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Abstract

In this paper, we prove that for any language L of finitely branch-
ing finite and infinite trees, the following properties are equivalent: (1)
L is definable by an existential MSO sentence which is bisimulation in-
variant over graphs, (2) L is definable by a FO-closed existential MSO
sentence which is bisimulation invariant over graphs, (3) L is defin-
able in the nu-level of the modal mu-calculus, (4) L is the projection
of a locally testable tree language and is bisimulation closed, (5) L is
closed in the prefix topology and recognizable by a modal finite tree
automaton, (6) L is recognizable by a modal finite tree automaton of
index zero.

The equivalence between (3), (4), (5) and (6) is known for quite a
long time, although maybe not in such a form, and can be considered
as a classical result. The logical characterization of this class of lan-
guages given by (1) (and (2)) is new. It is an extension of analogous
results over finite structures such as words, trees and grids relating
full existential MSO and definability by finite automata.
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1 Introduction

Classical logical systems such as monadic second-order logic (MSO) often
play, in computer science, the role of basic (assembly-like) languages into
which programs or rather programs’ specifications can be described or trans-
lated. In concurrency, where programs are often modeled as state/transition
systems [14], monadic second-order logic is generally considered as a suffi-
ciently expressive logic. In particular, it subsumes most specification lan-
guages such as LTL, CTL∗ [8] or the modal mu-calculus [12].

However, it is not full monadic second-order logic which is needed in
concurrency. In fact, when specifying properties of programs, one is gen-
erally interested in the behavior of programs rather than in the programs
themselves [14, 8]. As program behaviors can be modeled by infinite trees,
i.e. trees obtained by unraveling program models, it appears that specify-
ing program behaviors amounts to specifying languages of finite and infinite
trees.

In practice, however, when programs are modeled by means of finite state
systems, it is important to check, on the finite models of programs, that their
potential infinite behaviors (their unravelings) are correct w.r.t. a given
specification. In other words, a program specification must define a class of
graphs which is, at least, invariant under unraveling. The peculiar status
of non-determinism even suggests to consider classes of graphs which are
invariant under bisimulation equivalence [14].

This leads to the study of the bisimulation (or counting bisimulation) in-
variant fragment of monadic second-order logic, i.e. the set of MSO sentences
whose classes of models are closed under bisimulation. A first easy obser-
vation is that all specification languages mentioned above are part of this
fragment and, among them, the mu-calculus is the most expressive language.
A result of Walukiewicz and the first author [11] shows that the mu-calculus
is even maximal in this respect, i.e. the bisimulation (resp. counting bisim-
ulation) invariant fragment of monadic second-order logic equals the modal
(resp. the counting) mu-calculus.

Now, among languages of trees definable in the mu-calculus, there are
interesting subclasses or complexity levels. In fact, the alternation depth
of least and greatest fixed point operators in mu-calculus formulas induces
an infinite hierarchy [4]. Then one may ask how this complexity measure
for mu-calculus formulas relates with the alternation depth of existential and

2



universal set quantifiers in MSO formulas. Several correspondences have been
announced in [9]. In this paper, we focus our attention on the first level of the
mu-calculus hierarchy: the nu-level composed of the mu-calculus formulas in
positive normal form built without any least fixed point construction.

More precisely, we prove the following theorem.

Theorem 1.1 For any language L of finitely branching finite and infinite
trees, the following properties are equivalent:

1. L is definable by an existential MSO sentence which is bisimulation
(resp. counting bisimulation) invariant over graphs,

2. L is definable by an FO-closed existential MSO sentence which is bisim-
ulation (resp. counting bisimulation) invariant over graphs,

3. L is definable in the nu-level of the modal (resp. counting) mu-calculus,

4. L is the projection of a locally testable tree language and L is bisimu-
lation closed (resp. counting bisimulation closed),

5. L is closed in the prefix topology and recognizable by a modal (resp.
counting) finite state tree automaton,

6. L is recognizable by a modal (resp. counting) finite state tree automaton
of index zero.

The equivalence between (1) and (6) is a non trivial logical characteriza-
tion of languages of infinite trees recognizable in a naive sense: by means of
finite state automata without any infinitary criterion [20]. Observe that for
finite structures such as finite words, trees or grids, recognizability by finite
state automata is captured by full existential MSO [21].

FO-closed existential MSO mentioned in (2) is obtained from existential
MSO by allowing arbitrary FO quantifiers to be inserted among existential
set quantifiers. This fragment, considered in [13], is interesting because it is
more robust and, over arbitrary graphs, strictly more expressive than exis-
tential MSO. For instance, it is closed under FO transformations. Yet, the
equivalence between (1) and (2) shows that it behaves like existential MSO
as far as bisimulation invariance is concerned. This result contrasts with
the non equivalence observed over trees without the bisimulation invariance
requirement [2].
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The equivalence between (1) and (3) extends van Benthem’s result on FO
and modal logic [3], and refines the result obtained by Walukiewicz and the
first author regarding MSO and full mu-calculus [11].

The equivalence between (3) and (6) is a classical result (see e.g. [10, 22]
for the arguments).

The equivalences between (4), (5) and (6) are easy generalization of known
results in the case of the binary tree (see e.g [15, 19]). Proofs are given here
for technical reasons and for completeness.

Technically, our results are obtained by combining tree automata tech-
niques, model-theoretic tools and topological arguments. Known results
relating monadic second-order logic, fixed point calculi and automata the-
ory [16, 18, 22] are also essential.

Finally, let us stress that in this paper, when we say that a language L of
finitely branching trees is definable by some sentence ϕ, we mean that L is
the set of all finitely branching trees that satisfy ϕ, i.e. apart from invariance
requirement considerations, we do not pay any attention to the other models
(not necessarily trees nor finitely branching) of ϕ.

Organization of the paper

In Section 2, we review the definition of transition systems, simply called
graphs in the sequel, bisimulation and counting bisimulation. We also review
the prefix topology over finitely branching trees, which plays a fundamental
role in our approach.

Section 3 is dedicated to a presentation of monadic second-order logic
(MSO) and modal and counting mu-calculus as fragments of MSO. The no-
tions of bisimulation and counting bisimulation invariant formulas are de-
fined.

In Section 4, an automata-theoretic characterization of these fixed point
calculi is given. Focusing on topologically closed languages of finitely branch-
ing trees, we prove that recognizable languages of finitely branching trees
which are closed in the topological sense are precisely those definable in the
nu-level of the mu-calculus, or recognizable by tree automata of index zero.
This gives the equivalence between (3), (5) and (6) and it shows that (5)
implies (4).

In Section 5, we study bisimulation and counting bisimulation invariance
within existential second-order logic. Using a standard corollary of  Los’ theo-
rem, we prove that bisimulation or counting bisimulation invariant existential
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formulas define languages of finitely branching trees that are closed in the
topological sense. As this applies to the case of both existential MSO and
closed existential MSO, this proves that (1) or (2) imply (5).

This completes the proof of Theorem 1.1 since the implications (4) ⇒ (1)
and (1) ⇒ (2) hold for syntactic reasons.

2 Graphs, trees and tree topology

We review here the definition of transition systems, bisimulation equivalence
and κ-expansion of transition systems which capture in some sense bisimula-
tion equivalence. We also define a notion of counting bisimulation by adding a
“local bijection” constraint to the notion of bisimulation. This new definition
makes statements more uniform: counting bisimulation is the equivalence in-
duced by unraveling as bisimulation is, in a sense, the equivalence induced
by κ-expansions.

Because a transition system is simply a directed graph with a distin-
guished vertex called its root, we use the vocabulary of (directed) rooted
graphs. In order to simplify statements and proofs, we consider only graphs
built over a single binary relation symbol. All the results presented here can
easily be generalized to (finitely) labeled directed graphs, i.e. graphs built
over a finite set of binary relation symbols.

As trees are important when dealing with bisimulation, we also review
some standard notation and definitions of trees. In particular, we recall the
definition of the standard prefix topology over finitely branching trees. It is
one of the main ingredients in the proof of the main result.

2.1 Graphs, bisimulation and trees

Let Pred be a finite set of unary predicate symbols and let E be a binary
relation symbol. A rooted graph, simply called graph in the sequel, is a tuple:

M = 〈V M , rM , EM , {pM}p∈Pred〉

with a set V M of vertices, a root rM ∈ V M , a binary successor relation
EM ⊆ V M × V M and for each p ∈ Pred , a subset pM ⊆ V M . We say that
a vertex v is a successor of u when (u, v) ∈ EM . The set of all successors of
u is denoted by succ(u). We write M ∼= N to mean that the graphs M and
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N are isomorphic. We also use the notation dom(M) for the domain V M of
the graph M .

If u is a vertex of a graph M , the degree of u is the number of its successors.
The degree of a graph M is the supremum (be it finite or infinite) of the
degrees of its vertices. A graph is called finitely branching if every vertex has
finite degree. Observe that a finitely branching graph does not necessarily
have finite degree.

Two graphs M and N are called bisimilar when there exists a relation
R ⊆ V M ×V N , called a bisimulation relation, such that (rM , rN) ∈ R and for
every (u, v) ∈ R and p ∈ Pred , u ∈ pM iff v ∈ pN , and whenever (u, u′) ∈ EM

for some u′, then there exists v′ such that (v, v′) ∈ EN and (u′, v′) ∈ R, and
whenever (v, v′) ∈ EN for some v′, then there exists u′ such that (u, u′) ∈ EM

and (u′, v′) ∈ R.
If, in addition, for each (u, v) ∈ R, R establishes a bijection between

succ(u) and succ(v), then we say that R is a counting bisimulation. In this
case, we say that graph M and N are counting bisimilar.

Given any non zero cardinal κ, a κ-indexed path in M is a non empty
finite or infinite word w ∈ V M .(κ.V M)∗ ∪ V M .(κ.V M)ω such that whenever
w = w1.u.k.u

′.w2 with w1 ∈ (V M .κ)∗, u ∈ V M , k ∈ κ, u′ ∈ V M and
w2 ∈ (κ.V M)∗ ∪ (κ.V M)ω one has (u, u′) ∈ EM . The length |w| of a finite
κ-indexed path w is defined as the number of occurrences of elements of V M

in w, i.e. when w = u0.k1.u1. · · · .kn.un then |w| = n+ 1. In this case, we say
u0 is the source of w, un is the target of w and w is a (κ-indexed) path from
u0 to un.

Observe that when κ = 1, κ-indexed paths are nothing but the usual
(directed) paths in a graph.

Let u and v be vertices of a graph M . We say that v is reachable from
u if there is a path from u to v. Then, the distance d(u, v) from u to v is
defined as |w| − 1 where w is a minimal length path from u to v. In the case
v is not reachable from u, we declare the distance to be infinite.

The reachable part of the graph M , denoted Reach(M), is the graph M
restricted to the vertices reachable from the root. The height of a reachable
vertex is its distance from the root.

Given a integer h, the h-th prefix of M , denoted by Ph(M), is the set of
all vertices with height at most h. Observe that for every graph M we have
Reach(M) =

⋃

h∈IN Ph(M). In the sequel, we also use the notation Ph(M)
for the subgraph of M induced by this set of vertices.
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The κ-expansion T κ(M) of a system M is defined as follows : let V Tκ(M)

be the set of all finite κ-indexed paths of M with source rM , the root
rT

κ(M) equal rM , the relation ETκ(M) be the set of all pairs of the form
(w.u, w.u.k′.u′) ∈ V Tκ(M) × V Tκ(M) with w ∈ (V M .κ)∗, u and u′ ∈ V M and
k′ ∈ κ such that (u, u′) ∈ EM . Moreover, for any p ∈ Prop, let pT

κ(M) be the
set of all κ-indexed paths of the form w.u ∈ V Tκ(M) with w ∈ (V M .κ)∗ and
u ∈ pM .

When κ = 1, the κ-expansion of M , from now on denoted by T (M), is
nothing but what is usually called the unraveling of the graph M from its
root rM . In particular, vertices of T (M) are all the finite paths from the root
rM in M . This notion allows us to define trees in a very simple way: a tree
is a graph isomorphic to its unraveling.

Observe that for every cardinal κ and for every graph M , the κ-expansion
T κ(M) ofM is a tree. It follows that, in particular, Reach(T κ(M)) ∼= T κ(M).

The notion of unraveling (or 1-expansion) is related to counting bisimu-
lation as follows.

Fact 2.1 For any graphsM and N , M and N are counting bisimilar iff their
unravelings T (M) and T (N) are isomorphic.

Proof. This fact follows immediately from the following observations: the
functional relation from V T (M) to V M that maps each finite path to its target
is a counting bisimulation between T (M) and M ; and, over trees, a counting
bisimulation relation is just an isomorphism. ✷

In a quite similar way, the notion of κ-expansion also gives in some sense
canonical representatives of equivalence classes under bisimulation.

Fact 2.2 (see [11]) For any infinite cardinal κ and for any graphs M and
N of cardinality at most κ, M and N are bisimilar iff their κ-expansions
T κ(M) and T κ(N) are isomorphic.

Proof. Let R be a bisimulation relation between M and N and let cardinal
κ be as above. Let R′ be the relation between vertices of both T κ(M) and
T κ(N) that relates any two κ-indexed paths of the same length whose targets
belongs to R. Relation R′ is a bisimulation relation. Moreover, provided κ
is infinite (so that, with the help of the axiom of choice, κ.κ = κ) and big
enough (actually not smaller than the degree of M and N), one can check
that relation R′ can be refined to become the relation of an isomorphism.

7



The converse is immediate since any graph M is bisimilar with its κ-
expansion T κ(M). ✷

The assumption, in Fact 2.2, that κ is infinite is essential. In fact, let M
(resp. N) be the graph defined by a single edge (resp. two edges only) from
the root, with all vertices labeled identically. They are bisimilar (and not
counting bisimilar). However, for any finite cardinal κ distinct from zero,
T κ(M) and T κ(N) are not isomorphic.

2.2 The prefix topology over finitely branching trees

We consider a topology on the set of all finitely branching trees. This topology
is a straightforward generalization of the classical prefix topology on words,
binary trees, or, more generally, k-ary trees, where k is a fixed integer.

Let FBT (Pred) be the class of all finitely branching trees over a finite set
Pred of predicate symbols. We define the prefix topology on FBT (Pred) by
taking as the basic open sets, the sets of the form:

{M ∈ FBT (Pred) | Ph(M) ∼= F},

where h is a positive integer and F is a finite tree. This topology is Hausdorff
as shown by the following lemma.

Lemma 2.3 (Gluing Lemma) LetM and N be two finitely branching trees.
The treesM and N are isomorphic if and only if for infinitely many h, Ph(M)
and Ph(N) are isomorphic.

Proof. The only non-trivial argument which we need to make is to show that
if M and N are infinite and Ph(M) ∼= Ph(N) for infinitely many h (hence for
all h) then M ∼= N . In order to do so, let IM,N be the set of isomorphisms
from Ph(M) to Ph(N), for h ranging over positive integers. The set IM,N

ordered by inclusion forms an infinite finitely branching trees. Hence, by
Koenig’s Lemma, it has an infinite branch which defines an isomorphism
between M and N . ✷

As a curiosity, note that the lemma does not extend to arbitrary trees M
and N . As an example consider for any n, a unary tree Mn with n vertices,
and a unary, infinite tree M∞. Let M be the graph obtained from the disjoint
union of the Mn’s by adding a new root on top of them (hence the root of
M has countably many successors: one per graph Mn). And let N be the
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graph obtained in a similar way from the disjoint union of the Mn’s and M∞.
For any h ∈ ω, both Ph(M) and Ph(N) are trees formed by a copy of Mk

for each k < h, plus countably many copies of Mh. But M and N are not
isomorphic, because N has an infinite branch and M has none.

Observe that the prefix topology can be defined by a metric. In fact,
given two trees M and N , let d(M,N) = 0 when M and N are isomorphic
and d(M,N) = 2−k otherwise where k is the biggest integer such that Pk(M)
and Pk(N) are isomorphic (which exists by the gluing Lemma). The function
d is obviously a metric that defines the prefix topology.

The prefix topology satisfies a weak form of compactness. More precisely,
we define the skeleton of a tree M to be the tree (over zero predicates)
Sk(M) = 〈V M , rM , EM〉, i.e. Sk(M) is the structure obtained from M by
forgetting all unary predicates. Then,

Lemma 2.4 Let (Mn)n∈IN be a sequence in FBT (Pred). If the sequence
{Sk(Mn)}n∈IN has a converging subsequence so does have {Mn}n∈IN .

Proof. Let Mn be such a sequence. Assuming the sequence {Sk(Mn)}n∈IN has
a converging subsequence, let I ⊆ IN be an infinite set such that {Sk(Mn)}n∈I
converges.

By induction, we build a strictly decreasing sequence {Ih}h∈IN of infinite
sets of positive integers such that I0 = I and, for any h > 0, m and n ∈
Ih, Ph(Mn) = Ph(Mm). This enables us to conclude as it implies that the
sequence {Mmin(Ih)}h∈IN converges.

More precisely, assume that, for some h ∈ IN , the finite sequence of
infinite sets I = I0 ⊃ I1 ⊃ · · · ⊃ Ih has already been built.

Since the sequence {Sk(Mn)}n∈I converges, there exists mh ∈ I such that,
for any n ∈ I with n ≥ mh, Ph+1(Sk(Mmh

)) = Ph+1(Sk(Mn)). Now, as there
are finitely many trees in FBT (Pred) with skeleton Ph+1(Sk(Mmh

)) and the
set Ih is infinite, there exists an infinite subset Ih+1 of Ih (which can be chosen
distinct from Ih) such that, for any n and m ∈ Ih+1, Ph+1(Mn) = Ph+1(Mm).
✷

The prefix topology is not compact as shown, for instance, by any se-
quence of trees Mn where the root has degree n which has no converging
subsequence.
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3 Logic and modal or counting mu-calculus

In this section we review the definition of first-order logic (FO) and monadic
second-order logic (MSO), and the counting and modal propositional mu-
calculus [12]. All logics are interpreted over graphs. Any graph M , as defined
above, is a FO-structure on the vocabulary {r, E} ∪ Pred with r a constant
symbol standing for the root, E a binary relation symbol and Pred a set of
unary relation symbols.

3.1 First-order and monadic second-order logic

Let var = {x, y, · · ·} and Var = {X, Y, · · ·} be disjoint sets of, respectively,
first-order and monadic second-order variable symbols.

First-order logic over the vocabulary {r, E} ∪ Pred can be defined as
follows. The set of FO formulas is the smallest set containing the formulas
p(t), t = t′, E(t, t′), X(t) for p ∈ Pred , X ∈ Var and t, t′ ∈ var ∪ {r}, which
is closed under negation ¬, disjunction ∨, conjunction ∧ and existential ∃
and universal ∀ quantifications over FO variables.

The set of monadic second-order (MSO) formulas over the same vocabu-
lary is the smallest set containing all FO formulas and closed under negation
¬, disjunction ∨, conjunction ∧ and existential ∃ and universal ∀ quantifica-
tions over FO and MSO variables.

Existential monadic second-order logic (EMSO) is defined as the set of
all formulas of the form ∃X1 · · · ∃Xnϕ with ϕ some FO formula.

Closed existential monadic second-order logic (CEMSO) is defined as the
set of all formulas of the form θ1x1∃X1 · · · θnxn∃Xnϕ where ϕ is an FO for-
mula, the (θixi)s are finite sequences of FO quantifications. Ajtai et al.
proved that, over finite models, CEMSO is stricly more expressive than
EMSO [13]. Arnold et al. [2] show that the same holds over infinite trees.

We denote by ϕ(x1, · · · , xm, X1, · · · , Xn) an MSO formula ϕ with free first-
order variables among {x1, · · · , xm} and free set variables among {X1, · · · , Xn}.
If M , v1, . . . , vm ∈ V M , and V1, . . . , Vn ⊆ V M , we write

M |= ϕ(v1, · · · , vm, V1, · · · , Vn)

to say that formula ϕ is true in M , or M satisfies ϕ, under the interpretation
mapping each FO variable xi to the vertex vi and each set variable Xj to the
set Vj. This satisfaction relation is defined in the standard way [17, 7].
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A class C of graphs is called MSO definable when there exists a sentence
ϕ ∈ MSO, i.e. an MSO formula with no free variable, such that M ∈ C
iff M |= ϕ. A class C of transition systems is bisimulation closed (resp.
counting bisimulation closed) if whenever M ∈ C and M ′ is bisimilar (resp.
counting bisimilar) to M then M ′ ∈ C. A sentence ϕ is bisimulation invariant
(resp. counting bisimulation invariant) if the class of transition systems it
defines is bisimulation closed (resp. counting bisimulation closed). Observe
that bisimulation invariance implies counting bisimulation invariance since a
counting bisimulation relation is a bisimulation relation.

Remark 3.1 In this paper, we do consider bisimulation invariance over all
models and not only over trees. Observe that in EMSO it makes a difference.
In fact, bisimulation invariance over trees only is a less restrictive notion
than bisimulation invariance over arbitrary graphs. For instance, the (even
FO !) formula ∃xp(x) is bisimulation invariant over trees while it is equiva-
lent to no bisimulation invariant formula over graphs in EMSO. In fact, the
bisimulation closed class of graph which contains, as trees, the class of trees
that satisfy ∃xp(x), can be defined by the formula ∃x ∈ Reach(r) ∧ p(x). It
is however not definable in EMSO.

With more expressive languages such as full monadic second-order logic,
this distinction is no longer needed since bisimulation invariance over trees
only or bisimulation invariance over arbitrary graphs coincide in terms of
resulting expressive power (see [11] and [9] for more details).

Though in this paper, we are mainly interested in monadic second-order
logic, it will be useful to consider also full second order, possibly non-monadic,
formulas. The difference with monadic second-order logic is that we are now
given second-order variables Rk, . . ., ranging over relations between vertices,
of any finite nonzero arity k, . . . (when k = 1 we have just sets of vertices,
like in the monadic case); here the additional atomic formulas will have the
form Rk(t1, . . . , tk), where t1, . . . , tk are first-order variables or constants.

3.2 Modal and counting mu-calculus

The set of the modal µ-calculus formulas is the smallest set containing Pred∪
Var which is closed under negation, disjunction and the following formation
rules:

• if α is a formula then ✸α and ✷α are formulas,
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• if α is a formula and X occurs only positively (i.e. under an even
number of negations) in α then µX.α and νX.α are formulas.

The set of counting µ-calculus formulas is defined as above replacing standard
modalities ✸ and ✷ by counting modalities ✸k and ✷k for any integer k.

A formula ϕ is said in positive normal form when negation only applies
to atomic sub-formulas, i.e. constant or variable predicates of Pred ∪ Var .

We use the same convention as for MSO with free variables, i.e. we de-
note by α(X1, · · · , Xn) a formula with free variables among {X1, · · · , Xn}.
For convenience, we may also omit these free set variables in formula α con-
sidering implicitly that graphs have been built over the set of unary predicate
symbols Pred ′ = Pred ∪ {X1, · · · , Xn}. In the sequel, we call fixed point for-
mula any formula of the modal or counting µ-calculus.

With each fixed point formula α, we associate an unary MSO predicate
ϕα(x) with the same free variables (implicitly added to the vocabulary) de-
fined as follows. Let p ∈ Pred, α and β be fixed point formulas, X be a set
variable, x and z be FO variables, and z = (z1, · · · , zk) be a k-tuple of FO
variables.

• Atomic formulas :
ϕp(x) = p(x) and ϕX = X(x),

• Boolean connectives :
ϕα∧β(x) = ϕα(x) ∧ ϕβ(x), ϕα∨β(x) = ϕα(x) ∨ ϕβ(x)
and ϕ¬α(x) = ¬ϕα(x)

• Modalities :
ϕ✸α(x) = ∃z E(x, z) ∧ ϕα(z),
ϕ✷α(x) = ∀z (E(x, z) ⇒ ϕα(z))

• Counting modalities :
ϕ✷kα(x) = ∀z ((diff(z) ∧

∧

i∈[1,k]E(x, zi)) ⇒
∨

i∈[1,k] ϕα(zi)),
ϕ✸kα(x) = ∃z diff(z) ∧

∧

i∈[1,k]E(x, zi) ∧ ϕα(zi),

• Fixed points :
ϕµX.α(X)(x) = ∀X((ϕα(X) ⊆ X) ⇒ X(x)),
ϕνX.α(X)(x) = ∃X(X ⊆ ϕα(X)) ∧X(x).
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There, diff(z) is the quantifier-free FO formula stating that zi 6= zj for all
i 6= j, ϕα(X) ⊆ X is the MSO formula ∀z(ϕα(X)(z) ⇒ X(z)), and, similarly,
X ⊆ ϕα(X) is the MSO formula ∀z(X(x) ⇒ ϕα(X)(z)).

For any fixed point formula α, we write M |= α when M |= ϕα(r). We
say that an MSO sentence ϕ is equivalent to a fixed point formula α when
|= ϕα(r) ⇔ ϕ. Likewise, two fixed point formulas α and β are said to be
equivalent when |= ϕα(r) ⇔ ϕβ(r).

Fact 3.2 Any fixed point formula is equivalent to a fixed point formula in
positive normal form.

In the sequel, we will assume (often implicitly) that the formulas we are
dealing with, are in positive normal form.

Observe that modalities ✸ and ✸1 on the one hand, and modalities ✷ and
✷1 on the other hand, have equal meaning. So the counting mu-calculus is
an extension of the modal mu-calculus. This extension is proper. In fact, it
is an easy exercise to show that, for instance, predicate ✸2p is not definable
in the modal mu-calculus.

As is well known, the interpretation over a graph M of the predicate
defined by µX.α(X) (resp. νX.α(X)) is the least (resp. the greatest) solution
of (the interpretation over dom(M) of) the set equation defined by X =
α(X).

Further analysis of the basic properties of the modal (resp. the count-
ing) fixed point calculus shows that it does not distinguish bisimilar (resp.
counting bisimilar) models.

Fact 3.3 (Folklore) For any modal (resp. counting) fixed point formula α,
formula ϕα(r) is bisimulation invariant (resp. counting bisimulation invari-
ant).

In particular, since any graph M is bisimilar (or even counting bisimilar)
to its reachable part Reach(M), the truth of a fixed point formula in the
root r of a given graph M only depends on the subgraph induced by the set
Reach(M) of all vertices reachable from the root rM .

The following theorem shows that the bisimulation invariance (resp. count-
ing bisimulation invariance) not only holds but even characterizes modal
(resp. counting) fixed point calculi as fragments of MSO. In fact:
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Theorem 3.4 (from Walukiewicz [22]) An MSO sentence is invariant
under counting bisimulation iff it is equivalent to some counting mu-calculus
formula.

Remark 3.5 To be precise, the counting mu-calculus is not mentioned in
Walukiewicz’s paper. What is proved there is rather the equivalence, over
arbitrary trees, between MSO sentences and counting automata as defined
in the next section (see Theorem 4.2). But it is an easy exercise to check
that transition specifications in counting automata can be defined by counting
modalities (see for instance Courcelle’s remarks on MSO over amorphous
sets [6]). Then usual techniques, as described for instance in [10] apply, to
translate counting automata to equivalent counting mu-calculus formulas.

Theorem 3.6 (Janin-Walukiewicz [11]) An MSO sentence is invariant
under bisimulation iff it is equivalent to some modal mu-calculus formula.

Finally, let us mention that alternation of least and greatest fixed point
constructions induces a hierarchy in modal or counting mu-calculus. In the
modal case it has been proven infinite by Bradfield [4]. A similar result by
Arnold [1] shows it is infinite as well in the counting case.

Actually, Arnold’s result is stated for the modal mu-calculus on the binary
tree. But this implies the more general statement above, as both counting
and modal mu-calculus are equivalent on the binary tree, and the binary
tree itself is definable in the counting mu-calculus by a formula with greatest
fixed point constructions only.

In this paper, we are mainly interested in the first level of the counting
and the modal mu-calculus hierarchy: the set of fixed point formulas, in
positive normal form, defined with greatest fixed point operator only. For
this reason, in the sequel, this level is called the nu-level.

4 Tree automata

We review here a notion of tree automata that characterizes the expressive
power of the counting and modal mu-calculus [10, 22]. Our aim in this
section is to obtain an automata-theoretic (and mu-calculus) characterization
of topologically closed languages of finitely branching trees.
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4.1 Infinite tree automata

Before defining the notion of tree automata, we need to specify sets of for-
mulas which are used to specify tree automata transitions. Given a finite set
Q = {q0, q1, · · · , qn} of unary predicate symbols, let CNT (Q) be the set of
finite disjunctions of FO-formulas of the form

∃x1, . . . , xk.diff(x1, . . . , xk)∧
∧

i∈{1,···,k}

qji(xi)∧



∀z.diff(z, x1, . . . , xk) ⇒
∨

j∈J

qj(z)





where j1, . . . , jk ∈ {0, · · · , n}, J ⊆ {0, · · · , n}. Let also MDL(Q) be the set
of finite disjunctions of FO-formulas of the form

∃x1, . . . , xk.
∧

i∈{1,···,k}

qji(xi) ∧ ∀z.
∨

j∈J

qj(z)

with the same notation as above.

A counting (resp. modal) tree automaton with parity conditions is defined
as a tuple :

A = 〈Q,Σ, q0,Ω, δ〉

with Q a finite set of states, q0 ∈ Q an initial state, Ω : Q → IN a priority
function, and δ : Q × Σ → CNT (Q) (resp. δ : Q × Σ → MDL(Q)) a
counting (resp. modal) transition specification function.

The index of the automaton A is defined as max(Ω(Q)). As Q is finite,
this is well defined.

In the sequel, the alphabet Σ is defined as the powerset P(Pred). The
intuition behind this is that a vertex v in a tree M is labeled by the letter
λ(v) = {p ∈ Pred : v ∈ pM} which belongs to Σ.

We can put automata to work, in such a way that they recognize languages
of trees. If one is interested in defining these notions over arbitrary graphs
instead of trees, the most convenient way of defining the notion of runs and
accepting runs is probably by means of games [22]. We use here an equivalent,
yet more direct, definition for trees.

Given an automaton A = 〈Q,Σ, q0,Ω, δ〉 and a tree M , a run of A over
M is defined as a mapping ρ : V M → Q such that:

1. ρ(rM) = q0,
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2. for each v ∈ V M , given succ(v) the set of immediate successors of node
v, given mρ,v = 〈succ(v), ρ−1〉 the FO-structure over the vocabulary Q
induced by this set and the run function ρ−1 (by interpreting any state
q by the set qmρ,v = ρ−1(q) ∩ succ(v)), we have mρ,v |= δ(q, λ(v)).

A run ρ is said to be accepting when, moreover,

3. for any infinite path v0.v1.v2. · · · of M , the least priority occurring in-
finitely often in the sequence Ω(ρ(v0)).Ω(ρ(v1)).Ω(ρ(v2)). · · · is even.

The language of trees L(A) accepted, or recognized, by the automaton A is
defined as follows.

1. If A is a counting automaton then L(A) is the set of all trees M such
that there exists an accepting run ρ of A over M .

2. If A is a modal automaton with κ states then L(A) is the set of all trees
M such that there exists an accepting run ρ of A over T κ(M), i.e. over
the κ-expansion of the tree M .

Remark 4.1 When A is a modal automaton, the “shift” to the κ-expansion
in the definition of L(A) ensures that L(A) is, indeed, closed under bisimula-
tion equivalence. Without this “shift” to κ-expansions, the language defined
by a modal automaton may be not bisimulation closed. Intuitively, it pre-
vents automaton A from counting successors as illustrated by the following
example.

Let A = 〈{q0, q1}, {a}, q0,Ω, δ〉 where, for i = 0 or 1, Ω(qi) = 0 and
δ(qi, a) = ∃x0 x1 (q0(x0) ∧ q1(x1)). One can check that modal automaton A
has an accepting run on the a-labeled binary tree. But it has no run on the
a-labeled unary tree allthough this unary tree is bisimilar to the binary tree.

With these notions of modal and counting automata, we have:

Theorem 4.2 ([10] and [22]) Let Σ be a finite alphabet, for any languages
L of Σ-labeled trees the following properties are equivalent :

1. L is definable in MSO (resp. in bisimulation invariant MSO),

2. L is definable in counting mu-calculus (resp. in modal mu-calculus),

3. L is recognized by a counting automaton (resp. a modal automaton).
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Moreover, L is definable in the nu-level of counting (resp. modal) mu-calculus
if and only if it is recognized by a counting (resp. modal) automaton of index
zero.

In particular, this gives the equivalence between (3) and (6) in Theo-
rem 1.1.

4.2 More on recognizable closed languages

Here, we consider the languages of trees which are closed in the topological
sense. We prove that the languages of finitely branching trees accepted by
modal or counting automata that are closed in the topological sense, are
exactly those definable by means of (counting or modal) fixed point formulas
of the nu-level.

The following lemma asserts that the restriction to finitely branching trees
is harmless, in the sense that recognizable languages are characterized by the
finitely branching trees they contain.

Lemma 4.3 (Finitely branching lemma [18]) Two recognizable langua-
ges of trees are equal if and only if they contain the same set of finitely
branching trees.

The first step in the proof of Theorem 1.1 is then given by the following
statement.

Proposition 4.4 For any MSO-definable language L of finitely branching
Σ-labeled trees, the following properties are equivalent:

1. L is closed in the prefix topology (resp. closed in the prefix topology and
closed under bisimulation),

2. L is recognized by a counting (resp. modal) automaton of index zero.

Proof. Let L be an MSO-definable language. Applying Theorem 4.2, there is
a modal or counting (depending on whether L is bisimulation closed or not)
automaton A = 〈Q,Σ, q0,Ω, δ〉 such that L = L(A).

Without loss of generality, we may assume that any state q ∈ Q is pro-
ductive, i.e. for any state q there is at least one tree which is recognized
from this state. We may also assume that any transition is productive, i.e.
for any state q, any a ∈ Σ such that δ(q, a) is satisfiable, there is at least
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one (finitely branching) tree Tq,a such that the root of Tq,a is labeled by a
and there exists an accepting run of A with initial state q instead of q0 over
the tree Tq,a. Since non-productive states or transitions cannot occur in an
accepting run, all such states or transitions can be deleted from A without
altering the accepted language L(A).

Let then A = 〈Q,Σ, q0, 0, δ〉 be the automaton obtained from A just
replacing the priority function Ω with the constant function 0.

To prove the equivalence, it is sufficient to prove that (over finitely branch-
ing trees) L(A) is the topological closure L(A) of L(A).

We prove first that L(A) is closed. As the prefix topology can be defined
by a metric, it is sufficient to show that if {Mn}n∈IN is a sequence of trees in
L(A) which converges to a tree M then M ∈ L(A).

For each n ∈ IN , let ρn be an accepting run of A over Mn. Considering
the sequence {〈Mn, ρn〉}n∈IN of P(Pred ∪ Q)-labeled trees, we know that its
induced skeleton sequence converges (since {Mn}n∈IN converges). Applying
Lemma 2.4 shows that it has a converging subsequence. The limit of that
subsequence must be of the form 〈M, ρ〉 where M is the limit of {Mn}n∈IN
and ρ is a run of A over M . Now, as A is of index zero, the run ρ is accepting
hence M ∈ L(A).

To continue the proof, we observe that the inclusion L(A) ⊆ L(A) is
immediate as L(A) ⊆ L(A) and L(A) is closed. It remains thus to show that
L(A) ⊆ L(A).

Let now M be a finitely branching tree in L(A) and let ρ be an accepting
run of A over M . It is sufficient to show that there is a sequence {Mn}n∈IN
of (finitely branching) trees in L(A) which converges to M . For each n ∈ IN ,
let us define Mn as the tree obtained from the finite tree Pn(M) by attaching,
under each leaf v of Pn(M), the tree Tρ(v),λ(v) (with a root labeled λ(v) and
accepted by the automaton A from the initial state ρ(v)).

By construction, each treeMn belongs to L(A) and the sequence (Mn)n∈IN
converges to M which concludes the proof.

Strictly speaking, in the case where A is a modal automaton, we must
consider in this proof runs over the κ-expansions T κ(Mn) of the Mns for
κ = |Q| instead of runs on the Mns themselves. However, this makes no
difference in the argument as the κ-expansion permutes with limits. ✷

This proposition gives the equivalence between (5) and (6) in Theo-
rem 1.1. In the binary case, a very similar result is obtained by Mostowski [15].
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Observe that, as a consequence of this proposition, we also have:

Corollary 4.5 Any MSO-definable language of trees which is closed in the
prefix topology is definable by means of an MS formula of the form

∃XX0(r) ∧ ∀xϕα(x,X)

where X0 is one of the variables occurring in X, and α(X) is a depth one
counting formula.

Proof. Let L be an MSO-definable language of trees closed in the prefix
topology. Applying Proposition 4.4, let A be a counting (or modal) automa-
ton of rank 0 recognizing this language. The formula of the desired form is
then obtained as follows. It expresses the existence of an accepting run of
automaton A with each variable Xq (one per state q) in X encoding the set of
vertices labeled by state q (with X0 encoding the intial state) and ϕα(x,X)
describing the (local) transition specification. ✷

Following the standard terminology [20], this corollary can be restated
as follows : closed MSO definable languages of infinite trees are projection
of locally testable languages of trees. Here, by localy testable, we mean
languages that are defined by universaly quantified local FO-formulas.

The corollary 4.5 proves that both (5) or (6) imply (4) in Theorem 1.1.

5 Bisimulation invariance in existential MSO

In this section, we conclude the proof of Theorem 1.1 by proving that lan-
guage of finitely branching trees defined by bisimulation (resp. counting
bisimulation) invariant formulas of EMSO (1) or CEMSO (2) are recogniz-
able and closed in the prefix topology (5).

In order to do so, we prove in Section 5.1, by applying  Los Theorem to
existential second-order logic (ESO), that classes of graphs definable in ESO
are closed under ultraproduct. In Section 5.2 we prove that the ultraproduct
of any converging sequence of finitely branching trees is counting bisimilar
with its limit. And in Section 5.3 we apply this result to EMSO and CEMSO
as both are fragments of ESO.
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5.1 Ultraproducts and existential second-order logic

Let I be a set. An ultrafilter over I is a set U ⊆ P(I) of subsets of I such that
I ∈ U , ∅ /∈ U , and U is closed under the following rules: for any A and B ⊆ I,
if A ∈ U and A ⊆ B then B ∈ U ; if A and B ∈ U then A∩B in U ; and either
A ∈ U or I \ A ∈ U . An ultrafilter U is principal if it contains a finite set,
and non-principal otherwise. Observe that a non-principal ultrafilter over I
contains all co-finite subsets of I.

With the help of the axiom of choice (or the Zorn Lemma) one can
prove [5] that if I is an infinite set then there is a non-principal ultrafilter
over I.

Assuming I is an infinite set, let U be an ultrafilter over I, and let {Mi}i∈I
be an I-indexed collection of FO-structures over some relational vocabulary
τ . The ultraproduct ΠU

i Mi of {Mi}i∈I modulo U is defined as the quotient
of the product structure ΠiMi under the congruence ≃U defined, for any u
and v ∈ dom(ΠiMi) by u ≃U v when the set {i ∈ I : ui = vi} belongs to U .
This construction is motivated by the following theorem.

Theorem 5.1 ( Los) For any FO sentence ϕ over the vocabulary τ , ΠU
i Mi

is a model of ϕ if and only if {i ∈ I : Mi |= ϕ} belongs to U .

As this holds for an arbitrary vocabulary τ , it leads to the following corollary.

Corollary 5.2 For any formula ϕ of existential second-order logic on the
vocabulary τ , if {i ∈ I : Mi |= ϕ} ∈ U then ΠU

i Mi |= ϕ.

Proof. By standard syntactic arguments, we can always assume ϕ is of the
form ∃Rψ(R) with ψ(R) a FO formula over the vocabulary τ ∪{R}. For each
i ∈ I, let Ri be any interpretation of R over dom(Mi) such that Mi |= ψ(Ri)
if and only if Mi |= ∃Rψ(R). Assuming that {i ∈ I : Mi |= ∃Rψ} belongs
to U and considering ψ (resp. {〈Mi, Ri〉}i∈I) as a FO sentence (resp. an
indexed collection of FO-structures) over the vocabulary τ∪{R},  Los theorem
can be applied to show that the ultraproduct ΠU

i 〈Mi, Ri〉 satisfies ψ(R). It
follows that, given RU the congruence closure of ΠiRi, by definition of an
ultraproduct, ΠU

i Mi |= ψ(RU) and hence ΠU
i Mi |= ∃Rψ(R). ✷

5.2 Ultraproducts of converging sequences and limits

Lemma 5.3 Let {Mn}n∈IN be a sequence of finitely branching Σ-labeled trees.
Assume that {Mn}n∈IN converges to a limit M ∈ FBT (Pred). Let U be a
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non-principal ultrafilter over IN . The two structures M and Reach(ΠU
nMn)

are isomorphic.

Proof. Let h be a strictly positive integer. We show that Ph(M) and
Ph(ΠU

nMn) are isomorphic.
Since M is the limit of {Mn}n∈IN , there is a number nh such that, for

every n ≥ nh, Ph(Mn) and Ph(M) are isomorphic. As Ph(M) is finite, there
is also a FO formula ϕh such that, given any model N , N |= ϕh if and only if
Ph(N) is isomorphic with Ph(M). Then, as U is non-principal, the co-finite
set {n ∈ IN : Mn |= ϕh} belongs to U . By applying  Los’ Theorem, we get
ΠU

nMn |= ϕh, and hence Ph(ΠU
nMn) |= ϕh, so it is isomorphic to Ph(M).

Since this holds for arbitrary h > 0, this implies in particular that
Reach(ΠU

nMn) =
⋃

h Ph(ΠU
nMn) is finitely branching and thus, the result

now follows from Lemma 2.3. ✷

5.3 Applications to bisimulation invariance

As EMSO and CEMSO are both fragments of MSO, we have:

Lemma 5.4 Let L be a language of finitely branching trees definable by a
bisimulation or counting bisimulation invariant EMSO or CEMSO sentence.
Then L is both recognizable and topologically closed.

Proof. As bisimulation invariance implies counting bisimulation invariance,
we only need to prove this Lemma for counting bisimulation invariant sen-
tences.

Let ϕ be a EMSO or CEMSO counting bisimulation invariant sentence.
Let L be the class of (finitely branching) trees that satisfy ϕ. Since both
EMSO and CEMSO are fragments of MSO, L is recognizable by Theorem 4.2.

Now, let {Mn}n∈IN be a sequences of finitely branching trees in L that
converges towards a finitely branching tree M . In order to conclude the
proof, we have to show that M ∈ L.

In order to do so, let U be a non principal ultrafilter over IN , and let
N be the ultraproduct ΠU

nMn. By Corollary 5.2 the class of models of ϕ is
closed under ultraproduct so N satisfies ϕ. By Lemma 5.3, we also have that
the limit M of limit of {Mn}n∈IN is isomorphic to Reach(N) hence counting
bisimilar to N . Now, since ϕ is counting bisimulation invariant, this shows
that M |= ϕ, that is, M ∈ L. ✷
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In other words, Lemma 5.4 proves that both (1) or (2) imply (5) in
Theorem 1.1. As the implications from (4) to (1) and (1) to (2) are immediate
for syntactic reasons, this concludes the proof of our main Theorem.
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