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ABSTRACT:  

Receptive fields (RFs) in primary visual cortex (V1) are categorized as Simple or 

Complex, depending on their spatial selectivity to stimulus contrast polarity. We studied the 

dependence of this classification on visual context by comparing, in the same cell, the 

synaptic responses to three classical RF mapping protocols: sparse noise, ternary dense noise 

and flashed Gabor noise. Intracellular recordings show that the relative weights of Simple-like 

and Complex-like RF components are scaled such as to make the same RF more Simple-like 

with dense noise and more Complex-like with sparse or Gabor noise stimulations. However, 

once these context-dependent RFs are convolved with the corresponding stimulus, the 

balance between Simple-like and Complex-like contributions to the synaptic responses 

appears invariant across input statistics. This normalization of the linear/nonlinear input ratio 

suggests a novel form of homeostatic control of V1 functional properties, optimizing the 

network nonlinearities to the statistical structure of the visual input. 
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INTRODUCTION 

The distinction between Simple and Complex cells1 relies on the degree of spatial segregation 

and linearity of responses to contrasts of opposite signs. Simple receptive fields (RFs) are classically 

considered as linear feature detectors, computing a weighted sum of the local contrast of the 

image1,2,3,4 whereas Complex RFs exhibit nonlinear spatial summation properties resulting in response 

invariance with regard to position or contrast polarity1,5-7.  

Most extracellular surveys have reported V1 RFs with intermediate behaviors2,6,8 and 

intracellular recordings have shown that the separation between Simple and Complex cells hides a 

continuous distribution of synaptic inputs with regard to their degree of linearity9. In spite of the general 

acceptance that Simple and Complex cells correspond to distinct balance levels between linear and 

nonlinear contributions at the synaptic level10-12, few studies have investigated whether the functional 

expression of the Simple or Complex nature of V1 RFs depends or not, in the same cell, on the 

spatiotemporal statistics of the stimulus13,14. This may be surprising, since gain control mechanisms 

are known to ensure contrast-invariance of the cell selectivity15,16 and it is well established that 

adaptation to stimulus contrast does not have the same impact on the Simple-like and Complex-like 

components of V1 cell responses when assessed with drifting gratings17,18. Still, most studies of RF 

adaptation to visual statistics have focused either on linear RF components in Simple cells or on 

nonlinear components in Complex cells19-23 but not on the differential adaptation of these two RF 

components in the same RF. 

We address here this question by estimating synaptic and discharge fields of cat V1 cells 

recorded intracellularly in three white noise stimulus conditions: sparse noise (SN), ternary dense 

noise (DN) and flashed Gabor noise (GBN). Our main finding is that the relative weights of the Simple-

like and Complex-like components of the same RF adapt to the spatiotemporal statistics of the 

stimulus such that the respective contributions of these two functional components in the synaptic 

response remain in constant proportion across stimulus conditions once the RF is convolved with the 

visual stimulation sequence. We further show that this adaptation is not a straightforward scaling of the 

amplitudes of these RF components but results from differential changes in both their spatial extents 

and their temporal dynamics. These findings bring new evidences indicating that the functional 

properties of the V1 network, as measured from V1 RF estimates, are not fixed but adapt to the 

statistical properties of the visual input. 
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RESULTS 

Thirty-two neurons were recorded intracellularly in cat area 17 and their RFs were mapped 

with three protocols: sparse noise (SN), ternary dense noise (DN) and flashed Gabor noise (GBN) 

(Fig. 1a). Comparison across stimulus conditions was conducted at the subthreshold synaptic 

integration level (Vm RF) and at the spiking output level (Spk RF). We first focused our analysis on RF 

estimates obtained in the spatiotemporal domain (SN and DN) and further extended the comparison to 

RFs estimated in the orientation domain (GBN). 

Insert Figure 1 near here 

 

Stimulus dependence of V1 receptive field estimates 

Most previous RF studies using ternary white noise stimuli decomposed the cell input-output 

relationship into elementary responses to bright and dark stimuli1,6,9,24, namely ON and OFF subfields 

respectively. In this framework, the Simple or Complex nature of the RF was defined with different 

types of indexes measuring the degree of spatial segregation or antagonism between ON and OFF 

spatial profiles24. In studies using drifting gratings, Simple and Complex behaviors have been 

quantified according to the degree of linearity of the cell response with respect to the spatial phase of 

the stimulus at the preferred orientation and spatial frequency2,5,6,8. In the present study, we attempted 

to reconcile both classifications by switching from the classical ON~OFF decomposition of white noise 

RF estimates to a Volterra RF expansion into first- (h1st) and second-order (h2nd) kernels (Fig. 1b). The 

filter h1st represents here the RF part which responds linearly with contrast polarity while the second-

order diagonal h2Diag pools nonlinear RF components independent of the contrast sign. The selectivity 

of this h2Diag component to stimulus features such as orientation and spatial frequency is defined by 

the off-diagonal elements of the second-order kernel5.  

Due to the high dimensionality of this second-order kernel, we estimated off-diagonal 

interaction terms only in the DN condition, for subthreshold responses. On the one hand, the number 

of collected spikes was generally too small to proceed to a complete estimate of the spiking second-

order kernel. On the other hand, off-diagonal components are barely stimulated with sparse noise, 

making their estimation irrelevant in this stimulation context (Fig. 1c). While this limitation restricted 

the comparison of RF estimates to the h1st and h2Diag filters, it was not critical with regard to our study: 
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the estimation of the apparent Simple or Complex nature of the RF can be directly assessed from the 

balance between these two kernels without any knowledge of the feature selectivity underlying the 

Complex-like component h2Diag. This truncated second-order Volterra expansion is computationally 

equivalent to the ON~OFF decomposition: h1st and h2Diag kernels are strictly related to the difference 

and the sum respectively between ON and OFF kernels7. However, representing V1 RFs as h1st and 

h2Diag components makes easier the distinction along both spatial and temporal RF dimensions 

between the net linear push-pull contribution, i.e. the Simple-like RF component in the strict sense, 

and the nonlinear contribution which responds in the same way to both contrast polarities, i.e. the 

Complex-like RF component. 

Insert Figure 2 near here 

Figure 2 illustrates this Volterra decomposition for two representative cells. Whether we 

consider the synaptic or the spiking RF estimates, the comparison between sparse and dense visual 

contexts reveals the same effect. h1st and h2Diag waveforms were both substantially reduced in 

amplitude when switching from SN to DN conditions (Fig. 2b,d) but also exhibited systematic changes 

in their respective spatiotemporal organizations (Fig. 2a,c). While in the SN condition the RF of cell1 

expresses a weak Simple-like component and a relatively large Complex-like contribution, DN 

stimulation of the same cell enhances the Simple-like contribution and reshapes the Complex-like 

component by shrinking its spatial and temporal extent. Similarly, in cell2, the RF switches from 

balanced Simple-like and Complex-like components in the SN condition to an almost complete 

suppression of the Complex-like contribution with DN. The same stimulus-dependent changes were 

observed in all cells we recorded: whatever the degree of linearity of the RF estimated in the sparse 

context, the balance between Simple-like and Complex-like RF components was modified such as to 

express stronger linear/Simple-like components (h1st) relative to the nonlinear/Complex-like 

components (h2Diag) in the dense context (see also Supplementary Fig. 1). In the classical ON~OFF 

perspective, the comparison of RF estimates between SN and DN conditions led to the same 

conclusion: ON and OFF subfields exhibited much smaller overlap and/or stronger antagonism in the 

dense than in the sparse noise condition (Supplementary Fig.2). 
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Receptive field Simpleness and gain controls 

To quantify the balance between Simple-like and Complex-like RF components in each 

stimulus condition, we defined a Simpleness Index (SI), which measures the spatiotemporal energy of 

the linear  h1st  kernel relative to the sum of the h1st and h2Diag spatiotemporal energies (see Online 

Methods). SI thus tends to “0” for Complex RF and converges to “1” for Simple RFs. Figures 3a and 

3b show that DN stimuli result in a significant increase of RF Simpleness compared to SN, both at the 

subthreshold and spiking levels (P<<0.001, paired Student’s t test). If one applies the SI=0.5 threshold 

as a distinction criterion, the synaptic RFs can be classified as Simple in 81% of cases in the DN 

context vs only 28% in the SN condition. A similar switch in RF type was found at the spiking level with 

75% of Simple cells with DN vs 33% with SN. Supplementary Figure 3 shows that the difference in 

SI trends observed between SN and DN conditions when comparing spike and Vm-based measures is 

not due to a change in the spike threshold nonlinearity but rather to the impact of the half rectification 

of the Vm response on the read-out of the RF Simpleness. 

An unexpected finding of our study is that a strikingly uniform behavior emerges from the 

various recorded cells when comparing the SI values computed for dense and sparse conditions: all 

the data points, each representing one cell, are positioned along a continuous smooth curve in the 

bivariate correlation plot between DN and SN SI values (Fig. 3a,b). We quantified the change in gain 

of the h1st and h2Diag RF components by a gain factor (GainSN/DN), defined as the ratio of the Euclidian 

norms of the kernel estimates when switching from SN to DN. Over the population, the GainSN/DN 

values measured on first-order synaptic components are consistent on average with an optimal gain 

control which would normalize the linear filter output relatively to the 8-fold difference between the 

standard deviations of luminance values in SN and DN conditions (Fig. 3c, Vm: mean h1st GainSN/DN= 

7.75). For the Complex-like RF components h2Diag, the GainSN/DN values are all larger than for Simple-

like components, both at the synaptic and the spiking level (Fig. 3c; Vm: mean h2Diag GainSN/DN= 25.0, 

P<<0.001, paired Student’s t test), in agreement with an increased linearity of the RFs in the DN 

context.  

Insert Figure 3 near here 
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Most remarkably, despite the large variability in h1st GainSN/DN, the gain controls affecting the 

Complex-like (h2Diag GainSN/DN=β) and Simple-like (h1st GainSN/DN=α) RF synaptic components are 

related to each other according to a linear relationship over the cell population (Fig. 3c, 

slope k=β/α=3.53, r2 = 0.98, P<<0.01, n=30). A similar linear relationship was also observed at the 

spiking level, with a half slope value (Fig. 3d, slope k=β/α=1.81, 11 of 12, r2 = 0.90, n=11). This 

proportionality rule explains the smoothness of the global behavior observed in the Simpleness Index 

(blue curves in Fig. 3a,b, see Online Methods) and the best fit at the population level is given by a 

hyperbolic function parameterized by the slope of the regression (see Supplementary Note 2):  

SIDN ൌ SISN

SISNାቀಉಊቁమൈሺଵିSISNሻ 
For all cells, h1st and h2Diag GainSN/DN values were larger than 1, reflecting a systematic 

downscaling of the full RF from SN to DN conditions (see Supplementary Fig. 4). They also appeared 

negatively correlated with the SI indexes, indicating that the more Simple the cell, the weaker the gain 

controls on Simple-like and Complex-like RF components when switching from sparse to dense noise 

(see Supplementary Fig. 5). 

As illustrated by cell1 and cell2 (Fig. 2), these gain controls are not a straightforward rescaling 

of the kernel profiles but imply differential changes, at a synaptic level, in both their apparent spatial 

extent and their temporal dynamics across stimulus conditions: 1) spatially, the visuotopic extents of 

first-order RF components are significantly enlarged when switching from sparse to dense noise (Fig. 

4a, left panel) whereas second-order diagonal subfields shrink conversely (Fig. 4a, right panel); 2) 

temporally, first-order RF components (h1st) have a shorter latency in DN than in SN condition (Fig. 

4b, left panel) whereas the second-order RF components h2Diag do not change in latency (Fig. 4b, right 

panel) but reduce in duration (Fig. 4c, right panel). This late shortening suggests the implication of 

delayed inhibition reducing the propagation of nonlinear/Complex-like components in the dense noise 

regime and restricting their response integration time relative to the sparse noise condition. 

Insert Figure 4 near here 

The functional significance of these RF changes is confirmed by the ability of SN and DN 

subthreshold RFs to predict responses to new sequences of SN and DN stimuli (validation set of 

single trial data, see Online methods): even though, at the population level, SN and DN RFs only 

partially predicted responses corresponding to the same stimulus condition, they almost systematically 



8 
 

failed to explain the response to the other stimulus class as well as the RF estimated in the same 

stimulus condition as the validation data set (see Supplementary Fig. 6; P<<0.01, paired Student’s t 

test). 

 

V1 receptive field Simpleness adapts to visual statistics 

To measure the balance between Simple-like and Complex-like synaptic contributions once 

the RF is convolved with the stimulus, we computed another Simpleness Index (SI*), based on the 

reconstructed outputs of the first- and second-order kernel estimates (Fig. 5a, see Online Methods). 

This convolution results in a striking realignment of the Simpleness indexes: over the cell population, 

the SI* values are indistinguishable between SN and DN (Fig. 5b, right panel), suggesting that the 

balance between Simple-like and Complex-like contributions remains unchanged in V1 cell synaptic 

activity, whether the visual test noise is sparse or dense.  

In order to test a possible generalization to other visual input statistics, we measured the 

Simple or Complex nature of synaptic and spiking RFs using flashed Gabor noise (GBN) (for 20/32 

cells, see Supplementary Fig. 7). The SI computed in the GBN condition reveals that synaptic (Fig. 

5c, middle panel) and spiking RFs (see Supplementary Fig. 7c) are far more Complex with GBN than 

with DN (or, to a lesser extent, with SN, data not shown). This result is consistent with our previous 

finding, since, for cortical cells, the Gabor noise protocol can be considered as a sparse stimulation in 

the Fourier domain. Accordingly, we found that no significant difference is noticeable between SI* 

values measured in the GBN and DN (Fig. 5c, right panel) or SN (data not shown) conditions, which 

reinforces and generalizes our hypothesis of a normalization of the Simpleness of the visually-evoked 

synaptic drive. 

This realignment of the Simpleness indexes observed after convolving the RFs with the 

different stimulus sequences is visible even when considering only the h2Diag filter for reconstructing 

the Complex-like component of the DN response (see Supplementary Fig. 8). Therefore, this 

normalization cannot be simply explained by the recruitment of the off-diagonal terms of the second-

order kernel in the DN context; the stimulus dependent changes observed on the second-order 

diagonal h2Diag contribute substantially to the invariance of the Simpleness of the reconstructed RF 

outputs across input statistics.  
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Insert Figure 5 near here 

The most sophisticated fits of V1 RFs in the literature rely on a convergence of multiple 

parallel linear subunits whose outputs are combined nonlinearly (parallel LN cascade model12). In this 

model architecture, the afferent filters can be considered as Simple-like or Complex-like RF 

components depending on the degree of sensitivity to contrast polarity along the stimulus feature 

dimension for which they are selective. To assess whether the stimulus dependent changes in RF 

Simpleness could arise trivially from mapping such second-order RF architectures with different 

stimulus statistics, we simulated non-adaptive RF models, made up of one Simple-like subunit in 

parallel with multiple linear filters whose outputs were squared (Fig. 6a). By imposing in graded ways 

the relative weights of the quadratic and the linear components, we synthesized a set of RF models 

which each expressed a distinct degree of Complex behavior. We simulated the responses to SN, 

GBN and DN for each of these “non-adaptive” RF models and estimated the first- and second-order 

kernels, using the same decomposition as in our V1 cells. The SI measures obtained from these RF 

models did not differ between SN and DN (Fig. 6b, middle panel) or GBN and DN conditions (Fig. 6c, 

middle panel) which demonstrates that the effect we observed in our V1 cell population is unlikely to 

be due to any bias of our kernel estimates by the statistical properties of the visual input itself. These 

non-adaptive models further illustrate that, in the absence of adaptation of the RF Simpleness, the 

global synaptic responses evoked by dense stimuli are expected to express more Complex-like 

contributions than those evoked in sparse stimulation contexts: the SI* values computed directly from 

the RF model outputs reveal much stronger complexity in DN than in SN (Fig. 6b, right panel) or GBN 

contexts (Fig. 6c, right panel).  

Taken together, these results strongly suggest that the stimulus dependent changes observed 

in V1 RFs Simpleness reflect a regulatory mechanism which compensates for the relative strength 

with which the stimulus recruits the Simple-like and Complex-like RF components, such as to maintain 

the Simpleness of the visually-evoked synaptic drive independent of changes in input statistics. 

Insert Figure 6 near here 

To get an insight into the time constants of this RF adaptation, we averaged across cells the 

synaptic responses evoked by each of these stimuli (see Supplementary Fig. 9). This mean response 

component, which reflects the dynamics of the Complex-like contributions averaged over the 
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population, decays exponentially within the few first hundreds of milliseconds in SN (τ=740 ms), GBN 

(τ=820 ms) and DN (τ=750 ms) conditions. If we assume this decay is related to the adaptation of the 

Simple/Complex balance, its time constant suggests that this process is not instantaneous but fast 

enough to be still relevant regarding natural viewing condition dynamics25. 

 

Predictions by gain-control models 

In the perspective of our RF decomposition, the most straightforward model of adaptation of 

V1 RF Simpleness is to add two separate gain controls (α and β) to the RF models depicted in Figure 

6a, which would account respectively for the branch specific division of the Simple-like and Complex-

like RF components when switching from SN to DN (“Differential” gain control model, DGC, Fig. 7a). 

However, we investigated whether our results could be explained by simpler adaptive models, in which 

the gain control process does not require any prior distinction between afferent RF components 

regarding the Simple or Complex nature of their contributions.  

Insert Figure 7 near here 

In the RF architecture depicted in Figure 6a, a minimal hypothesis for adaptation of the cell 

response to the stimulus strength is to assume the existence of a post-NL gain control process γ, after 

the nonlinear filtering stage (post-NL), which changes the integrative properties of the model by 

normalizing the variance of the evoked response with regard to the increase in the stimulus power 

(GC1, Fig. 7d). Since this GC1 model affects equally the Simple-like and Complex-like afferent 

contributions, it is unable to explain any adaptation of the RF Simpleness between SN and DN (Fig. 

7e, left panel) and the visually-evoked responses remain much more complex in DN than in SN 

conditions (Fig. 7e, right panel). Still, one peculiar aspect of this model is that the gain factors 

measured on h1st and h2Diag kernels are linearly related and inversely correlated with the degree of 

Simpleness of the RF, similar to what we found experimentally (Fig. 7c; see also Supplementary Fig. 

4).  

Another minimal adaptation hypothesis is to consider a pre-NL gain control process which 

rescales, before the nonlinear filtering stage (pre-NL), the gain of the afferent subunits with regard to 

the increase in the stimulus power26 (GC2, Fig. 7g). In this normalization model, all the linear filtering 
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stages are divided by a single factor g and the second-order RF components, which are related to the 

squared output nonlinearities, are scaled as g2. Consequently, the RF Simpleness is expected to 

increase with the visual input strength. This type of model can account partially for our results: for a 

given RF structure, one can find a particular value g* for the divisive gain, corresponding to an under-

adaptation of the linear components, but for which the increase of RF Simpleness between SN and 

DN (Fig. 7h, left panel) compensates exactly for the strength with which these two stimuli recruit 

Simple-like and Complex-like RF components (Fig. 7h, right panel, see Supplementary Note 3). 

However, the GC2 model implies a quadratic relationship between the apparent scaling factors on 

Simple-like and Complex-like RF components (Fig. 7i), which is not consistent with our data. 

Moreover, in this model, different values of gain control g necessarily lead to different degrees of 

adaptation of the RF Simpleness (Fig. 7h). Thus, the GC2 model cannot explain both the diversity in 

the GainSN/DN values and the invariance of the SI* across stimulus conditions.  

Interestingly, the combination of the two mechanisms, the pre-NL gain control g* with the post-

NL gain control γ (GC3, Fig. 7j), appears to be sufficient to account for both the invariance of the SI* 

(Fig. 7k) between sparse and dense visual contexts and the linear relationship between h1st and h2Diag 

gain factors (Fig. 7l). This GC3 model illustrates that the adaptation of V1 RF Simpleness can be 

explained by gain control processes independent of the functional distinction between Simple-like and 

Complex-like RF components. Nevertheless, this conclusion holds only for the parameters depicted in 

Figure 7: none of these models is suitable for explaining a differential reorganization of Simple-like 

and Complex-like spatiotemporal profiles between sparse and dense visual contexts (Figs. 4 and 2). 

More realistic network architecture and/or gain controls with additional dynamic nonlinearities are 

needed to explain the spatiotemporal specificity of these kernel waveform changes.  

 

DISCUSSION 

Our intracellular study shows that the balance between Simple-like and Complex-like RF 

components depends on the statistics of the visual input, such as the same RF appears more Simple-

like in dense than in sparse visual conditions. Stimulus dependent changes in the Simple or Complex 

behavior of V1 cells have already been reported in earlier studies using drifting grating stimuli, as a 

function of stimulus contrast and RF surround recruitment17,13,27. However, this study is the first to 
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show such clear changes in terms of spatiotemporal reorganizations of synaptic and discharge fields 

at the single cell level, interpretable as a coherent adaptive behavior at the population level. This 

stimulus dependence of V1 RF Simpleness does not exclude the possible existence of different 

classes of cells (in terms of afferent connectivity) in the cortical population. Our results rather suggest 

that it reflects an adaptation of the “effective connectivity” of the network28  to the statistical properties 

of the stimulus, making the balance between Simple-like and Complex-like synaptic influences (SI*) 

afferent to any cortical cell invariant from changes in visual input statistics. If one accepts the simplified 

view that the Simpleness Index reflects, for any given RF, the relative dominance of the local thalamic 

drive29,30, it is likely that even in cells which receive direct geniculo-cortical afferents (in cat area 17, 

those in layer 4 and to a lesser extent layer 6)31, the RF Simpleness adaptation remains in proportion 

with the low impact of the Complex-like RF contributions they might receive, as for the cells situated in 

the upper right corner of Figure 3a (close to the point where SIDN=SISN=1.0). The anatomical 

reconstruction of four cells labelled with biocytin in this study supports the view that whatever their 

rank in the thalamo-cortical layer hierarchy, all cortical cells are likely to exhibit an adaptation of their 

RF Simpleness with graded extent (see Supplementary Fig. 10). This conclusion is consistent with 

the previously described stimulus dependence of linear kernel estimates in superficial vs input 

layers22,23. Our data further suggest the existence of an adaptation process which would result, across 

all cortical layers, in a rescaling of the Complex-like components in proportion with the gain control 

affecting the Simple-like components. The effects we describe are more detectable at the 

subthreshold than at the spiking level, where additional static nonlinearities may interfere with the 

global read-out of the connectivity rule (see Supplementary Fig. 3).  

Our results must be interpreted in a functional perspective and several non-exclusive 

mechanisms can still be considered.  

Our data do not completely exclude the contribution of a subcortical adaptation process which 

would make the LGN inputs to the cortex more nonlinear in sparse visual conditions than in dense 

visual contexts32,33. However, this interpretation is insufficient to account for the fact that the Gabor 

noise stimuli induced V1 RF changes which are consistent with the sparse nature of the stimulation in 

the orientation domain, whereas they likely corresponded to dense visual inputs for retinal or thalamic 

cells in view of the range of spatial frequencies used34. 
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Interestingly, our simulations show that a simple gain control model (Fig. 7j) can partially 

reproduce the adaptation of V1 RFs Simpleness, provided there is a specific rescaling of the strength 

of the inputs to the network, combined with a gain control of the amplification performed by the 

downstream cell. Literally, it suggests that this adaptive behavior could result from the combination of 

1) activity-dependent adaptation at the thalamic level, synaptic depression at thalamo-cortical 

synapses or any mechanism which reduces the impact of the feed-forward drive and 2) synaptic 

depression at cortico-cortical synapses, increased levels of intracortical inhibition, activity-dependent 

changes in cell intrinsic properties or any mechanism which reduces the intracortical amplification. 

The increase of RF Simpleness in dense visual conditions could also be explained by a 

change in the balance between excitation and inhibition35 resulting in a suppression of the Complex-

like synaptic components estimated in the SN context. In a generalized feed-forward perspective, this 

suppression could either come from an increase of push-pull inhibition36 or from the enhancement of 

an unselective Complex inhibition37,38,39 (see Supplementary Fig. 11) but in both cases, the apparent 

increase of RF linearity in the DN condition would result from the interplay between excitatory and 

inhibitory nonlinear inputs. 

Another interpretation line would be to consider that the Simple or Complex nature of V1 RFs 

arises from a variable balance between feed-forward and lateral inputs40,10,11, the feed-forward drive 

providing the Simple-like component while the recurrent lateral connections convey Complex-like 

contributions. Accordingly, our results might be explained by the functional recruitment of lateral 

interactions in sparse stimulation conditions and by the decoupling of adjacent cortical columns in 

dense visual contexts (see Supplementary Fig. 11). This view is supported by recent results 

suggesting that the lateral propagation of activity between adjacent cortical units decreases 

substantially when increasing the contrast of the stimulation41. In view of our own results, the stimulus 

dependence of the lateral cortical interactions likely generalizes to other stimulus dimensions than the 

local contrast exclusively. Similar effects might be obtained by increasing the spatial or temporal 

density of the stimulus, the important parameter probably being the effective contrast along the 

stimulus feature dimensions for which the cell is selective42,43.  

Regardless of the mechanisms underlying this adaptive behavior, one last important question 

is the relevance of this adaptation in natural viewing conditions. The synaptic normalization process 

we found could maintain in V1 the relative contribution of linear and nonlinear synaptic inputs invariant 
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to dynamic changes in the local spatiotemporal context of the visual scene. During oculomotor 

exploration, depending on eye fixation location, a given RF would sample locally “sparser” or “denser” 

regions of a natural scene; synaptic normalization would allow the activated network to extract the 

same relative amount of information along the phase-sensitive and the phase-insensitive processing 

streams, thus ensuring the detection of the most relevant features of the visual scene independently of 

the local context in which they are embedded. This would improve information transmission by 

avoiding the over-representation of second-order correlations among cell population responses in 

dense visual contexts while increasing their detectability in sparse contexts, thus adapting the 

neuron’s dynamic range to the level of correlation present in the visual input. We finally propose that 

the stimulus dependence of V1 RF Simpleness reflects a general rule of functional homeostasis 

common to many sensory systems44-47,33, which would ensure the adaptation of the network 

nonlinearities to ongoing changes in the statistical structure of the sensory input, according to optimal 

encoding principles48. 
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FIGURE LEGENDS: 

 

Figure 1: White noise stimuli and second-order Volterra RF decomposition 

(a) Example of single-trial intracellular responses evoked in the same cell (cell1) by sparse (SN, 

black), dense (DN, red) and gabor (GBN, grey) noise stimuli. The visual stimulation period is indicated 

by the horizontal black line. Spike amplitudes have been cut off at -30 mV to facilitate the comparison 

between membrane potential (Vm) fluctuation dynamics. (b) First- and second-order Volterra kernels 

were estimated using a least-squares method. In this decomposition, the h1st kernel linearly filters the 

stimulus contrast variations and can be considered as the Simple-like part of the RF in the strict sense. 

In contrast, the second-order diagonal h2Diag corresponds to the projection of the second-order RF 

nonlinearities in the first-order stimulus space, pooling RF components independent of the contrast 

sign, and can be considered as the Complex-like part of the RF. The feature selectivity underlying this 

h2Diag Complex-like component is provided by the off-diagonal terms of the second-order kernel h2nd. 

(c) Probability of stimulation (P(stim)) of the second-order kernel by SN (left) and DN (right). In 

contrast to DN stimuli, pixels are activated one at a time in SN condition. Consequently, off-diagonal 

components of the second-order kernel are barely stimulated by SN compared to the diagonal 

elements, making their estimation irrelevant in sparse stimulation contexts.  
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Figure 2: Stimulus dependence of Simple-like and Complex-like RF components 

(a) First-order kernel (left column, Simple-like, h1st) and second-order diagonal kernel (right column, 

Complex-like, h2Diag) of subthreshold (Vm) and spiking (Spk) receptive field estimates for a typical V1 

cell (cell 1). Kernels are depicted as spatial (XY) and 2D spatiotemporal (YT) z-scored maps. The XY 

spatial maps are shown for the lag time corresponding to their maximal spatial extent (indicated by the 

vertical black line in YT spatiotemporal profiles). The thin grey lines show the pixel size used for SN 

and DN. (b) Examples of elementary responses corresponding to positions indicated in the inset, 

overlaid over the shaded responsive area. Note the differences of scale between SN (black) and DN 

(red) waveforms, reflecting a divisive gain control of both Simple-like and Complex-like RF 

components when switching from SN to DN. (c-d) Same graphs as in (a-b) for another cell example 

(cell 2). 
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Figure 3: RF Simpleness and gain control of Simple-like and Complex-like RF components 

(a-b) Comparison over the population of recorded cells of the Simpleness Index (SI) measured from 

synaptic (a) or spiking (b) RF estimates between SN and DN conditions. All points lie above the 

identity line, showing that all RFs undergo a systematic change in the balance between Simple-like 

and Complex-like RF components such that they appear more Simple in the DN than in the SN 

condition. The data points corresponding to the example cells (shown in Fig. 2) have been circled. In 

the SN context, cell1 and cell2 subthreshold RFs exhibit SI values of 0.08 and 0.56 respectively (0.24 

and 0.46 at the spiking level), while in the DN condition, SI values corresponding to the same cells 

increase to 0.32 and 0.90 respectively (0.53 and 0.77 at the spiking level). (c-d) Comparison between 

the GainSN/DN measured for Complex-like (h2Diag GainSN/DN) and Simple-like (h1st GainSN/DN) RF 

components, at the subthreshold (c) and spiking (d) levels. The gain factors affecting the Complex-like 

components are systematically higher and appear linearly related to the amplitude of the gain controls 

measured from the first-order components h1st, except for two outliers (grey symbols) (blue regression 

lines, Vm: slope = +3.53, r2 = 0.98, P<<0.01, n = 30; Spk: slope = +1.81, r2 = 0.90, P<<0.01, n = 11). 

The vertical dotted line indicates the value we would expect from perfectly adapting linear RF 

components: h1st GainSN/DN would correspond to the ratio of the SN and DN standard deviations of 

luminance values (~8.16, see Online Methods). 
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Figure 4: Spatiotemporal reconfiguration of Simple-like and Complex-like RF components 

(a) Comparison between DN and SN conditions of the maximal spatial extents of significant responses 

measured in Simple-like (h1st, left panel) and Complex-like (h2Diag, right panel) RF components (units: 

visual degree of apparent diameter). While Simple-like RF components appear significantly larger in 

the DN than in the SN condition (paired Student’s t test, P < 0.01), the Complex-like RF components 

are significantly shrunk (paired Student’s t test, P << 0.01). (b) Comparison of onset latencies of 

Simple-like (h1st, left panel) or Complex-like (h2Diag, right panel) RF components between DN and SN 

conditions (units: ms). (c) Comparison of peak latencies of Simple-like (h1st, left panel) or Complex-like 

(h2Diag, right panel) RF components between DN and SN conditions (units: ms). 
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Figure 5: V1 RF Simpleness adapts to visual statistics 

(a) In each stimulus condition, the Simpleness was measured in two ways: 1) by the SI index which 

compares the relative power of the Simple-like (h1st) and Complex-like (h2Diag) components of RF 

estimates (RF, middle panels) and 2) by the SI* index which measures the balance between Simple-

like and Complex-like synaptic contributions once the stimulus-dependent RFs have been convolved 

with the corresponding stimulus sequences (RF*Stim, right panels). In sparse stimulation conditions, 

since the pixels are activated one at a time, the nonlinear contributions conveyed by the off-diagonal 

terms of the h2nd kernel have barely any weight in the response and the output of the h2Diag filter 

provides an almost complete estimate of the Complex-like synaptic contributions.  In contrast, in the 

DN condition, since multiple pixels are activated at the same time, the dynamics of the evoked 

Complex-like response also rely on the selectivity of the h2Diag RF components to the spatiotemporal 

patterns which are presented. We thus computed the convolution of the stimulus with the full second-

order kernel estimate h2nd to reconstruct the Complex-like synaptic contributions evoked by DN stimuli. 

(b) Comparison of Simpleness indexes between SN and DN conditions: middle panel, same graph as 

in Figure 3a; right panel, comparison of the SI* indexes. The diagonal lines represent the identity 

relation. Note that over the population, the SI* values are much more aligned along the identity line 

than the SI values. (c) Same as in (b) but when comparing GBN and DN conditions.  

 

  



21 
 

 

Figure 6: Simpleness in non-adaptive RF models 

(a) Parallel LN cascade RF architecture in which linear filter outputs corresponding to different 

stimulus feature selectivities are passed through a second-order polynomial nonlinearity (one linear 

branch and several quadratic branches). In this model architecture, the linear component provides 

Simple-like contributions while the quadratic components contribute in a Complex-like manner to the 

cell response. By keeping the same RF structure while imposing the relative weights of these two 

types of afferent RF components, we simulated a set of RFs, each expressing a fixed degree of 

Simpleness, and simulated their responses to SN, GBN and DN stimulus sequences. (b) Middle panel: 

Comparison between SI measured for RFs estimated from the simulated SN and DN responses of the 

non-adaptive RF models depicted in (a). Right panel: comparison of the SI* (measured directly from 

the RF model outputs) between SN and DN conditions. (c) Same as in (b) but when comparing GBN 

and DN conditions. 
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Figure 7: Simpleness in gain control RF models 

(a) “Differential” gain control model (DGC): the adaptation of V1 RF Simpleness can be explained by 

adding two separate gain control processes (α and β) to the RF models depicted in Figure 6a. These 

processes respectively divide Simple-like and Complex-like RF components when switching from SN 

to DN. (b): Same graph as in Figure 5b. (c): Same graph as in Figure 3c. The colors of the symbols 

correspond to three different ranges of value for the SI values measured in the SN condition. 

(d) “post-NL” gain control model (GC1): a gain control process γ acts after the nonlinear filtering stage 

(post-NL) and normalizes the variance of the evoked response across stimulus conditions. (e) SI (left) 

and SI* (right) measured from GC1 RF model responses in SN and DN conditions. (f) SN/DN gain 

factors (GainSN/DN) measured from the h1st and h2Diag kernels estimated from the GC1 RF responses. 

Dark and light colors of the symbols indicate low and high values of γ respectively.  

(g) “pre-NL” gain control model (GC2): a gain control process g acts before the nonlinear filtering 

stage (pre-NL) and results in a division of linear filter outputs by g when switching from SN to DN, 

independently of the RF Simpleness. (h) SI (left) and SI* (right) measured from GC2 RF model 

responses in SN and DN conditions. (i) SN/DN gain factors (GainSN/DN) measured from the h1st and 

h2Diag kernels estimated from the GC2 RF responses. The purple curve indicates the quadratic 

relationship. Dark and light colors of the symbols indicate low and high values of g respectively. g* 

corresponds to the value for which we observed a complete adaptation of the RF Simpleness between 

SN and DN conditions (SI*DN= SI*SN).  

(j) “Hybrid” gain control model (GC3): Combination of the GC1 and GC2 models (with g = g*). (k) SI 

(left) and SI* (right) measured from GC3 RF model responses in SN and DN conditions. (l) SN/DN 

gain factors (GainSN/DN) measured from the h1st and h2Diag kernels estimated from the GC3 RF 

responses. The slope of the regression line (blue) corresponds to g*. Note that this model is 

mathematically equivalent to the “differential” gain control model (a) considering α = g* x γ and  β = 

g*2 x γ. Dark and light colors of the symbols indicate low and high values of γ respectively.  
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ONLINE METHODS:  

 

Animal preparation and electrophysiological recordings 

Data presented here were obtained from anesthetized (alfatesin) and paralyzed cats, 

according to the American Physiological Society’s Guiding Principles in the Care and Use of Animals. 

Animals used in these experiments have been bred in the Central CNRS Animal Care (French 

Agriculture Ministry Authorization: B91-272-105) under required veterinary and National Ethical 

Committee supervision. Intracellular electrodes were made from 1.5 mm wall-thickness borosilicate 

pipettes filled with a solution of KMS (potassium methyl sulfate), 2 M and KCl, 4 mM. In some 

experiments we labeled intracellularly the cells we recorded by adding biocytin (1%) to the intra-pipette 

solution. Electrode resistances were in the range 60 to 90 MΩ. Recordings were performed using an 

Axoclamp 2A amplifier.  

 

Visual Stimulation 

Visual stimuli were generated using in-house software (Elphy, Gerard Sadoc, UNIC-CNRSTM) 

and presented on a gamma-corrected monitor with a refresh rate of 150 Hz and a background 

luminance of 12 cd.m-2. Three kinds of white noise stimuli were presented in the same explored visual 

area: 1) two-dimensional ternary sparse noise (SN) which consisted of random sequences of non-

overlapping white (23 cd.m-2) or black (1 cd.m-2) squares, presented one at a time on a uniform 

luminance background (12 cd.m-2), over a 10x10 grid (except for cell 2: 15*15); 2) two-dimensional 

ternary dense noise (DN) which consisted of random sequences of squares (same squares as in the 

corresponding SN condition) which could be either white (23 cd.m-2), black (1 cd.m-2) or equal to the 

background (12 cd.m-2) with equal probability. 3) flashed Gabor noise (GBN) consisting of random 

sequences of flashed Gabor stimuli. Michelson’s contrast was held constant at 0.5 and the spatial 

Gabor attenuation constant was 40% of the explored region dimensions. For each frame, orientation, 

spatial frequency and spatial phase were randomly chosen from a discrete uniform distribution 

consisting of six orientations ranging from 0° to 150°, five spatial frequencies ranging from 0.2 to 1.1 

cycles per degree, and four spatial phases ranging from 0 to 270°.  

The seed used for initializing the random process of these three white noise stimuli was 

changed for each sequence (a necessary condition in sparse sequences to estimate the receptive 
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field function). For each cell, visual stimuli were presented in an interleaved way, in the same region of 

the visual field and at the same frequency (frame duration: 13 ms for 15 cells, 26 ms for 12 cells, 33 

ms for 4 cells and 56 ms for 1 cell). We adapted the size of the explored visual area to the apparent 

spatial extent of the RF. Still, the number of pixels covering the significant RF area (SN and DN 

conditions) could vary from cell to cell (from 4 to 54 pixels) and was on average 20 pixels. 

Note that while SN and DN stimuli exhibited the same elementary contrast steps (c), they 

differed strongly in spatiotemporal statistics. In the SN condition, as pixels are activated only one at a 

time, the power of the stimulus (P2) is very low (Pଶ  ൌ  2/200 ൈ cଶ for a 10x10 simulation grid). This is 

in contrast with the DN condition where the three luminance states are on average equally 

represented in each frame (Pଶ  ൌ  2/3 ൈ  cଶ). These differences between sparse and dense 

stimulation regimes give a ratio between their respective standard deviations of luminance values of  

ඨ ଶ ଷൗଶ ଶ଴଴ൗ ~ 8.16.  

 

Second-order Volterra kernel estimation 

Action potentials, when present, were automatically filtered out from synaptic fluctuations 

offline. First- and second-order RF components were estimated using a least-squares method, 

considering either the spiking response or the subthreshold fluctuations. This estimation consisted of 

solving the system of equations corresponding to the Volterra series expansionሺݍܧ. 1ሻ: 

      Rሺtሻ ൌ  h0 ൅ ෍ h1stሺx, y, τሻ ൈ Sሺx, y, t െ τሻ୶,୷,த൅ ෍ ෍ h2ndሺxଵ, yଵ, τଵ, xଶ, yଶ, τଶሻ ൈ Sሺxଵ, yଵ, t െ τଵሻ ൈ Sሺxଶ, yଶ, t െ τଶሻ୶మ,୷మ,தమ      (Eq. 1)୶భ,୷భ,தభ  

Where R(t) is the cell response recorded at time t, sampled with a 1 ms-resolution; S, the stimulus 

input vector (see Supplementary note 1) and h0, h1st, h2nd correspond respectively to the zero-, first- 

and second-order Volterra kernels. 

The kernels estimated from responses to flashed Gabor noise obeyed the same formalism as 

in the spatiotemporal domain except that  h1st and h2nd were functions of position in the Fourier space. 

In this condition, contrast of opposite signs corresponded to identical Gabor stimuli but with spatial 

phases separated by 180°. 
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Note that due to the sparse statistical structure of SN and GBN stimuli, the off-diagonal 

elements of the h2nd kernel are barely stimulated, which means that the estimation of the second-order 

RF components comes down to the estimation of its diagonal elements h2Diag 

(hଶ஽௜௔௚ሺݔ, ,ݕ ߬ሻ= hଶ௡ௗሺݔ, ,ݕ ߬, ,ݔ ,ݕ ߬ሻ). Consequently, in these sparse stimulation conditions, the second-

order Volterra decomposition ሺݍܧ. 1ሻ can be simplified as: 

Rሺtሻ ൌ  h
0
൅ ෍ h

1st
ሺx, y, τሻ ൈ Sሺx, y, t െ τሻ୶,୷,த ൅ ෍ h

2Diag
ሺx, y, τሻ ൈ Sሺx, y, t െ τሻ2x,y,τ    (Eq. 2) 

In contrast, in the DN condition, the full second-order kernel (diagonal and off-diagonal 

elements) is stimulated such that it is possible to estimate it completely. Still, due to the high 

dimensionality of this functional space, the estimation of the off-diagonal elements is constrained by 

the recording length. While the number of collected spikes was generally too small to compute this 

estimate, our voltage records allowed us to proceed to the estimation of the off-diagonal elements of 

the second-order kernel for all cells. In order to keep a ratio of at least 1:5 between the number of 

kernel parameters and the number of data points, we had to restrict spatially and temporally the 

estimation of these off-diagonal terms. Nonetheless, despite this constraint, we were able, for all cells, 

to cover in the off-diagonal space the elements corresponding to the full spatiotemporal extent of the 

significant responses estimated in the h2Diag component. Note that the estimation of the h2Diag kernel 

parameters was unchanged whether we considered the estimation of the off-diagonal elements of the 

second-order kernel or not. 

 

Variance of kernel estimates 

The statistical significance of kernel parameters was computed as spatiotemporal z-score 

maps in which each kernel parameter (corresponding to a particular spatiotemporal position) was 

divided by the standard deviation of the kernel error calculated from the parameter covariance matrix. 

A major benefit of using least-squares methods is that it provides a direct theoretical expression of the 

confidence bounds to take into consideration for kernel parameters49. If we assume that the corrupting 

noise in the output is a stimulus-independent Gaussian process with zero-mean and variance ߪଶ, the 

variance of each kernel parameter is given by the corresponding elements on the diagonal of the 

parameter covariance matrix ܥఏ, which is computed from the inverse of the stimulus covariance matrix H (Hessian matrix) and an unbiased estimate of the residual variance σ2
res:  
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ఏܥ  ൌ ௥௘௦ଶߪ  ൈ .ݍܧଵ   ሺିܪ 3ሻ 

 

where  ߪ௥௘௦ଶ ൌ  1
N െ M

ൈ ෍ ቀRሺtሻ െ R෡ሺtሻቁଶ
୲    ሺݍܧ. 4ሻ 

with N being the number of time bins; M, the number of kernel parameters and R෡ሺtሻ, the response 

output reconstructed from the estimated kernels. 

 

Variance of the kernels output 

 Since the kernel outputs are linearly related to their parameters, the variance of the error of 

the convolution product at time t between the stimulus sequence and the kernel ( ሺhଵୱ୲ כ Sሻሺܜሻ or ሺhଶ୬ୢ כ Sሻሺܜሻ ) can be deduced from the parameter covariance matrix ܥఏ49. ߪሺ௛כௌሻሺ೟ሻଶ ൌ ܷ௛ሺݐሻ் ൈ ఏܥ ൈ ܷ௛ሺݐሻ    ሺݍܧ. 5ሻ 
where ܷ௛ሺݐሻ is a vector which contains the appropriate stimulus elements (i.e. Sሺx, y, t െ τሻ or 

Sሺxଵ, yଵ, t െ τଵሻ ൈ Sሺxଶ, yଶ, t െ τଶሻ) in positions corresponding to the parameters of the considered 

kernel and is zero elsewhere. 

 

Quantification of Kernel estimates 

In this study, all kernel quantifications were based on the total duration of the impulse 

responses instead of selecting one particular time epoch (such as when the RF amplitude or spatial 

extent is maximal). To avoid any contamination of our measurements by the residual noise of our 

kernel estimates, we only considered spatiotemporal positions which were statistically significant (z-

score ≥ 2.33, i.e. P ≤ 0.01). The Simpleness Index SI was defined as follows: 

SI ൌ  ∑ hଵୱ୲ ሺx, y, τሻଶ୶,୷,த∑ hଵୱ୲ ሺx, y, τሻଶ ୶,୷,த  ൅ ∑ hଶD୧ୟ୥ ሺx, y, τሻଶ ୶,୷,த .ݍܧ)     6)  
The relationship between DN and SN SI values (Fig. 3a and 3b) was fitted by the following equation: 

SIDN ൌ SISN

SISN ൅ ቀ1
kቁଶ ൈ ሺ1 െ SISNሻ .ݍܧ)    7) 
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where k is a constant parameter over the cell population (see Supplementary Note 2). 

The gain factor GainSN/DN between SN and DN kernels was defined as the ratio of the kernel 

Euclidian norms associated with the different stimulus conditions, considering the kernels as 

spatiotemporal vectors: 

h GainSN/DN  ൌ  ට∑ hௌேሺx, y, τሻଶ௫,௬,ఛ ට∑ h஽ேሺx, y, τሻଶ௫,௬,ఛ .ݍܧ)    8)  
The Simpleness Index, SI*, which measures the strength of the Simple-like and Complex-like 

components of the synaptic response, was computed from the convolution products between the 

visual stimulus and the first-order (h1st) or second-order (h2nd) kernels, considering only the 

components of the kernel output which were statistically significant (z-score ≥ 2.33, i.e. P ≤ 0.01):  

SIכ  ൌ   ∑ ቀhଵୱ୲ כ Sሺ୲ሻቁଶ ୲  ∑ ቀhଵୱ୲ כ Sሺ୲ሻቁଶ ୲  ൅ ∑ ൫hଶ୬ୢ כ Sሺ୲ሻ൯ଶ ୲       (ݍܧ. 9)  
where the כ symbol denotes the convolution product between the first- or second- order kernel and the 

stimulus sequence (see ݍܧ. 1). 

Note that in SN and GBN conditions, since the h2nd kernel comes down to its diagonal 

elements h2Diag, the expression of SI* is equivalent to:  

SIכ  ൌ   ∑ ቀhଵୱ୲ כ Sሺ୲ሻቁଶ ୲ ∑ ቀhଵୱ୲ כ Sሺ୲ሻቁଶ ୲  ൅ ∑ ൫hଶD୧ୟ୥ כ Sሺ୲ሻ൯ଶ ୲       ሺEq.  10ሻ 

Areas delimited by contours of 99%-significant responses (z-score ≥ 2.33, i.e. P ≤ 0.01) were 

measured for each kernel on spatially smoothed versions of their respective z-score maps and plotted 

over time. The maximal spatial extent of these contours (measured by their equivalent apparent 

diameter expressed in degrees of visual angle, Sig. spatial extent) as well as the timing of this 

maximum (Peak latency) was measured for each kernel to be compared between conditions. The 

onset latency of each kernel was derived from the contour area measurement. The initial radial growth 

of the significant responsive area was generally constant as a function of time and we computed the 

onset time in the following way: we defined an area threshold corresponding to half of the maximum 

and went backwards in time until the time derivative of the RF area fell below 10% of the derivative 
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calculated at half-amplitude, for five continuous time steps (5 ms). This measure thus reflects the 

latency of the earliest response which initiates the progressive build-up of the full RF domain. We 

found much more reliable measurements using this method than with methods based on the derivative 

of the kernel waveforms. 

 

Predictive power of receptive field estimates 

 We assessed the ability of SN and DN RF estimates to predict responses to new data sets 

which were not used for estimating the kernels. RF estimates were first convolved with the validation 

stimulus sequence according to equation ݍܧ. 1 and rescaled according to the best linear coefficient (in 

the least squares sense) to avoid any failure of prediction just due to a static change in the linear gain. 

Predicted and recorded responses were low-pass filtered at 75 Hz and binned at 1-ms resolution. We 

finally quantified the accuracy of the prediction by measuring 1) the Predictive Power, defined as the 

percentage of variance of the cell response explained by the prediction and 2) the Predictive 

correlation, defined as the Pearson’s correlation coefficient between measured and predicted 

responses: 

Predictive Power ൌ 100 ൈ ൮1 െ ∑ ቀܸ݉ሺݐሻ െ ෡ܸ ݉ሺݐሻቁ2∑ሺܸ݉ሺݐሻ െ ሻ2ۄܸ݉ۃ ൲  ሺEq.  11ሻ  
Predictive correlation ൌ  ∑ ቀሺܸ݉ሺݐሻ െ ሻۄܸ݉ۃ ൈ ൫෡ܸ݉ሺݐሻ െ ሻݐ൯ቁ ට∑ሺܸ݉ሺۄ෡ܸ݉ۃ െ ۄܸ݉ۃሻ2  ൈ ∑൫෡ܸ݉ሺݐሻ െ ۃ෡ܸ݉ۄ൯2  ሺEq.  12ሻ 

where ෠ܸ௠ denotes the response predicted by the RF estimates, ௠ܸ the recorded cell response and ۃ   .the mean response level , ۄ

To predict the response to the same stimulus condition as the one used for estimating the RF, we 

considered 95% of the total recording length for kernel estimation, computed the prediction on the 5% 

left with the estimated kernels and repeated this procedure until we completed the prediction of the full 

response.  

Note that in order to have the longest recording duration for estimating the second-order kernels, we 

only recorded single trial responses (the seed of the white noise was changed every trial). Therefore, 

since the actual response variance also contains a certain amount of noise (which would have been 

reduced by averaging, had we used the same seed for all trials), our measurements of predictive 
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power correspond to an underestimate of the true ability of RF estimates to predict the stimulus locked 

response of the validation data set.  

 

 

Receptive field simulations 

 Simulated RFs were made up of a parallel bank of linear filters (Fig. 6a), shaped as a sum of 

two or three non-overlapping Gaussian zones with alternating polarities, so that they looked like typical 

Simple cell receptive fields. Each filter was then convolved with SN, GBN or DN sequences and their 

outputs were passed through a multidimensional second-order polynomial in which one of the filter 

outputs was linearly transformed while the others were squared. In this static nonlinearity, the strength 

of the first-order coefficient relative to that of the quadratic components thus influenced the Simple or 

Complex nature of the full RF model. This allowed us to define, in a graded way, several RF models 

with properties intermediate between purely Complex and purely Simple behaviors and whose degree 

of linearity remained the same across stimulus conditions. In addition to these non-adaptive RF 

models, we also simulated adaptive filter banks which were strictly identical to those simulated in 

Figure 6 but included gain control processes (Fig. 7d, 7g and 7j). In the GC1 RF models, the variance 

of the global response evoked by the stimulus sequence was forced to stay constant across stimulus 

conditions, by scaling the filter bank output after the nonlinear filtering stage with the appropriate factor 

γ. In the GC2 RF models, the gain of all linear subunits was divided by a constant factor g when 

switching from SN to DN, regardless of the degree of linearity of the RF.  Three different values of g 

were tested: 1) g = 8.16, corresponding to a full adaptation of the linear outputs to the change in 

stimulus energy; 2) g = 5, 3) g = g* = 3.42, corresponding to a full adaptation of the Simpleness of the 

RF model output between SN and DN (SIכࡺࡰ ൌ SIכࡺࡿ ). Finally, in the GC3 RF models, we combined the 

division of the linear subunits by a factor corresponding to a complete adaptation of the SI* (g = g*) 

and the normalization of the variance of the filter bank output across stimulus conditions. 
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