On the complexity of multivariate blockwise polynomial multiplication

Abstract : In this article, we study the problem of multiplying two multivariate polynomials which are somewhat but not too sparse, typically like polynomials with convex supports. We design and analyze an algorithm which is based on blockwise decomposition of the input polynomials, and which performs the actual multiplication in an FFT model or some other more general so called ''evaluated model''. If the input polynomials have total degrees at most d, then, under mild assumptions on the coefficient ring, we show that their product can be computed with O(s^1.5337) ring operations, where s denotes the number of all the monomials of total degree at most 2*d.
Type de document :
Pré-publication, Document de travail
2012


https://hal.archives-ouvertes.fr/hal-00660454
Contributeur : Grégoire Lecerf <>
Soumis le : lundi 16 janvier 2012 - 16:46:58
Dernière modification le : jeudi 9 février 2017 - 15:06:55
Document(s) archivé(s) le : mardi 17 avril 2012 - 02:37:23

Fichier

blockprod-hal-6.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00660454, version 1

Collections

Citation

Joris Van Der Hoeven, Grégoire Lecerf. On the complexity of multivariate blockwise polynomial multiplication. 2012. <hal-00660454>

Partager

Métriques

Consultations de
la notice

131

Téléchargements du document

136