Approximating Class Approach for Empirical Processes of Dependent Sequences Indexed by Functions

Abstract : We study weak convergence of empirical processes of dependent data $(X_i)_{i\geq 0}$, indexed by classes of functions. Our results are especially suitable for data arising from dynamical systems and Markov chains, where the central limit theorem for partial sums of observables is commonly derived via the spectral gap technique. We are specifically interested in situations where the index class $\F$ is different from the class of functions $f$ for which we have good properties of the observables $(f(X_i))_{i\geq 0}$. We introduce a new bracketing number to measure the size of the index class $\F$ which fits this setting. Our results apply to the empirical process of data $(X_i)_{i\geq 0}$ satisfying a multiple mixing condition. This includes dynamical systems and Markov chains, if the Perron-Frobenius operator or the Markov operator has a spectral gap, but also extends beyond this class, e.g.\ to ergodic torus automorphisms.
Type de document :
Article dans une revue
Bernoulli, Bernoulli Society for Mathematical Statistics and Probability, 2014, 20 (3), pp.1372-1403. 〈10.3150/13-BEJ525〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00659073
Contributeur : Olivier Durieu <>
Soumis le : jeudi 12 janvier 2012 - 09:42:08
Dernière modification le : mercredi 27 juillet 2016 - 14:48:48

Identifiants

Collections

Citation

Herold Dehling, Olivier Durieu, Marco Tusche. Approximating Class Approach for Empirical Processes of Dependent Sequences Indexed by Functions. Bernoulli, Bernoulli Society for Mathematical Statistics and Probability, 2014, 20 (3), pp.1372-1403. 〈10.3150/13-BEJ525〉. 〈hal-00659073〉

Partager

Métriques

Consultations de la notice

219