On the Genetic interpretation of Between-Group PCA on SNP data
Denis Laloë, Mathieu Gautier

To cite this version:
Denis Laloë, Mathieu Gautier. On the Genetic interpretation of Between-Group PCA on SNP data. 2011. hal-00661214

HAL Id: hal-00661214
https://hal.archives-ouvertes.fr/hal-00661214
Submitted on 18 Jan 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
On the Genetic interpretation of Between-Group PCA on SNP data

Denis Laloë *1, Mathieu Gautier1,2

1 INRA, UMR 1313 de Génétique Animale et Biologie Intégrative, 78350 Jouy-en-Josas, France.

2 INRA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro), Campus international de Baillarguet, CS 30016, F-34988 Montferrier-sur-Lez cedex, France.

*Corresponding author

Email addresses:

DL: denis.laloe@jouy.inra.fr

MG: mathieu.gautier@supagro.inra.fr
Abstract

Background
Principal Components Analysis is a standard and computationally efficient method to explore large SNP data sets. We propose in this study additional interpretations of PCA results about the characterization of population genetic structure when dealing with SNP data. In particular, we evaluate how SNP typological values obtained from PCA are related to F-statistics and may help to identify footprints of selection.

Results
We show that a normed PCA on biallelic SNP haplotypes is equivalent to a Multiple Correspondence Analysis and to a PCA on the r correlation matrix, where r represent the signed square root of the r^2 linkage disequilibrium measure. Each resulting principal component describes a typology and provides a measure of the underlying SNP contributions which may further be interpreted in terms of correlation ratio and variance reduction. In addition, PCA can be partitioned into sub-analyses (between-group, within-group). Between-group PCA maximises the variance between groups and delivers principal components with maximum F_{ST}. Only per-group allele frequencies and relative frequencies are needed to compute between-group PCA. Finally, chromosomal regions containing SNPs with high contributions may be interpreted as footprints of selection. As an illustration of the approach we analyzed human chromosome 2 haplotypes sampled from three HapMap populations (from African, Asian and European origin). We showed that SNPs within or close to EDAR and LCT genes exhibit the highest typological values, in agreement with previous studies.

Conclusions
When applied to biallelic SNP data, our PCA based proposed approach enables to describe the genetic structuring of populations and to quantify for each typology the contributions of SNPs by F_{ST} statistics. Taking into account spatial dependences of SNPs allows in turn to identify
genomic regions contributing to the structuring of populations which might be interpreted as footprints of selection. Finally, this approach was proven computationally efficient since it can handle data including several hundreds of thousands SNPs within less than one hour on a standard computer.

Background
The availability of large numbers of SNPs uniformly distributed across the genome has provided opportunities to refine the analysis of population structuring of genetic diversity. The most commonly used methods are either model-based such as unsupervised hierarchical clustering approach [1] or exploratory such as principal component analysis (PCA) [2-6]. Unsupervised hierarchical clustering approaches have been widely used in population genetics studies because of the detailed information they provide on group membership and individual admixture. However these model-based approaches tend to be computationally intensive and are in practice not suited to the large numbers of markers present in genome-wide data sets, even if new implementations are making the computational aspect less of a problem [7-9]. In that context, PCA and related descriptive methods are especially appealing since they are far less computationally demanding than other methods [3, 5]. PCA has been used to treat large SNP datasets, especially in human (e.g. [10-13]), but also more recently in cattle [14-16]. PCA has also been proposed to assess the extent of Linkage Disequilibrium (LD) groups and to identify sets of group tagging SNPs over the genome [17, 18]. This latter PCA is performed on the matrix of SNP-pairwise Δ measures, also know as r, and corresponding to the signed square root of the r² LD measure [19]. More generally, whether the focus is on variables (i.e. SNPs) or individuals, PCA may address two different questions either relative to the relationships among SNPs or the genetic structuring of populations. Such double functionality has been formalized through the duality diagram theory [20, 21].
Studies focusing on relationships among markers mainly concentrate on two objectives. First, PCA was proven powerful to reduce the complexity of the data sets, thereby facilitating data visualisation and storage requirements [22], in particular via some extensions such as sparse PCA, Lasso and Elastic Net [23, 24]. Paschou and collaborators [25] demonstrated that small subsets of PCA based selected SNPs succeeded in assigning individuals to particular populations. Hence, the number of SNPs for ancestry inference could be successfully reduced to less than 0.1% while retaining close to 100% accuracy in the Human Genome Diversity Panel data set [26]. Second, PCA and related methods provide measures of contribution of markers to the genetic structuring of populations [4, 27]. When combined to a discriminant analysis, as first proposed by [28], PCA also allows to measure the contributions of individual alleles to the discrimination between populations [29].

Our study is in line with this second objective and capitalizes on the features of biallelic SNP data in subdivided populations to propose new interpretations of PCA from both a statistical and a genetic point of view. From a statistical point of view, we show that the equivalence between PCA (when applied to dichotomous factors) and multiple correspondence analysis (MCoA), the method of reference to deal with multiple contingency tables [30], leads to appealing properties. From a genetic point of view, we show that the SNP squared scores provided by the between-population PCA are estimators of F_{ST}. They may further be interpreted with respect to the corresponding population substructure to identify putative footprints of selection [31]. For the sake of an illustration, we finally analyzed a publicly available and well studied human haplotype data set.

Results

Haplotype-based PCA

A detailed presentation of PCA can be found, for instance, in [32] and we just present herein essential features of our method when applied to SNP haplotypes. Let $X = \{x_{ij}\}$ be a matrix
with \(n \) rows (haplotypes) and \(p \) columns (SNPs). Since only biallelic SNPs are considered, each entry of \(X \) is a binary indicator variable corresponding to one of the two alleles such as:

\[
x_{ij} = \begin{cases}
1 & \text{if the allele of SNP } j \text{ of the haplotype } i \text{ is the first allele} \\
0 & \text{if the allele of SNP } j \text{ of the haplotype } i \text{ is the second allele}
\end{cases}
\]

Standardization of \(X \) leads to the matrix \(Z = [z_{ij}] = \left[\frac{x_{ij} - \mu(x')}{\sigma(x')} \right] \) where \(\mu(x') \) and \(\sigma(x') = \sqrt{p_j(1-p_j)} \) (where \(p_j \) is the allele frequency of SNP \(j \)) are the mean and the standard deviation for the \(j \)-th column of \(X \). A normed PCA is a PCA on standardized variables (i.e. \(Z \)).

It is worth noting that, with these notations, the LD measure \(\Delta \) between two SNPs \(j \) and \(k \) is equal to the correlation between the \(j^{th} \) and \(k^{th} \) columns of \(X \). Hence, the (symmetric) matrix \(Z'Z/n \) corresponds to the LD matrix based on the \(\Delta \) measure. [18].

According to the duality diagram theory [20], the PCA of \(Z \) is summarized by the triplet \(\langle Z, Q, D \rangle \), where \(Q = I_p \) and \(D = I_n/n \) are metric matrices weighting the columns and the rows of \(Z \), respectively. The PCA is performed indifferently by the eigendecomposition of either \(Z'DZQ = Z'Z/n \) (representation of individuals (haplotypes) in the SNPs hyperspace) or its transpose \(ZQZ'D = ZZ'/n \) (representation of variables (SNPs) in the individual hyperspace). Both decompositions produce the same set of eigenvalues, the number of which equals the rank of \(Z'Z/n \), say \(r \). The eigendecomposition of \(Z'Z/n \) results in a set of eigenvectors called principal components, which are linear combinations of the original SNPs. Conversely, the eigendecomposition of \(ZZ'/n \) results in a set of eigenvectors called principal axes, which are linear combinations of the original haplotypes. Transition formulae enable to move easily from one set of eigenvectors to the other set. The scores of a haplotype is the projection of the corresponding \(X \) row onto the principal components. Correspondingly, the scores of a SNP is the projection of the corresponding \(X \) column onto the principal axes. Let \(c_{ij} \) be the score of
the \(i \)th SNP for the \(j \)th axis. Some properties of these scores are worth mentioning. First, scores are standardized in such a way that \(\sum_{j=1}^{p} c_{ij}^2 = \lambda_j \), where \(\lambda_j \) is the \(j \)th eigenvalue and
\[
\sum_{j=1}^{r} c_{ij}^2 = \text{var}(z^j)
\]
Note that in a normed PCA, \(\sum_{j=1}^{r} c_{ij}^2 = 1 \) by construction. Second, the score \(c_{ij} \) is also the correlation of the \(i \)th SNP with the \(j \)th axis. Consequently, SNPs whose scores are highly correlated with some axis (absolute value of the scores close to 1) are correlated between each other [33]. Finally, the total variance (or inertia) \(I \) is equal to the sum of the eigenvalues and thus to the sum of SNP squared scores. In addition, owing to the standardization, the diagonal elements of \(Z'Z/n \) are equal to 1 (see above), and thus the eigenvalues sum to the number of SNPs \(p \) (the trace of \(Z'Z/n \)). The total variance is thus equal to the number of SNPs.

In practice, the two types of eigendecomposition mentioned above correspond to the maximisation of two different statistical criteria. First, the analysis maximises the variance of the haplotypes onto the principal axes which is the main reason generally advocated for using PCA since it the most efficient way to summarize the information of individuals onto some synthetic variables. The second aspect is less mentioned: PCA maximizes the sum of the squared correlations between principal components and SNPs [30].

Moreover, because SNPs are biallelic, i.e. dichotomous factors, PCA on the table \(Z \) is also the multiple correspondence analysis (MCA) of the whole set of SNPs [30]. Principles of MCA date back to Fisher [34], and MCA is the reference multivariate method for analyzing multidimensional contingency tables [35, 36]. This equivalence justifies performing PCA on the correlation matrix, or, equivalently to use the standardization by \(\sqrt{p_j (1-p_j)} \)
Interpretation of SNP scores

In PCA, the score of a SNP for an axis is the correlation of the SNP with this axis. In a MCA, the squared score of a SNP for an axis ranges from 0 to 1. It is a correlation ratio corresponding to the percentage of variance of the haplotypes scores explained by the SNP allele. Correlation ratio helps to investigate the link between the SNP and the quantitative score of haplotypes generated by MCA. The higher the correlation ratio, the more the different haplotypes are separated. Let’s consider the one-factor linear model linking the haplotype scores on the j^{th} axis to the alleles of the i^{th} SNP: $y_{ij} = \mu + \text{SNP}_{i} + e$. The corresponding squared SNP score c_{ij}^2 is equal to the R^2 of this model. It can be considered as a typological value (TV), since it quantifies the extent to which this SNP contributes to the corresponding typology.

Between-group and within-group PCA.

The use of between-group and within-group analyses [37-40] enables to take into account, in a very simple way, an a priori structure among individuals (here haplotypes). Let’s consider that the n haplotypes are clustered into g groups (e.g. populations). From Z, we build $Z^{[g]}$, the matrix with p columns and g rows of per-group means of Z. An entry of $Z^{[g]}$ is z_{jk}^+, the mean of the j^{th} SNP for the k^{th} group. Rows of $Z^{[g]}$ are weighted by their group relative frequencies, i.e. the numbers of haplotypes per group divided by the total number of haplotypes. The between-group PCA is summarized by the triplet $< Z^{[g]}, \mathbf{I}_p, D_g >$, where D_g is the diagonal matrix of the g groups relative frequencies. Its aim is to highlight the differences between groups, and row scores maximize the between-group variance. The number of eigenvalues r_b resulting from the between-group PCA is generally equal to $g-1$.

Within-group analyses aim at eliminating the effect of the structuring and are thus complementary to between-group analyses. They focused on the table Z^r of the residuals.
obtained after scaling the data by the per-group means. The within-group PCA is summarized by the triplet \(<Z^*, I_p, I_n/n> \). As a result, the within-group variability may be assessed by the total variance of individual scores, summed over all the within-group principal components.

Accordingly, the total variance \(I \) can be partitioned in a between-group variance, \(I_b \), equal to the sum of eigenvalues of the between-groups PCA, and in a within-group variance, \(I_w \), equal to the sum of eigenvalues of the within-group PCA following \(I = I_b + I_w \).

Similarly, the ratio of the between-group variance to the total variance \(I_b / I \) measures the contribution (in term of variance) in the differentiation of individuals of the structuring into groups. Moreover, this ratio is equal to the methods of moments estimator of the \(F_{ST} \) from the model proposed by [41, 42] as shown below.

\(F_{ST} \) and between-group variance.

Let \(p_{ij} \) represent the (observed) allele frequency of the reference allele at SNP \(i \) in population \(j \). \(L \) and \(P \) denotes respectively the total number of SNPs and populations. Following the model proposed by [42], the method-of-moments estimator of the population-specific \(F_{ST} \) for population \(j \) is defined as

\[
\widehat{F_{ST}}_j = \frac{1}{L} \sum_{i=1}^{L} \left(\frac{p_{ij} - p_{.i}}{p_{i}(1-p_{i})} \right)^2 \text{ where } p_{.i} = \frac{1}{P} \sum_{j=1}^{P} p_{ij}.
\]

Similarly, the quantity

\[
\widehat{F_{ST}}_i = \frac{1}{L} \sum_{j=1}^{P} \left(\frac{p_{ij} - p_{.i}}{p_{i}(1-p_{i})} \right)^2
\]

might be interpreted as a SNP-specific \(F_{ST} \) for SNP \(i \) (e.g. [41]). Finally a natural estimator of the global \(F_{ST} \) (across populations and SNPs) is given by [41, 42]):

\[
\widehat{F_{ST}} = \frac{1}{P} \sum_{j=1}^{P} \left(\frac{p_{ij} - p_{.i}}{p_{i}(1-p_{i})} \right)^2 = \frac{1}{P} \sum_{j=1}^{P} \frac{1}{L} \sum_{i=1}^{L} \widehat{F_{ST}}_i = \frac{1}{L} \sum_{i=1}^{L} \sum_{j=1}^{P} \left(\frac{p_{ij} - p_{.i}}{p_{i}(1-p_{i})} \right)^2.
\]

A PCA performed on a single SNP \(i \) results in a straight line along which the observations (haplotypes) are located. More precisely, haplotypes have only two possible coordinates, according to their allele at SNP \(i \). Since we are considering the ratio of coordinates variance, standardization of these coordinates doesn’t matter. So, let 1 be the coordinate of the minor allele and 0 the coordinate of the alternative allele. By definition the between-group variance
\[I_B \text{ is equal to } I_B = \frac{1}{p} \sum_{j=1}^{p} (p_{ij} - p_t)^2 \text{ and the total variance } I \text{ is equal to the variance of the two coordinates weighted by the proportion of corresponding haplotypes:} \]

\[I = p_t(1 - p_t)^2 + (1 - p_t)p_t^2 = p_t(1 - p_t). \]

Thus, the ratio of the between groups variance to the total variance is equal to the SNP-specific \(F_{ST} \) defined above [43]:

\[
\frac{I_B}{I} = \frac{1}{p} \sum_{j=1}^{p} \frac{(p_{ij} - p_t)^2}{p_t(1 - p_t)} = \hat{F}_{STi}
\]

In addition if \(c_{ij}^b \) is the score of the \(i \)th SNP for the \(j \)th axis of the between group PCA, and \(F_{STi} \) the corresponding SNP-specific \(F_{ST} \), according to (2), the between-groups variance for the \(i \)th SNP is equal to the sum of its squared scores across all the between-groups axes, \(\sum_{j=1}^{r} c_{ij}^{b2} \) while the total variance equals 1. Then we get, for the \(i \)th SNP:

\[
F_{STi} = \sum_{j=1}^{r} c_{ij}^{b2}
\]

The average across SNPs of the \(F_{ST} \) is a natural estimator of the overall \(F_{ST} \) (e.g. [41, 42] and it is equal to the ratio of the total between-groups variance to the total variance, thus \(F_{ST} = I_B/I. \)

Let’s recall that the total variance equals \(p \), the number of SNPs. Then we get:

\[F_{ST} = I_B/p \]

A similar result has been found in the case of two populations by [44].

Interestingly, only per-group allele frequencies and relative frequencies are needed to compute between-group PCA, \(F_{STi} \) and \(F_{ST} \).
Applications to a human dataset.
To illustrate these different interpretations of PCA results, we analyzed human chromosome 2 (HSA2) 116,430 SNPs haplotypes for three populations: CEU (Utah residents with ancestry from northern and western Europe), YRI (Yoruba in Ibadan, Nigeria) and CHB+JPT (Han Chinese in Beijing, China and Japanese in Tokyo, Japan). The total variance equals 116,053, i.e. the number of polymorphic SNPs. The first and second between PCA eigenvalues are equal to 8,004 (7 % of the total variance) and 3,881 (3% of the total variance), respectively while the within-population PCA eigenvalues are varying from 31 to 315. The resulting global F_{ST} equals 0.1024, computed as described above, and is close to those previously reported using the Phase 1 HapMap data [45].

The within population variability were equal to 137,163, 104,219 and 82,891 for YRI, CEU and JPT+CHB, respectively. These results are also consistent with [7] which reported that heterozygosity is the highest in subsaharian Africa, intermediate in Europa and the smallest in East Asia.

The factorial map of the between-populations analysis is given in Figure S1. Since there are three populations, two axes are sufficient to summarize the total variation between the three populations. The first axis isolates YRI population from CEU and CHB+JPT, while the second axis isolates CEU. Corresponding spatial autocorrelations of SNPs correlation ratio are equal to 0.27 and 0.31, respectively. Plots of SNP TVs for axes 1 and 2 and their SNP-specific F_{ST} (corresponding to the sum of TVs of the two axes) are given in Supplementary Figures 2. However, to better assess regions with large amount of SNPs displaying high TVs, we adopted an empirical smoothing approach inspired from [45] which consisted in averaging TVs (and SNP-specific F_{ST}) over 3-Mb sliding windows. As a matter of expedience, for each axis (and for F_{ST}), two thresholds were considered to identify outlying smoothed score, respectively 2.32 and 3.09 (empirical) standard deviations from the (empirical) average. If the score distributions were Gaussian under the null hypothesis of neutrality, these thresholds
would correspond to standard 0.01 and 0.001 p-values. However, they might be less conservative since the observed distribution had a fatter tail than a Gaussian distribution as a probable result from the biased choice of the chromosome in which several footprints of selection have already been detected (see below). From a genome-wide perspective (beyond the scope of this illustrative example), this might be less of concern.

The three different smoothed scores are plotted in Figure 1 and significant peak positions are detailed in Table 1. For the first axis which separated YRI from the two others populations, two significant peaks (with a smoothed score greater than 3.09 standard deviations above the mean) were observed at positions 73.3 Mb and 198.2 Mb. For the second axis which separated CEU from the two others populations, four significant peaks were observed at positions 16.754 Mb, 109.058 Mb, 135.962 Mb and 153.419 Mb. Finally, when considering the smoothed score based on the sum of \(T' \forall \) for the two axes (i.e. \(F_{ST} \)), only one (at position 73.3 Mb) of the previous peaks was found as being still significant. Overall, these results are consistent with previous published studies. For instance, Sabeti and collaborators [46] reported four regions on HSA2 as subjected to selection (around positions 72.5 Mb, 108.6 Mb, 136.0 Mb and 177.7 Mb when converted to hg18 genome assembly positions) based on the XP-EHH test in JPT+CHB, JPT+CHB, CEU and both CEU and JPT+CHB populations respectively. Hence three of these positions were close (less then 500 kb) or confounded with peak identified on second axis although the first two signals were found significant in JPT+CHB population in this latter study. Interestingly, the third position (around 136.0 Mb) within the ZRANDB3 gene (Table 1) is close to the LCT gene (less than 300 kb) which has been extensively reported as a putative target for natural selection and within which an allele have been found at high frequency within Europe, absent in the Yoruba population and almost absent in East Asia [47]. Similarly, the second peak observed on Axis 2 is close (less than 20 kb) to EDAR which was previously identified as the putative target of a strong selective
sweep in East Asians [48]. Finally, three additional peaks were identified in our study and have not been reported elsewhere. They are located close or within RFTN2, FAM49A and ARL6IP6 genes.

Discussion

PCA is primarily an exploratory technique and it is now almost exclusively based upon individual-level rather than population-level analyses. However, prior knowledge about the structuring of the populations under study can be explicitly taken into account by partitioning the ordinary PCA in sub-analyses. Interestingly, a between-population analysis delivers standard estimates of F_{ST} (either population-specific or SNP specific). This is, for instance, of particular interest in the case of highly structured populations such as cattle [16]. In our application, confirming previous results, the first PC isolates the African population from the two others, while the second PC contrasts Europeans with Africans and Asians (Figure S1). Within-group PCA enabled to assess within-population diversity and to compare the different populations according to this criterion. Our results were in agreement with previous ones that showed more genetic diversity in African populations.

Because of PCA flexibility, such an approach might also be extended to several other factors and a multi-factorial or nested stratification (e.g populations nested in continents, or population crossed with some disease sensibility) may be accounted for by a modification of PCA involving the so-called “instrumental variables” [32, 40]. Such analyses should enable to rule out known genetic structuring by adjusting for these factors or alternatively to quantify the TV of SNPs according to each of them.
For instance, in this paper, we investigated some features of a normed PCA applied to SNP haplotypes for quantifying the typological value of a SNP regarding a principal component. Because TV is a correlation ratio, quantifying the reduction of variance of haplotypes scores due to the knowledge/ascertainment of the SNP allelic form, a small value indicates that the marker does not contribute to the building of the component. Conversely, a value close to 1 indicates that the typology is completely built by the SNP and might thus be related to putative signal of selection [29]. Moreover, TVs are also F_{ST}, that has been advocated to identify regions of the genome that have been the target of selection [31, 45, 49, 50]. More specifically, our approach might be regarded as equivalent to recently proposed model-based approaches aiming at identifying population-specific effect of SNP contribution to overall differentiation while taking into account hierarchical structure among populations under study [51] although PCA remains by far more computational efficient.

In addition, TVs may help to analyze how the position of markers along a chromosome impacts their contributions to the genetic diversity. Therefore, plots of the TVs with respect to the position of the underlying SNP along the chromosomes enable to easily spot candidate regions for footprints of selection which are expected to display several SNPs with high typological values. This was exemplified by our application on HSA2 haplotypes where several footprints of selection had already been reported [46, 48]. Note, that in order to take into account spatial dependency among SNPs along the haplotypes TVs we adopted an empirical smoothing approach [45] which consisted in averaging scores over 3-Mb sliding windows. Due to the properties of the scores, model-based strategies might be more adapted and more rigorous to identify such outlier regions and to propose better significance thresholds. To that regard, analyses of SNP scores with autoregressive models represent for instance promising alternatives as recently illustrated under a Bayesian framework by Guo and collaborators [52] who investigated Conditionally Autoregressive models (CAR) models
to identify local effect on SNP differentiation. Finally, relating TV to their underlying axe helps to better refine the putative origin of the signal and gives a more precise picture compared to the one obtained when considering SNP-specific F_{ST} across populations (see Figure 1).

Conclusions
Since Cavalli-Sforza advocated using PCA to decipher population structuring of genetic diversity [2], this approach and related factorial methods have been proved useful to address other issues such as correcting for stratification in genome-wide studies [53], assessing the TV of markers [4, 27], addressing the spatial structuring of genetic diversity [16, 54, 55], identifying small subsets of informative SNPs [25, 26], simultaneous accounting for genetic and morphologic data [56], and discriminating among populations [29].
The main advantages of PCA are its versatility and its computational efficiency allowing to deal with large data sets currently produced [3]. We hope that the enhanced interpretation of the PCA results when dealing with biallelic SNPs will give another argument for using it.

Material and Methods

Haplotype Data
Human chromosome 2 haplotype data were downloaded from the HAPMAP project website (http://hapmap.ncbi.nlm.nih.gov/downloads/phasing/2009-02_phaseIII/) where more details can be found. Respectively, 231 CEU, 234 YRI and 339 JPT+CHB haplotypes were considered in the analysis. Each haplotype consisted of 116,430 SNPs.
Analyses
Within and between populations PCA were performed with the R software [57] and the R package ade4 (more particularly dudi.pca, between and within functions) [58].

Authors' contributions
DL conceived of the study, analyzed the data and wrote the manuscript.

MG participated to data analysis and wrote the manuscript.

Both authors read and approved the final manuscript.

Acknowledgements
Research was supported in part by the French ANR (contract “BLANC” “EMILE” NT09-611697).

References

Figures

Figure 1: Plots against HSA2 chromosome position (in Mb on the hg18 assembly) of the smoothed TV for axis 1 (A) and axis 2 (B) and the smoothed SNP-specific F_{ST} (C) corresponding to the sum of the two previous TV’s. Vertical dashed bar showed the position of the four positions identified in the study by Sabeti and collaborators (Sabeti et al., 2007). For each plot, the two horizontal dashed lines represent the two thresholds (2.32 and 3.09 empirical standard deviation above the empirical mean)
Tables

Table 1 – Details of the Footprints of selection identified on HSA2.

<table>
<thead>
<tr>
<th>Axis</th>
<th>Peak Position in Mb (hg18 assembly)</th>
<th>Peak Score Value (sd above the mean)</th>
<th>Genes Closest to the peak (Position)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>73.274</td>
<td>0.1238 (4.27)</td>
<td>SMYD5 (73.295-73.308)</td>
</tr>
<tr>
<td>1</td>
<td>198.217</td>
<td>0.1096 (3.16)</td>
<td>RFTN2 (198.144-198.249)</td>
</tr>
<tr>
<td>2</td>
<td>16.754</td>
<td>0.0706 (4.38)</td>
<td>FAM49A (16.597-16.711)</td>
</tr>
<tr>
<td>2</td>
<td>109.058</td>
<td>0.0629 (3.47)</td>
<td>SH3RF3 (109.112-109.619)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EDAR (108.877-108.972)</td>
</tr>
<tr>
<td>2</td>
<td>135.962</td>
<td>0.0624 (3.42)</td>
<td>ZRANDB3 (135.674-136.005)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LCT (136.261-136.311)</td>
</tr>
<tr>
<td>2</td>
<td>153.419</td>
<td>0.0627 (3.45)</td>
<td>ARL6IP6 (153.283-153.326)</td>
</tr>
<tr>
<td>1+2</td>
<td>(Fsr) 73.311</td>
<td>0.1696 (4.51)</td>
<td>SMYD5 (73.295-73.308)</td>
</tr>
</tbody>
</table>
Supplementary Figures

Supplementary Figure S1

Figure S1: PCA based on 116,430 SNPs mapping to HSA2 and genotyped in three human populations. Map of the between-populations PCA. This map shows the two PCs of the between-populations PCA. ceu denotes European populations, yri Yoruba population and jpt+chb Asian populations.
Additional file 2 – Supplementary Figure S2

Figure S2: Plots of the typological values and F_{ST} for each SNP along the human chromosome 2. The numbers on the x axis indicate the location of the SNP (in Mb). 4 vertical red lines are drawn indicating the region candidates for natural selection found by Sabeti et al (2007). We list the name of the gene, (when it exists) that is nearest to each of these regions. a. Typological values for the first between-populations PC; b. Typological values for the second between-populations PC; c. Global F_{ST}.
Figure S3: Observed distributions of the smoothed TV for axis 1 (A) and axis 2 (B) and the smoothed SNP-specific F_{ST} (C) corresponding to the sum of the two previous TVs. The red curve is the Gaussian distribution with mean and standard deviation equal to the empirical ones.