Aqueous Co-precipitated Ti0.5Sn0.5O2 nanopowders as precursors for dense spinodally decomposed ceramics - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of the American Ceramic Society Année : 2011

Aqueous Co-precipitated Ti0.5Sn0.5O2 nanopowders as precursors for dense spinodally decomposed ceramics

Jean-François Hochepied
  • Fonction : Auteur
  • PersonId : 1336796
  • IdHAL : jfhochepied
Marie-Hélène Berger
Arnaud Dessombz
  • Fonction : Auteur

Résumé

Spinodal decomposition in the TiO2-SnO2 system produces TiO2 rich/SnO2 rich nano-wide lamellae. The high density of coherent interfaces is expected to reduce thermal conductivity of the ceramic without blocking electron transport. These semiconductors could therefore be candidates for environmental friendly oxide thermo-electrics. However, dense materials are difficult to obtain by conventional sintering from a mixture of TiO2 and SnO2 powders due to evaporation of tin oxide. The article presents a novel route to produce, by aqueous co-precipitation, Ti0.5Sn0.5O2 nanopowders as precursors for dense ceramics. The nanostructure developed by spinodal decomposition inside the grains of the as obtained dense Ti0.5Sn0.5O2 ceramic is shown to be comparable to that of porous Ti0.5Sn0.5O2 ceramic obtained by conventional method.

Dates et versions

hal-00662263 , version 1 (23-01-2012)

Identifiants

Citer

Jean-François Hochepied, Marie-Hélène Berger, Fred Dynys, Arnaud Dessombz, Ali Sayir. Aqueous Co-precipitated Ti0.5Sn0.5O2 nanopowders as precursors for dense spinodally decomposed ceramics. Journal of the American Ceramic Society, 2011, 94 (12), pp.4226-4230. ⟨10.1111/j.1551-2916.2011.04797.x⟩. ⟨hal-00662263⟩
111 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More