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A Reduced BasisMethod for the Simulation of
American Options

Bernard Haasdonk, Julien Salomon and Barbara Wohimuth

Abstract We present a reduced basis method for the simulation of Aaeption
pricing. To tackle this model numerically, we formulate fv@blem in terms of a
time dependent variational inequality. Characteristgréaients are a POD-greedy
and an angle-greedy procedure for the construction of timegband dual reduced
spaces. Numerical examples are provided, illustratingpipeoximation quality and
convergence of our approach.

1 Introduction

We consider the problem of American option pricing and rete{Achdou and

Pironneau, 2005) and the references therein for an inttauinto computational
methods for option pricing. While European options can beefled by a parabolic
partial differential equation, American options resultaidditional inequality con-
straints. We refer to (Hager et al, 2010) for a possible nicakreatment by primal-
dual finite elements and to (Glowinski, 2008; Geiger and Kan2002) for an

abstract framework on the theory of constrained variatipnablems. We are in-
terested in providing a fast numerical algorithm to solveusately the variational
inequality system of an American put option for a large vigrad different param-

eter values such as interest rate, dividend, strike pridevatatility. Reduced basis
(RB) methods are an appropriate means for standard paiaeteparabolic par-
tial differential equations, cf. (Haasdonk and Ohlber@€08; Rozza, 2005; Veroy
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et al, 2003; Buffa et al, 2011) and the references thereips&lare based on low-
dimensional approximation spaces, that are constructedd®dy procedures. Con-
vergence behavior of these procedures are known in soms (Biska et al, 2011,
Haasdonk, 2011). The computational advantage of RB-msthweer standard dis-
cretization methods is obtained by its possible offlindfentlecomposition: First, a
typically expensive offline-phase involving the compudatof the reduced spaces is
performed. This phase only needs to be precomputed onca, Tfteeonline phase
allows an extremely fast computation of the RB solutionsrfany new param-
eters as only low dimensional systems need to be solved.nigcee adopted
the RB methodology to constrained stationary elliptic peois (Haasdonk et al,
2011), which we extend here to the instationary case. We t@fhe recent contri-
bution (Cont et al, 2011) for a tailored RB approach in opfivicing. In contrast
to our setting no inequality constraints are taken into antorhe main challenge
is the construction of a suitable low dimensional approxiameof the dual cone
required for the approximation of the constraints. In tlgatcibution, we introduce
a new greedy strategy based on an angle criteria and showrizahresults.

2 American Option Model

An American option is a contract which permits its owner toeige a certain payoff
Y(S 1) > 0atany timer between 0 an@ > 0. The variabld indicates the maturity.
Introducing the backward time varialle=T — 1, we can use, e.g., (Achdou and
Pironneau, 2005) the following non linear model

AP — %azszdszsP— (r—q)sdsP+rP>0, P—y >0,
(atp %azszaszst (r —q)sdsP + rP) (P—y) =0,

whereP = P(s;t) is the price of an American put, wite R the asset’s valueg is
the volatility, r is the interest ratey is the dividend payment angl = (s,t) is the
payoff function. The boundary and initial conditions ard@®pws: P(s,0) = y(s),
P(0,t) = K, lims 1 P(s,t) = 0, whereK > 0 is a fixed strike price that satisfies
K = (0,0). In what follows, we focus on the caggs,t) = (K —s), with () =
max(0,-), but our method applies as well to other types of payoff fiomst. For
the implementation, we restrict the valuessdb a bounded interva® := (0, s¢),
wheress is large enough to make the assumpgg;,t) = O realistic. Let us also set
P = P— Ry, with initial dataPy(s,t) = K(1—s/st), so thatP satisfies homogeneous
Dirichlet conditions. Our aim is now to reformulate the lagstem in a weak form,
where our reduced basis method applies. In this view, wedlice the following
functional spaces:

V= {VE LZ(Q)|Sdsve LZ(Q),V‘BQ:O}, W=V’
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The scalar produgt, -)v associated with' is defined by(u, v)v := (sdsu, S0sV) 2o +

(U,V) 2(q), where(-,-) 2 ) is the usual scalar product @A(Q). The operators are
specified as follows:

1
a(u, v ) = EUZWSUa dS(SZV»LZ(Q) + (= (r = )sdsu+ru,v) 2(g),

f(viu) = (F.V)iz(q) 9(nim) = (@, nw,

with F := — (&Py— 1025202 — (r — 0)sdsPp + IPy), i.e. F = K (gqfr) and
= —Py. Forn e W =V’', we also defind(n,v) = n(v). We can now recast our
problem in the following weak form, parametrized hy= (K,r,q,0) € & C R*.
We now introduces as a weak representant of the solutiyras this is the standard
notation in reduced basis literature:

(GU, V) 2(0) +a(u,v; 1) —b(A,v) = f(v; 1), veV 1)
b(n—A,u)>g(n—A;u), neM, @)

whereM C W is a closed convex cone. Various methods can be considesaivio
numerically Equations (1-2). In what follows, we us@-acheme for the time dis-
cretization. Giver € &, L € N andAt := T /L, this method corresponds to the
following iteration.

Given 0<n<L—1andu" €V, find u™?! € V andA™?! € M that satisfyvv €
V,Vn e M,

un+l_un
<T’V> ra(eu o (1 )uvi) — b Y) = f(vip), (3)
L5(Q)

b(n =A™ u™h) > g(n — A" ). (4)

This recursive definition is initialized with® := . Note that in this scheme, the
definition of A" is not recursive.

3 Reduced Basis M ethod

Standard finite element approaches do not exploit the stricif the solution and
for a given parameter value, a high dimensional system Has $olved. In what fol-
lows, we introduce a specific Galerkin approximation of tbkion, based on the
reduced basis method and present algorithms to computethesponding bases.
The principle of the reduced basis method consists in coimgpparametric solu-
tions in low dimensional subspaceswwandW that are generated with particular so-
lutions of our problem. Let us explain in more detail the esponding formulation.
ForN € N, consider a finite subse?y := {1,...,Un} C & with i # pj, Vi # j.
The reduced spacedy and Wy are defined by := span{yn,...,{Yn, } and
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Wh = span{&y,..., &N, } Wwherey; andé; are defined from the large set of snap-
shot solutiona"(ui) andA™ (), i=1,...,N,n=0,...,L. Hereu"(p;) andA" (L)
denote the solution of Equations (3—4) at the time-= nAt for the parameter value
¢ = my. The functionsp; and¢; are suitably selected elements spaniniRgand
Wy with Nv,Nw < N(L+ 1) preferably small. Both familie$fy = (¢j)j-1,...
=N = (&j)j=1...Ny are supposed to be composed of linearly mdependent fursstio
hence are so called reduced bases. Numerical algorithmsltitihese two sets will
be presented in Section 4. We define the reduced bane M as

Nw
My = ZUJ‘EJ‘, aj>0;.
=1

In this setting, the reduced problem reads:
Givenu € 2,0<n<L—1,u} €W, finduf ™ € iy andAj ™t € My that satisfy
YWN € WN, VNN € My,

urt —un
) a@u o (1 0)uf v )~ BT w) = i), (5)
L2(Q)

b(nn — AL U™ > g(nn — AT 1), (6)

where the initial valueu% is chosen as the orthogonal projectiorugon\y, i.e.

0

(Uy — Uo,N)v =0, VN € W.

4 Reduced Basis Construction

In this section, we present two methods to extract a BAsis V and=y € M from
the snapshots. Both are greedy procedures based on a finit@g set#ain C &
small enough such that it can be scanned quickly. Given atrampintegemy, the
dual reduced basisy = (&j)j-1,...n IS built iteratively according to the following
algorithm. The goal of the approach is to obtain a reducee bypnC M capturing
as much “volume” as possible.

Algorithm 1 (Angle-greedy algorithm) GivenyN ain C &2, choose arbitrarily
0<n <Landu; € Pain and do

— A 1
1. set=} = {_”—HA . UlilHW} W = spar{=4),

2. fork=1,...,Nw—1,do

. A k+1(uk+1)
b. setéy.y = A k“(llkﬂ)Hw’

c. define=f{™ = ZK U {& 1}, WKL .= spari =K,
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3. definezy := E',Q‘W, WA = sparf=n).

Here we have used the notatigitv, S) to denote the angle between a vectand a
linear spac& C W, which is simply obtained via the orthogonal projectidgfrom

W on Sby
r
£L(V,S) = arccos‘%, veW.
w

We apply the POD-greedy algorithm (Haasdonk and Ohlbe2§#8) to design
the primal reduced bast. This procedure is standard in RB-methods for evolu-
tion problems. In RB-methods, frequentigakgreedy procedures are used, which
make beneficial use of rapidly computable error estimatodsaiow to handle large
sets Zyain (Buffa et al, 2011). However, as our analysis does not yetigeoa-
posteriori error estimators, we use the true projectioorsras error indicators. This
corresponds to the so callsttonggreedy procedure (Buffa et al, 2011; Haasdonk,
2011).

Algorithm 2 (POD-greedy algorithm) Givelly > 0, Pain C 2, choose arbi-
trarily IJ]_ S e@train,

gl [ P g1 0l
L setl = { ity | Wi = spar®),

2. fork=1,...,Nv —1,do

a. definetic;1 := ArgMagc s, (ZhoollU(K) — Mg (1)) 3 ),
b. definefy 1 := PODL (W'(ps1) — Mgg(W(in))
c. defineft = WkU {1}, |

3. definedy = LI’,\',T‘V,\N/,\, = spar.

Here, we have denoted WV;'G the orthogonal projection oﬁ,\,k with respect to

(-,-)v, and byPODy the routine that extracts from a family of vectors the first
Proper Orthogonal Decomposition (POD) mode that can berwstavia the best
approximation property

L
PODl(Vn)n:o,...,L :=arg min Z)HVH — (V. 2), Z[§.
n—=

[lZv=1

In this definitionV is spanned by", n=0,...,L. A convergence analysis of the
POD-greedy procedure is provided in (Haasdonk, 2011). Nudé Algorithm 2
always returns an orthonormal basis. This is even the caaepdrameter value
U € Pyain is selected more than once. We point out that our System (3a$h
saddle point structure. Thus taking spgfras reduced basis for the primal variable
might result in an ill posed problem. To guarantee the ird-stability of our ap-
proach, we follow an idea introduced in (Rozza, 2005) for$hakes problem, see
also (Haasdonk et al, 2011) for variational inequaliti¢xdnsists in the enrich-

ment4 := UNJ,\',\‘V U (Béi)i—1.. n,» WhereB¢ is the solution ob(&;,v) = (Bé&,v)v,
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for v.e V. We conclude with the final reduced spage:= spary of dimension
Ny :=dim V. By construction we havisy, < Ny < Ny + Nw.

5 Numerical Results

In this section, we present some numerical results obtainegde American Option
model. We start with a description of the numerical values methods we use. In
order to compute snapshots, we use a standard finite elenathodifor the space
discretization and th@-scheme presented in Section 2 for the time-discretization
The time domain0, T] = [0, 1] is discretized with a uniform mesh of step sixe:=
T/L, L =20. TheB-scheme is used witB = 1/2, i.e. we apply a Crank-Nicolson
method. The space domai® = (0,s¢) = (0,300) is discretized with a uniform
mesh of step sizés:= s;/S, S= 101. For the function space, we use standard
conforming nodal first order finite elements. For the sakeimpicity, we keep
the notatiorlV for the discrete high dimensional space and define Wby {v e
H3(Q)Vijsmsmia) € PLM=0,...,S—1} of dimensionHy = H := S— 2 = 99 with

Sm = mAs. We associate the basis functigne V with its Lagrange nods € Q,

i.e., @(sj) = aj.i,j =1,...,H. The discretization of the Lagrange multipliers is
performed using a dual finite element bagjsof W := V' having the same support

asgj, so thato(a, xj) = &j,i,j = 1,...,Hw = H. The coneM is defined byM =
{zi"i nixi, Ni > O}. To build the basis, we consider a subséta,in of & that is

composed oN = 16 values chosen randomly in the set

x [(1—5)ro, (14 5)ro]
[(1—5)00. (1+5)00).

2 =[(1-35)Ko, (1+5)Ko]
x[(1=3)do, (1+ 5)do] x

with the numerical values = 0.1, Ko = 100, rp = 0.05, qo = 0.0015, 0y = 0.5.
To define the basig{, and the convex sefy, we use Algorithm 2 combined with
the enlargement by the supremizers and Algorithm 1. Thet dighvectors o4,
=N and the supremizers are represented in Figure 1. We simulat&rajectories
corresponding to the valuésl,,Ny) = (8,8) and(Ny,Ny) = (16,16) respectively.
The corresponding basé, are of sizeNy = 16 andNy = 32 respectively. We
chose randomly a parameter vectocorresponding to the valué&s= 106.882366,
r =0.048470,d = 0.007679,0 = 0.418561 inZ?. Some steps of the simulation
are represented in Figure 2, the top and lower row refer tcithaller and larger
reduced spaces, respectively. We clearly see the imprawdmthe approximation
by increasing the reduced dimensions. In order to evallregesfficiency of the
greedy algorithms proposed in Section 4, we plot the evaiutif the quantities

:=“gg§3;m¢ 3 1) = M)l s i= | max (£ (A"k).W))

IR A

ue gztrain
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Fig. 1 Eight first vectors of the reduced ba$tg, =y and the corresponding supremizers.

Time step =1 Time step =10 Time step =20
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Fig. 2 Finite element approximation (solid red line) and Reducasidapproximation (blue) at
time stepg /At = 1,t/At = 10 andt/At = T /At = 20. The payoff functiony is represented with
the black dashed line. The reduced bases that are used havedmerated byNy,Ny) = (8,8)
(plots on the top) o(ﬁk/, Nw) = (16,16) (plots on the bottom).

during their iterations. The results are plotted in the fingi diagrams in Figure 3.
We observe an excellent exponential convergence of th@ajppation measures.As
final experiment, we address the generalization abilitthefRB-model to param-
eters outside the training set. We considégs C &2, a random set olNies; = 10
parameter vectors and estimate, for a giyea &, the efficiency of our method
through these quantities:

L
erm(u) = \/At ZOIIU”(M ~W(WIE, Ery = max (ermn()).
= HE Ptest

Note thaterry(u) actually depends offy ; for the sake of simplicity, we have
omitted this reliance in the notation. As a test, we evaltlaenfluence of the pa-
rameterﬂ/, Nw determining the sizes of the basdgand=y onErrk,m. The results
are plotted in the right diagram of Figure 3. In our examplenuenerically obtain
Nv = Nv + Ny in all cases, indicating, that the primal snapshots andesnizers
are linearly independent. We observe a reasonable gooddacay when simulta-
neously increasindly andNy, indicating that the reduced method is working well.
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We also note that in our case, the size of the dual basis hastadiimpact on the
results.

Angle-Greedy POD-Greedy

Max error

102} "
101

F .. & 10t

102

-~ 3 —1
10 0 5 10 ()

Ny 10 5

N\I\}O 20

Fig. 3 Values ofey aorowda,(‘, during the iterations of the greedy Algorithms 1 (left) anth#ddle).
Right: Values ofErr,';, with respect td\y andNy .

References

Achdou Y, Pironneau O (2005) Computational methods foraoppiricing. Frontiers
in applied mathematics, Society for Industrial and Apphiéathematics

Buffa A, Maday Y, Patera AT, Prud’homme C, Turinici G (2011 )p#iori conver-
gence of the greedy algorithm for the parametrized reduasi$bTo be published
ESAIM-Math Model Numer Anal

Cont R, Lantos N, Pironneau O (2011) A reduced basis for opiiicing. SIAM
Journal on Financial Mathematics 2:287-316

Geiger C, Kanzow C (2002) Theorie und Numerik restringre@ptimierungsauf-
gaben. Springer-Lehrbuch Masterclass, Springer

Glowinski R (2008) Numerical Methods for Nonlinear Varatal Problems. Sci-
entific Computation, Springer

Haasdonk B (2011) Convergence rates of the POD-greedy theSubmitted
SimTech Preprint 2011-23, University of Stuttgart, sulbeait

Haasdonk B, Ohlberger M (2008) Reduced basis method foe fuoitume approxi-
mations of parametrized linear evolution equations. M2AMNth Model Numer
Anal 42(2):277-302

Haasdonk B, Salomon J, Wohimuth B (2011) A reduced basis adefior
parametrized variational inequalities. submitted SinmTeoeprint 2011-16, Uni-
versity of Stuttgart

Hager C, Hueber S, Wohlmuth B (2010) Numerical techniqoestfe valuation of
basket options and its greeks. J Comput Fin 13(4):1-31

Rozza G (2005) Shape design by optimal flow control and redibasis techniques:
applications to bypass configurations in haemodynamid3 tRésis, EPFL, Lau-
sanne

Veroy K, Prud’homme C, Rovas DV, Patera AT (2003) A posteégator bounds for
reduced-basis approximation of parametrized noncoeeridenonlinear elliptic
partial differential equations. In: In Proceedings of 184AA computational
fluid dynamics conference, paper 2003-3847



