Paramagnetic dithiolene complexes as metallo-ligands: ether/thioether coordination.
Alessia Famengo, Dalice Pinero, Olivier Jeannin, Thierry Guizouarn, Marc Fourmigué

To cite this version:
Paramagnetic dithiolene complexes as metallo-ligands: ether/thioether coordination†

Alessia Famengo, a,b Dalice Pinero, a Olivier Jeannin, a,* Thierry Guizouarn a and Marc Fourmigué a

Received 25th October 2011, Accepted 15th November 2011
DOI: 10.1039/c1dt12028j

The secondary coordination ability of a paramagnetic nickel dithiolene complex, bearing an ether coordinating function within a nine-membered flexible ring, has been demonstrated in its [NiCl(DMF)] + complex, through coordination by both ether and thioether functions, allowing for a ferromagnetic interaction between both paramagnetic entities.

Paramagnetic metal dithiolene complexes afford a wide variety of structures with associated conducting and magnetic properties. The most common magnetic species are, either the d9 nickel complexes, or [M(dithiolene)2]2− copper complexes, or the oxidized, formally d7 (S = ½) [M(dithiolene)]− (M = Ni, Pd, Pt) anionic complexes, and the gold neutral complexes [Au(dithiolene)]+. The magnetic properties of these salts are essentially controlled by the overlap interactions between radical species, from weak interactions favoring localized magnetic states within dimers or spin chains, to stronger interactions allowing for metallic conductivity.

Besides, as recently reviewed, paramagnetic dithiolene complexes can also be considered as metallo-ligand toward other metallic centres for the elaboration of more complex architectures. For example, complexes such as [M(mnt)]2−, or [M(tfadt)]2−, form heterobimetallic chains through metal–nitrogen coordination, with MnII porphyrins, [Ni(cyclam)]2−, or polymetallic complexes such as [Mn3(hmp)3(CH3CN)3]5+ (hmp: 2-hydroxymethylpyridine). Other examples of nitrogen coordination can be also found in fused pyrazine or in 4-pyridyl derivatives.

On the other hand, complexes with oxygen-based coordinating functions are essentially limited to the chelating dithiooxalate (dto) and dithiosquarate (dts) ligands. Because of the strongly electron-withdrawing nature of the carbonyl groups, both ligands only stabilize the most reduced dianionic forms of the dithiolene complexes, the diamagnetic [Ni(dto)]2− or the paramagnetic d6 (S = ½)[Cu(dto)]2−. Looking for alternative substitution patterns that would allow the use of the monoanionic, formally d5, S = ½ [Ni(dithiolene)]− complexes while keeping oxygen atoms for secondary coordination, we considered the unknown monoanionic nickel complex 1 where a –(CH2)3−O–(CH2)3− flexible moiety is directly linked to the outer sulfur atoms.

Such a complex can potentially coordinate extra metal cations through combined coordination of the ether and thioether functions, with the latter taking part to the spin density distribution of the dithiolene complex. Note that this coordination function has been considered on analogous tetrathiafulvalene derivatives such as 2 only for alkali cations, while coordination to paramagnetic metallic cations was never investigated.

We describe here the synthesis of the paramagnetic (S = ½) nickel complex 1, isolated as a tetrabutyl ammonium salt. Further reaction with nickel salts afforded a first example of coordination to an octahedral nickel dication through the combined ether and thioether moieties to afford a bimetallic (S = 1, S = ½) complex demonstrating the potential of such dithiolene complexes to act as metalloligands.

The preparation of the nickel complex (Scheme 1) relies on the base opening of the dithiocarbonate 3b obtained itself from the trithiocarbonate 3a. Addition of half equiv. of NiCl2 afforded directly (air oxidation) the monoanionic complex as a DMF
solvent, (nBu₄N⁺)(I⁻)-DMF. It reduces reversibly to the dianion at −0.66 V vs. SCE, while it oxidizes reversibly to the neutral complex at +0.32 V vs. SCE. Further irreversible oxidation to the cationic state is found at 1.16 V vs. SCE.

Note that during our attempts to coordinate I⁻ with Fe³⁺ salts, a few crystals of the oxidized neutral complex I⁰ were obtained instead, allowing for a comparison of the intramolecular bond distances within the dithiolene core in the two redox states, I⁻ and I⁰.

Investigation of the secondary coordination of the I⁻ radical anions was performed with two Ni²⁺ different salts, Ni(ClO₄)₂ and NiCl₂. With the former, an insoluble product was first obtained. Redissolution in DMF and Et₂O layering afforded a bimetallic nickel salt, which analyzes as [Ni(DMF)₆]⁺, that is two radical anion complexes for one Ni²⁺ cation solvated with six DMF molecules. On the other hand, with NiCl₂, another salt was obtained, which analyzes as [NiCl(DMF)]⁺[2DMF,Et₂O], where direct coordination of the dithiolene complex to the outer Ni²⁺ species is actually observed.

The I⁻ dithiolene complex in the two salts with nBu₄N⁺ and [Ni(DMF)₆]⁺, as well as in its neutral state, adopts a common geometry of the nine-membered ring (Fig. 1), with the oxygen atom pointing toward the centre of the molecule. Comparison of the intramolecular bond distances with those found in the oxidized I⁰ (Table 1) shows the anticipated evolutions, with the shortening of the Ni–S and S–C bonds, of antibonding character in the SOMO of such dithiolene radical anions, combined with the lengthening of the C=C bond, associated with its bonding character in the dithiolene SOMO.

Table 1 Comparison of intramolecular bond lengths within the Ni₆C₇ metallacycle in I⁻ in various salts and in I⁰

<table>
<thead>
<tr>
<th>Compound Counter ion</th>
<th>Ni–S (Å)</th>
<th>S–C (Å)</th>
<th>C=C (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I⁻</td>
<td>nBu₄N⁺</td>
<td>2.1492(9)</td>
<td>1.734(4)</td>
</tr>
<tr>
<td>I⁰</td>
<td></td>
<td>2.1500(8)</td>
<td>1.742(3)</td>
</tr>
<tr>
<td>I⁻</td>
<td>Ni(DFM)₆⁺</td>
<td>2.1309(4)</td>
<td>1.710(2)</td>
</tr>
<tr>
<td>I⁻</td>
<td>NiCl(DMF)⁺</td>
<td>2.1345(5)</td>
<td>1.707(2)</td>
</tr>
<tr>
<td>I⁻</td>
<td>Ni(CI(DMF))₂⁺</td>
<td>2.164(2)</td>
<td>1.736(4)</td>
</tr>
<tr>
<td>I⁻</td>
<td>NiCl(DMF)⁺</td>
<td>2.149(2)</td>
<td>1.741(4)</td>
</tr>
</tbody>
</table>

The temperature dependence of the magnetic susceptibility of [Ni(DMF)₆]⁺(I⁻), (Fig. 2a) shows a Curie–Weiss type behavior, with a Curie constant of 2.00(1) K cm³ mol⁻¹, (and θ = −0.33(1) K), corresponding to the contribution of two I⁻ radical anions (S = 1/2), without interaction with the [Ni(DMF)₆]⁺ species in octahedral environment (S = 1). EPR determination of the g value of I in its tetrabutyl ammonium salt gives gₓ = 2.069. It follows that the g value for the [Ni(DMF)₆]⁺ species amounts here to gₓ = 2.188, a value comparable to that usually observed for Ni(II) centres in an octahedral coordination sphere.¹⁰

![Fig. 1: Ortep view of the I⁻ radical anion in (nBu₄N)(I)-DMF](image)

![Fig. 2: Temperature dependence of the χT product for (a) [Ni(DMF)₆]⁺(I⁻) and (b) [Ni(Cl(DMF))₂⁺](I⁻)](image)

When the I⁻ tetrabutyl ammonium salt was faced with NiCl₂ rather than Ni(ClO₄)₂, another salt was obtained, which analyzes as [NiCl(DMF)]⁺[2DMF,Et₂O]. As shown in Fig. 3, a cationic [NiCl(DMF)]⁺ moiety is now coordinated to the I⁻ radical anion, with the coordination sphere of the NiCl(DMF)⁺ cation completed by the two sulfur atoms and the oxygen atom of the dithiolene fragment.

This salt provides the first example of coordination of such ether/thioether substituted dithiolene complexes with paramagnetic cations. The Ni²⁺ cation is in an octahedral environment. Bond distances within the dithiolene metallacycles (Table 1) confirm the radical anion character, with a very weak disymmetry due to the NiCl⁺ coordination. Note also that the recurrent conformation adopted by the flexible –(CH₂)₃–O–(CH₂)₃– arm in the other complexes (Fig. 1) is modified here to allow for the Ni²⁺ coordination with both the ether oxygen atom and the two thioether functions. Temperature dependence of χT (Fig. 2b),

![Scheme 1: Syntheses and structures of the complexes.](image)
measured on a compressed polycrystalline sample, gives a room temperature value of 1.6 K cm⁻³ mol⁻¹, corresponding to the combined contributions of 1⁻ (S = ½) and octahedral Ni²⁺ (S = 1 with gₙ ≈ 2.19). The χT product increases up to a maximum of 1.67 at 25 K before decreasing sharply, indicating the presence of a ferromagnetic interaction between the two centres. The isorropic interaction between S = 1 and S = ½ magnetic centres,²⁰ gives two S = ½ and S = 3/2 states, separated by 3J/2 for an Hamiltonian that writes as H = -JSₜS₂. The g values for the corresponding doubled and quartet states write as g₁/₂ = (4gₙ -> g₁)/3 and g₃/₂ = (2gₙ + g₁)/3 and an approximate expression of the magnetic susceptibility χₜₐₙ of such dimers is then given by:²⁰

\[\chi_{\text{dim}} = \frac{N \beta^2 g_{\text{eff}}^2 + 10g_{\text{eff}}^2 \exp(3J/2kT)}{4kT} \left[1 + 2 \exp(3J/2kT) \right] \]

with here g₁/₂ = 2.23 and g₃/₂ = 2.15. In order to take also into account the decrease of susceptibility observed at lower temperatures, we have introduced a mean-field correction in the expression of the susceptibility, which writes as:

\[\chi = \frac{\chi_{\text{dim}}}{1 - \frac{zJ}{N \gamma^2 \beta^2 \chi_{\text{dim}}}} \]

Best fit gives J/k = +10 cm⁻¹ and J’ = -0.6 cm⁻¹ (z = 4) and demonstrates that the direct coordination of the paramagnetic (S = 1) NiCl moiety through the combined ether and thioether functions allows for a sizeable ferromagnetic interaction with the dithiolene radical anion complex, through the coordination to its outer sulfur atoms. Note that this S = 3/2 ground state expected from the ferromagnetic coupling of the S = 1 and S = 1/2 spin states of the Ni ion and the complex 1 should present a ZFS that could also explain the sharp decrease in the χT plot at low temperatures.

We are currently investigating other cations and crystallization media in order to favor the formation of extended chains, where a central metal atom would adopt a similar octahedral coordination but formed by two such ether/bis(thioether) functions.

Acknowledgements

Financial support for this project was obtained from the ANR (Paris) under contract no. ANR-09-BLAN-0175-03. We thank L. Piekara-Sady (Poznan, Poland) for EPR measurements and one of the referees for useful comments on magnetic properties.

Notes and references