03% 1.22” 1.02%

72 0.47” 1.23% 0.50” 1.08% 0.84” 1.01% 1.12” 1.00%

ex156a 78 0.62” 5.06% 0.66” 4.10% 0.83” 3.36% 0.82” 3.22%

117 0.34” 6.04% 0.47” 4.84% 0.61” 3.89% 1.23” 3.64%

91 0.40” 5.15% 0.41” 4.19% 0.61” 3.43% 0.97” 3.28%

85 0.46” 4.79% 0.52” 3.85% 0.58” 3.11% 1.00” 2.96%

ex180a 90 0.82” 4.72% 1.04” 3.78% 1.27” 3.00% 1.71” 2.83%

135 0.46” 5.36% 0.53” 4.19% 0.74” 3.25% 1.52” 3.02%

105 0.54” 4.79% 0.69” 3.79% 0.81” 3.01% 1.93” 2.84%

98 0.62” 4.71% 0.86” 3.73% 1.17” 2.97% 2.20” 2.81%

ex204a 102 1.16” 4.06% 1.50” 3.11% 1.58” 2.36% 2.07” 2.21%

153 0.96” 5.32% 0.72” 4.13% 1.19” 3.21% 2.55” 3.03%

119 0.90” 4.50% 1.10” 3.51% 1.36” 2.74% 2.46” 2.60%

111 0.95” 4.10% 1.07” 3.12% 1.68” 2.36% 2.61” 2.23%

mean 0.40” 4.28% 0.46” 3.49% 0.62” 2.87% 1.06” 2.67%

Table 3 Numerical results for graph bisection problems. The table reports the computing time of Θbis and

gap(%), the averaged relative difference between the computed bounds and the best known solution of (8).

5.3 Comparison with standard semidefinite bounds

This section gives numerical comparisons of the new bounds and the SDP bound (21), in

terms of tightness, computation time and the balance between both. To compute the SDP

bound, we use two SDP solvers known to be efficient:
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1. SB [Hel04], a SDP solver based on the spectral bundle method [HR00]. This software

can handle large-scale problems and is known to be efficient in the context of combina-

torial optimization. We use it with the default settings, except that: we set the stopping

criterion to 1e-4 (instead of 1e-5), we activate (with -sh 1 and -si 1) the heuristic for

finding a good starting point and the initial rescaling of the constraints.

2. CSDP [Bor99], a robust and efficient interior point solver. We use it with the default

settings, except that we activate “Fastmode” and we set the stopping criterion objtol to

1e-5 (instead of 1e-8).

Remark 1 (Different formulations of the same SDP bound) Computing times depend obvi-

ously on the solvers, and in turn the performances of the solvers depend on the formulation

of the bounds. There is no ambiguity in the SDP relaxation of (4), but there is some am-

biguity in those of (8) and (10). It turns out that adding the n product constraints (7) is

equivalent to adding the squared constraint (e⊤x− k)2 = 0 (see e.g. [LO99]); this leads to

two equivalent SDP relaxations. For the k-heaviest problem, preliminary tests of [MR10]

showed that the formulation with the product constraints is best solved by SB, while the one

with the squared constraint is best solved by CSDP. We have observed a similar behavior

for the graph bisection problems. In the numerical experiments below, we take the most ad-

vantageous formulation for each solver. We emphasize this idea which is unusual (as far as

we are aware) but essential to make fair comparisons. We see this idea as a secondary but

important contribution of this paper. ⊓⊔

Problem Θuqp with α = 10−3 SDP with SB SDP with CSDP

n d time (s) gap(%) time time (s) to achieve Θuqp time (s) time (s) to achieve Θuqp

100 100% 0.44” 0.02% 2.22” 0.94” 1.48” 0.84”

150 30% 0.92” 0.04% 3.96” 2.64” 2.49” 2.35”

150 80% 0.99” 0.03% 4.93” 2.49” 3.33” 2.21”

200 30% 1.76” 0.05% 7.54” 3.76” 4.65” 3.34”

200 80% 2.01” 0.04% 10.94” 3.68” 7.14” 3.27”

mean 1.22” 0.04% 5.92” 3.82” 2.70” 2.40”

Table 4 Numerical tests for the unconstrained quadratic problem (each entry is the mean of 15 results).

Problem Θheav with α = 10−4 SDP with SB SDP with CSDP

n k time (s) gap(%) time time (s) to achieve Θheav time (s) time (s) to achieve Θheav

80 20 0.18” 0.16% 0.93” 0.44” 0.33” 0.26”

40 0.11” 0.05% 0.97” 0.66” 0.36” 0.30”

60 0.15” 0.01% 1.38” 1.19” 0.34” 0.29”

100 25 0.24” 0.17% 2.07” 0.84” 0.58” 0.45”

50 0.16” 0.06% 1.98” 0.93” 0.56” 0.46”

75 0.17” 0.01% 4.66” 3.12” 0.59” 0.50”

300 75 3.62” 0.11% 21.49” 8.18” 9.73” 7.79”

150 1.11” 0.04% 11.15” 10.13” 11.86” 9.52”

225 3.05” 0.01% 34.02” 11.45” 8.78” 6.82”

mean 0.97” 0.07% 8.74” 4.10” 3.68” 2.93”

Table 5 Numerical tests for the heaviest subgraph problem (each entry is the mean of 15 results).

Tables 4, 5 and 6 report the computation times of the three solvers. Recall that the

solvers do not compute the same bounds: to compare the SDP bound (21) and the maximum

of Θ(µ,α) for fixed α , we report:

– gap% which is the relative difference between the two bounds,

– the computing times for SB and CSDP to converge,

– the computing times for SB and CSDP to achieve the final Θ .
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We emphasize that “gap” does not have the same meaning as in the previous tables: it is

now the difference between Θ(µk,α) and the SDP bound (21). We also note that to have a

fair comparison, the bounds are not rounded up to the next integer as was done previously.

Finally we mention that table 5 aggregates the results of [MR11].

The three tables show that the new bounds provide SDP-quality bounds more quickly.

More specifically, the difference between the final Θ and the SDP bound is always smaller

than 0.1% (recall moreover that in practice it would be reduced again by rounding). Though

SB and CSDP eventually converge to the SDP bound, which is more tight, they need more

time to do so, and they also need more time to achieve the best Θ (see the columns “time

to achieve Θ”). On the unconstrained quadratic problems and heaviest subgraph problems,

our solver clearly outperforms SB and CSDP: in table 4, the gain in time is by a factor of

3 compared to SB and a factor of 2 compared to CSDP. Note that the gain is less important

for graph bisection problems: the average time is still better, but CSDP performs better for

some graphs (ex84f in particular).

Problem Θbis with α = 10−4 SDP with SB SDP with CSDP

graph k time (s) gap(%) time (s) time (s) to achieve Θbis time (s) time (s) to achieve Θbis

ex84a 42 0.29” 0.04% 0.82” 0.39” 0.41” 0.33”

63 0.22” 0.03% 0.78” 0.41” 0.57” 0.49”

49 0.26” 0.03% 1.03” 0.43” 0.42” 0.33”

46 0.28” 0.03% 0.66” 0.36” 0.42” 0.33”

ex84f 42 0.47” 0.02% 1.11” 0.58” 0.39” 0.33”

63 0.45” 0.01% 1.50” 1.18” 0.47” 0.37”

49 0.54” 0.01% 1.60” 0.71” 0.53” 0.45”

46 0.49” 0.01% 0.80” 0.63” 0.43” 0.36”

ex108a 54 0.40” 0.03% 1.66” 0.84” 0.77” 0.61”

81 0.53” 0.02% 4.27” 2.32” 0.99” 0.80”

63 0.52” 0.03% 1.30” 0.75” 0.77” 0.60”

59 0.40” 0.04% 1.36” 0.56” 0.78” 0.57”

ex132a 66 0.71” 0.02% 2.07” 1.22” 1.39” 1.11”

99 0.81” 0.04% 4.09” 1.71” 1.52” 1.24”

77 0.83” 0.02% 2.63” 1.44” 1.95” 1.56”

72 0.57” 0.04% 2.21” 0.94” 1.56” 1.23”

ex132f 66 1.34” 0.01% 2.16” 1.52” 1.39” 1.19”

99 1.25” 0.01% 2.62” 2.11” 1.50” 1.40”

77 1.22” 0.01% 2.87” 2.00” 1.76” 1.51”

72 1.12” 0.01% 5.54” 3.16” 2.57” 2.20”

ex156a 78 0.82” 0.04% 2.48” 1.11” 2.35” 1.73”

117 1.23” 0.03% 6.35” 3.35” 3.27” 2.66”

91 0.97” 0.03% 3.17” 1.88” 2.08” 1.79”

85 1.00” 0.05% 2.52” 1.20” 2.08” 1.64”

ex180a 90 1.71” 0.02% 2.70” 1.88” 3.13” 2.51”

135 1.52” 0.03% 10.41” 5.16” 2.83” 2.33”

105 1.93” 0.02% 3.98” 1.91” 2.49” 2.00”

98 2.20” 0.03% 3.70” 2.14 2.61” 1.96”

ex204a 102 2.07” 0.02% 6.23” 2.85” 3.98” 2.81”

153 2.55” 0.03% 30.94” 20.21” 3.89” 3.20”

119 2.46” 0.03% 6.88” 4.34” 4.08” 3.06”

111 2.61” 0.04% 5.75” 3.51” 3.52” 2.81”

mean 1.06” 0.03% 3.94” 2.28” 1.78” 1.42”

Table 6 Numerical results for graph bisection problems.

We highlight the quick convergence of our solver by plotting the run for a characteristic

instance of each problem: in Figure 2 for a quadratic problem, in Figure 3 for a bisection

problem, and similar plots for heaviest subgraph problems are in [MR11] and [MR10].

The figures illustrate that our solver has a very strong initial increase effect. In particular,

the improvement of the bound is very large in the first iterations. Moreover, we can observe

in the tables that the running times of our solver are similar for instances of the same size.

These two properties are highly desirable in the context of branch-and-bound.
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Fig. 2 An instance of the unconstrained quadratic problem (4) of size n = 100: comparison of the maximiza-

tion of Θuqp with the runs of SB and CSDP computing the SDP relaxation.

 550

 600

 650

 700

 0  0.1  0.2  0.3  0.4  0.5

B
o
u
n
d

CPU time (s)

"SB"

 550

 600

 650

 700

 0  0.1  0.2  0.3  0.4  0.5

B
o
u
n
d

CPU time (s)

"SB"

 550

 600

 650

 700

 0  0.1  0.2  0.3  0.4  0.5

B
o
u
n
d

CPU time (s)

"alpha=0.0001"

 550

 600

 650

 700

 0  0.1  0.2  0.3  0.4  0.5

B
o
u
n
d

CPU time (s)

"alpha=0.0001"

 550

 600

 650

 700

 0  0.1  0.2  0.3  0.4  0.5

B
o
u
n
d

CPU time (s)

"CSDP"

 550

 600

 650

 700

 0  0.1  0.2  0.3  0.4  0.5

B
o
u
n
d

CPU time (s)

"CSDP"

Fig. 3 The instance ex84a of the graph bisection problem (10) with k = 42 : comparison of the maximization

of Θbis with the runs of SB and CSDP computing the SDP relaxation.
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Each of the two SDP solvers has one of the two properties mentioned above. CSDP is

also quite robust with respect to computing time (in contrast with SB for which “accidents”

occurred, see for example ex204a in table 6). On the other hand, SB also shows a nice initial

increase, although the computing times of SB are in general larger than those of CSDP. We

notice in figure 3 that the initial heuristic of SB for finding a starting point is very efficient.

We point out that during the solving process, current primal and dual solutions of CSDP

are not feasible and thus the dual value is not necessarily a valid lower bound. Nevertheless,

we have observed during all our experiments that CSDP gives in fact lower bounds. We see

also on Figure 3 that CSDP deteriorates the dual bound in order to make a big improvement

in the feasibility of the current dual solution in the middle of the run.

5.4 Conclusions, perspectives

This paper introduces a family of semidefinite bounds for 0-1 quadratic programming. It

presents a methodology to construct these bounds and to use them in practice. Numerical

experiments illustrate the properties of these bounds on three combinatorial optimization

problems.

The approach could be applied to any 0-1 problem of the form (1), but it is certainly

not pertinent in any situation. Branch-and-bound algorithms using linear programming have

reached a high level of sophistication and performance; they can solve efficiently many

problems of the type (1). They have nevertheless shown limitations on some problems (such

as the three problems considered here), and consequently, alternative approaches have been

recently developed using quadratic programming (in particular the so-called QCR method,

see [BE07], [BEP09]) or semidefinite programming (see [RRW10]).

Our approach is relevant in these latter situations. We have a parameter α to set the tar-

geted level of tightness below the usual SDP bound. Experiments with α small show that

we can (almost) attain SDP bounds quicker than state-of-the-art SDP solvers. In addition,

preliminary computational experiments with α large show that we can attain linear pro-

gramming bounds and quadratic programming bounds quicker than CPLEX. Although this

computational study has yet to be completed, we can say that this new family of bounds

have some universality: whatever type of bound one looks for (tight, cheap, or balanced),

one may be able to find it in this family.

Tests such as those of Section 5.2 are useful for setting the control parameter α to the

desired tightness level. Once α is set, the bounds are computed by a quasi-Newton algorithm

which combines several of the advantages of the SDP solvers: it is reliable (like CSDP) and

has a strong initial increase effect (like SB). Those are properties of paramount importance

for this method to be used as bounding procedure within branch-and-bound algorithms. A

version of these bounds is used with success in [MR11] in a branch-and-bound method to

solve heaviest k-subgraph problems to optimality.

Finally, we mention that it is useful to combine these bounds with good heuristics for

computing feasible solutions. Though cheaper than the usual SDP bounds, computing the

bounds still demands sophisticated numerical linear algebra and optimization techniques.

The bounds give better pruning in the search tree when combined with good feasible solu-

tions, allowing us to fully benefit from the computing time investment in the bound quality.
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