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equation of a random walk among the sites 1, j:
d
Eni(t) == Z tij(ni(t) —n (), (2)
J

where n;(t) give the odds for the walker to be at ¢ at time ¢ and ¢;; = t(r;;) is the
hopping probability per unit time. Eq. (2) describes e.g. the motion of electrons
hopping among shallow impurities in a semiconductor [8, 9, 11, 12]. Such a ran-
dom walk is known [10] to exhibit a long-time tail of the velocity-autocorrelation
function (VAF) varying as Z(t) o« t(4+2)/2 for t — oo [10, 13], a feature shared
with Lorentz models [13-15]. In fact, the Laplace transform of the VAF is the
frequency-dependent diffusivity D(z = iw + €), which has, according to the Taube-
rian theorems [16] a low-frequency singularity D(z) — z%2 |z| — 0. Now, in
the analogous vibrational problem this quantity corresponds to the square of a
frequency-dependent sound velocity D(z = —w? +i€) = v?(z). The imaginary part
v”(w) of the latter is related to the mean-free path via

I 2w(w)
@~ PoP ®)

This gives £ < w™(4+1) i.e. Rayleigh scattering. We conclude that the long-time tail
of the VAF in the diffusion problem is mathematically equivalent to the Rayleigh-
scattering property.

In the following we calculate all irreducible diagrams (self-energy diagrams) up
to second order in the inverse density p~! = V/N, where N is the number of sites
and V the volume. We show that to this order the self energy is proportional to
k22%2 2 = iw + € (diffusion) or z = —w? 4 ie (sound). and not as claimed in
Refs. [7] oc k22(@=2/2 We also show, why the so-called cactus approximation for

a self-consistent theory erroneously leads to a non-analyticity z(4=2)/2 instead of
/2
242,

2. Formalism

As in refs. [7] we start from a high-frequency (z) and high-density (p = N/V)
expansion of the averaged propagator

1 . 1
Glk,2) =+ > <k 21— M]mz> =

mn
[e's)
1 1 . .
ikr; ; ikr; i
+ E ZPTN E e 0 1Mi0i1 ... € p—1 PMi,,,li,,
p=1 0...0p

Here M is a matrix with off-diagonal elements M;; = t;; and diagonal elements
Mii = =344 tie- t(k) = t(k) is the d-dimensional Fourier transform of ¢(r).

The configurationally averaged Green’s function can now be expressed in terms
of the irreducible self energy 3 (k, z) as follows
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The frequency-dependent diffusivity /sound velocity is given by

2
D(2) = v(2)? = —%% [t(k:) 5k, z)] » (5)

For simplicity, we assume complete site disorder (i.e. the radial pair correlation
function g (r) = 1). Therefore t (k) is simply the Fourier transform of the transition
rate ¢ (r) [17].

It is possible, to consider a more general case, e.g. by replacing t" (r;;) —
g (r35) t" (r45) (n > 0) in every diagram (Kirkwood factorization). Without proof,
it can be demonstrated that the analytical properties of the first and second order
diagrams would remain unaffected by such an extension.

We denote the unrenormalized part of the Green’s function by Gy:

1

Go(h2) = —— o =7 0]

(6)

In analogy to the approach in Ref. [7], it is helpful to consider a high-density
expansion of the propagator, which is in turn determined by an analogous expansion
the self energy ¥ (k, 2)

S (k,2) =Y p "B (k,2), (7)

As outlined in [7], the index n counts repetitions of sites in the high frequency /
high density expansion.

In the following, we will derive exact results for n = 1 and n = 2.

To this end, we will use diagrammatic representations (as explained in Figure 1),
to distinguish topologically different contributions to the self energy.

In the following, we calculated the diagrams for the special case d = 3, but the
results remain valid for arbitrary dimensions.

3. First-order diagrams: (V) (k, 2)
This case is comparably trivial and requires the addition of four diagrams (cf.

Figure 1), since the first and last connection can refer to an off-diagonal (O) or a
diagonal (D) transition rate.

0o=, [ (5733 £ (p) Go (p.2)

http://mc.manuscriptcentral.com/pm-pml
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Figure 1. Irreducible diagrams in £ (k, 2).

Off-diagonal matrix elements, i, =1 (rij), associated with a site change, are represented by solid lines.
Dashed lines do not effect a site change. The associated transition rates t,‘iij = —t(riy;) belong to the
diagonal matrix elements and are a consequence of the sum rule.

The unrenormalized propagator [Go];; = Go (ri;) is shown as a double-line. Note that the propagator

contains a diagonal part (for i = j the diagram has length zero) Go (2) := [z + pt (0)] ™%, which is formally
obtained as Gp (z) = limg_, oo Go (k, 2). In most cases, this requires no special attention. Exceptions, when
these terms need to be explicitly excluded to preserve irreducibility will be mentioned below.

Open circles will always indicate start and end points of a diagram.

Dnzp/(jgg 2 (k — p) Go (p.2)

Added together:

0| (;f’)g [tk =p) — t(p) > Go (1, 2) ®)

Since we are mainly interested in the imaginary part of

i iy > () ©

we will have to examine the bracket in Eq. (8) in the limit £ — 0

. _t'(p) Lt"(p)-p—t'(p) 2 Lt (p) 5 3
%g%t(k—p)ft(p)— ) -kp+§p—3-[kp] +3 » K+ 0 (k%)
(10)
We therefore obtain
lim lim [¢(k—p) —t(p)]* = ¢- [kp]* +O (K, p°) (11)
p—0 k—0 ——
x p?

with some usually nonzero constant c¢. With the additional p? factor from the
threedimensional integral, we obtain from the diffusion pole of Gy (k, 2)

C (1) 3/21.2
lﬁ%;}}i%lm[z (k,z)}mz k (12)
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4. Second-order diagrams: X(?) (k, z)

This case is considerably more complex. It turns out to be advantegeous to consider
topologically different groups of irreducible diagrams separately:

2@ (k,2): (1%2---2---1)
2
5§ (k,2): (12--2---1)
o 2% (k,2): (1%2-1---2)
P (k,2): (12---1---2)
2P (k,2): (1---1---1)
Unlike in --- at least one additional site index (differnt from 1 and 2) needs to

be contained in .
The complete and exact second-order self energy is then just the sum of these
partial contributions:

2 (k,2) = 5@ (k,2) + 25 (k,2) + 5P (k, 2) + 5§ (k,2) + P (k,2)  (13)

4.1. =@ (k, z): Irreducible Diagrams (1 *2---2---1)

Here, the 16 diagrams in Figure 2 need to be distinguished [18]:

0000 = pz/dp dq t* (p) t (q) G () Go (q)
000D = — p? / dpdq t (k —p) t* (p) t(q) G5 (p) Go(q)
00DO = — pQ/dp da t* (p) t (p — a) G (p) Go (q)
OO0DD = pQ/dpdq t(k—p)t*(p) t(p—a) G (») Go(q)
O0DOO = - [ dpda £ (1) t (b~ a) t(0) G} (r) G 4)
ODOD = pz/dpdq t(k—p)t(p)t(p—aq)tq) Gs(p) Golq)

ODDO = p? / dpdq t* (p) t* (p — q) G (p) Go (q)

http://mc.manuscriptcentral.com/pm-pml
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Figure 2. Irreducible Diagrams in 253) (k, 2)

ODDD = —pz/dpdq t(k—p)t(p) t*(p—a) Gj(p) Go(q)
DO0O = — 4 / dpdq t (k—p) £ (p) t(g) G2 (p) Go (q)
DOOD = pz/dp dq t* (k —p) t(p) t(q) G5 (p) Go (q)

DODO = p2/dpdq t(k—p) t*(p) t(p—a) G§(») Go(q)
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DODD:f,oQ/dpdq t?(k—p) t(p) t (p —q) G§ (p) Go(q)
DDOO:pZ/dpdqt(k—p)t(p)t(P—Q)t(Q) G? (p) Go(a)
DDOD =~ ¢* [ dpda £ (k~p) t(p —a) t(0) G} (5) Go )
DDDO:—pQ/dpdq t(k—p)tp)t*(p—a) Gi(p) Gol(q)

DDDD = pQ/dp dq t*(k—p) t* (p —q) G§ (p) Go(q)

Added together:

5@ (k,2) = (14)

pQ/dpdq [t(k—p)—t(p)]* [t(P—a)—t(p)] [t(P—a)—t(q)] G (p) Go(q)

Two cases need to be distinguished:

p is small: Because of Eq. (11), the first squared bracket delivers a factor p?. Ad-
ditional p? factors result from the third bracket and the 3D integration,
respectively, so that we finally arrive at a p® factor. From the identity
G2 (p,z) % Go (p, z), we obtain a nonanalyticity oc 2%2. Note that un-
even occurrences of p and/or q, such as an isolated product pq, are not
rotation invariant and therefore do not contribute to the integral.

q is small: Now the second bracket delivers an additional nonanalyticity [19] ¢2, which
again produces a z%/2 nonanalyticity.

We therefore conclude for this group of diagrams

lim lim Im [Eg) (k, z)} x 2%/2k? (15)

z—0 k—

4.2. Eg) (k, z): Irreducible Diagrams (12---2---1)

Since sites 1 and 2 are connected directly via ¢, or {5, the diagrams contain only
three t’s and two Gg’s. Therefore, only eight diagrams are possible (cf. Figure 3):

000 =p / dpdq t* (p) t(q) Go (p) Go (q)

http://mc.manuscriptcentral.com/pm-pml
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Figure 3. Irreducible Diagrams in 2(52) (k, 2)

ODD

DOD

OOD:—p/dpdqt(k—p)t(p)t(q) Go (p) Go(q)
ODO = —p/dpdq t*(p) t (p —q) Go (p) Go(q)
ODsz/dpdqt(k—p)t(p)t(p—q) Go (p) Go ()
DOO = [ dpda () t(p—a) t(a) Go () Go (0
DOD:p/dpdqt(k—p)t(p—q)t(q) Go (p) Go (9)
DDO = p/dpdq t(p) t* (p —a) Go (p) Go ()

DDD:—p/dpdqt(k—p) t*(p—q) Go (p) Go (q)
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Added together:

=9 (k,2) = (16)

—p/dpdq [t(kk—p)—t(P)][tP—a)—t(p)] [t(P—a)—t(q)] Go(p) Go(q)

Because of (10), the first bracket gives us only a k2. Depending on whether p or
q are small, the third, respectively second, bracket delivers the required additional

p?, respectively ¢2, to obtain:

lim lim Im [Eg) (k, z)} o 232 k? (17)

2—0 k—0

Note a particular property of diagrams DDO and DDD:

If the propagator in the middle of the diagram collapses to the diagonal Gy,
as explained above, these diagrams are factorizable at site 1 and therefore not
irreducible anymore. To avoid double counting, the diagonal term Gy must therefore
be subtracted from this propagator.

It can be easily verified, however, that the z%/2-nonanalyticity is not affected by
this.

4.3. E,(f) (k, z): Irreducible Diagrams (1% 2---1--.2)

The crossover topology of these 16 diagrams (Figure 4) leads to more intricate
convolution integrals.
Based on the following abbreviations

=k—-—p—q

(18)

o T M2
- i
| +o0 T

I
~ ~ T
QT Qa

we obtain

0000 =" [ [dBdv Gula)Go(B)Go ) - t(@)t(8) £ (3)
000D = — p? //dﬁd7 Go () Go (B) Go () - t(a)t(B)t* ()

00DO = — 2 / / By Go(a)Go(B)Go(v) - ()t (a)t(v)

http://mc.manuscriptcentral.com/pm-pml
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Figure 4. Irreducible Diagrams in Eﬁf) (k, 2)

00DD = ¢* [ [dBir Go(@)Go(8)Go ) - t(b)t(e) ()
0D00 = [ [dBdy Go(e)Go(8)Go ) - t(e)t(@)t(B)1 ()
0DOD = ¢* [ [dBir Go(@)Go(B)Go ) - £ @)1 (Bt ()

ODDO = ? / / dBdy Go(a)Co(B)GCo(y) - t(b)t(c)t(B)t ()

http://mc.manuscriptcentral.com/pm-pml
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ODDD = — 2 / / dBdy Go(a)Co(B)Co ()t (b) £ ()t (8)

D000 = — / / dBdy Go(a)Co(B)Go(v) - t(a)t(a)t(B)(v)

©CoO~NOUTA,WNPE

12 DOOD:p{//ﬂmh Go (a) Go (B) Go (7) - t(a)t(b)t(c)t(B)
17 ]Mmozf//wM7Guwam%%h%ﬂmﬂﬁﬁw
21 DODD=4¢2//Q5®/Gﬂaﬂ%u%GMw’ﬁﬂﬁﬂdﬂ@
- DDoozp{//wﬁh Go () Go (B) Go () - t(a)t(b)t(c)t(7)
30 DDOD =~ ¢* [ [dBdv Gola) Go(B)Go ) - (@)t (b)# (c)
34 DDDO:—¢2//ﬁﬁwy(%@wcuﬁﬂ%vw-ﬁﬂﬁﬂdth)

39 pPDD = [ [dBdy Go(@)Ga(B)Golm) - (b) £ (c)

41 Collecting Terms

43 To derive a usable expression for the sum of these 16 diagrams, we have to exploit
44 the symmetries of the problem.

45 Transforming variables p, q — P, q allows to arbitrarily permute «, 3, v under
46 the boundary condition that a, b, ¢ perform the same permutation, as indicated
47 in the following table:

50 afB~yabc
51 avyfBach
52 Ba~vbac
53 B~yabca
54 ~YyaBcab
55 YyBacba

(19)
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For example, the transformation

p=k-p-q ud q:=p (20)
leads to
k-p-q—p (21)
P—q (22)
qa—k-p—q (23)
p+gq—k—p (24)
k—-p—k—q (25)
k-q—p+q (26)

and thus the permutation a 3vabc — B3vabca.
The product Go (&) Gy (8) Gy (7y) is invariant with respect to these permutations
and because of

//dadﬁ://dad'y://dﬁd'y (27)

the integration variables can be chosen freely. After suitably regrouping the ¢—
factors, we obtain for the sum of all diagrams the expression

K :=0000+---+DDDD
=p2//d5d~y Go (@) Go (B)Go(v)  x
% [£(8) —t(b)]-[t(v) —t ()] [t(v) —t(B)] - [t (@) +(B)]

Since we integrate over two variables only, we have to eliminate one Gg—factor.
To this end, we apply a partial fraction decomposition

plt(y) —t(B)] Go(B)Go(v) =[Go(v) — Go(B)] (28)

Some further permutations and regrouping lead to

After reinserting the above definitions, we can expand for small k:

http://mc.manuscriptcentral.com/pm-pml
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tla)—t(a)=t(k—-—p—q)—t(p+aq)
_t(p+a)

_ 2
bt dl k(p+aq)+0 (k)

te)—t(y)=t(k—q)—t(q)

:M.kqﬂo(k?)

We thus obtain limj_o K o k?, as required. Since we only consider the lowest-
order term, we may use

tla)—t(y)=t(@)—t(v)+O(k) (29)

and set

tla)—t(v)~=t(p+a)—t(q) (30)

We thus finally arrive at

szQ//dpdq Go(p)Go(a) x (31)
tpta) . (g | B9 3
D k)| (et - @] | HD ka] o )

A C

For the analytical properties, we again have to consider two cases:
q s small:

Bracket C gives us a factor ¢, but brackets A and B approach a finite value for
q— 0.

But: After setting g = 0 in A and B, both the integral over p (because of
the kp term in A) and over q (due to the kq in C) vanish due to lack of rotational
invariance. Consequently, we have to expand the fraction in A to first order in ¢,
which provides us with an additional factor pq o« g. Now rotational invariance is
preserved and a z3/2 nonanalyticity is obtained.

p is small:

Bracket C' remains finite and B leads to a factor pq « p.
Setting p = 0 in A leads to the following structure

//dpdq f (@) [pal- [kq]? (32)

In order to restore rotational invariance, we again have to expand in A to first
order in p, which yields an additional pq « p and leads to a 23/2 nonanalyticity.

http://mc.manuscriptcentral.com/pm-pml
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000 00D ODO

Figure 5. Irreducible Diagrams in Ef) (k, 2)

We thus conclude that

lim lim Im {Eﬁf) (k,z)} o 232 k2

z2—0 k—0

holds.

4.4. 2552) (k, z): Irreducible Diagrams (12---1---2)

Similar to X3 above, 8 diagrams need to be considered (Figure 5):

ooozp/dpdqt(k—p+q)t(p)t(q) Go (p) Go (9)
00D = [ dpdat(k—p+a) ¢k~ p) (0) GoB) Go 0
ODO:—p/dpdqt(kprrq)t(P)f(P*Q) Go (p) Go (q)

ODD = [ dpdat(k-p+a) t(k—p)t(p - a) Gop) Go (o)

DOO = —p /dpdq t(k—p) t(p) t(g) Go(p) Golq)

http://mc.manuscriptcentral.com/pm-pml
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(0]0)

O©CO~NOO~WNPEP
=
N

10 Figure 6. Irreducible Diagrams in 222) (k, 2)

15 DOD:p/dpdq 2 (k = p) t(q) Go (p) Go(q)
20 DDO:p/dpdqt(k—p) t(p) t(p—a) Go(p) Gol(q)

o DDD:—p/dpdq > (k—p) t(p—q) Go(p) Go(q)

27 Added together:

31 S (k,2) (34)

33 p/dpdq[t(k—p)—t(p)][t(k—p+q>—t<k—p>] [t(p—q) —t(a)] Co (p) Go(q)

36 The first bracket is proportional to k2. Depending on whether p or ¢ is small,
37 the third or second bracket yields the required additional p? or ¢2, respectively.
38 Thus we have here too:

21; lim lim Im [Eff) (k,z)} o 23/2)2 (35)

45 4.5. ¥ (k,z): Irreducible Diagrams (1--+1---1)

Here only 4 cases are possible (Figure 6).

50 00= / dpdq t(p) t(p— q) t(g) Go (p) Go (q)

55 0D=p/dpdqt<k—p>t<p—q>t(q) Go (p) Go ()
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Do:p/dpdqt<k—q>t(p)t(p—q) Go (p) Go (q)

DD:—p/dpdqt(k—p)t(k—Q)t(p—Q) Go (p) Go ()

Added together:

29 (k,z) (36)

p/dpdq[t(k—p)—t(p)][t(k—q)—t(q)]t(p—q) Go (p) Go (q)

For order O (k2), because of (10), the first two brackets muts be proportional to
o kp and kq, respectively. For rotational invariance, the last bracket needs to be
expanded and thus provides the additional required pq term, to obtain:

s (2) 3/21.2
lli% 1111% Im [EE (k,z)} x 2%k (37)

With (13) it follows immediately

lim lim Im [2<2> (k,z)} o 23/2)2 (38)

z2—0 k—

5. Conclusion

Working out term by term in the second-order self energy we have convinced our-
selves that to this order the nonalytic behavior (38), which both leads to Rayleigh-
type sound attenuation and to the correct long-time tail in the analogous diffusion
problem is recovered. This is in contrast to the claims in the publications [7]. In
these publications a self-consistent equation for the self-energy is advocated, which
consists in making the first-order result (8) self-consistent, i.e. replacing the 0-th-
order Green’s function by the full one. Now, in performing a high-density expansion
of this equation one easily convinces oneself that the corresponding diagrams are

o the entire sum 2&2)(16, 2);
o the diagrams 00O, OOD, ODO, ODD of S (k,z), but not the remaining
four diagrams;

e the diagrams DOO, DOD, DDO, DDD of £ (k, z), but not the remaining
four diagrams.

As the partial sums do not give the correct analytic properties, this is the reason,
why the self-consistent scheme advocated by [7] does not lead to Rayleigh scat-
tering. We shall publish shortly a self-consistent scheme, which includes Rayleigh
scattering.
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(0]0] DO oD DD

Irreducible diagrams in =¥(k,z).

Off-diagonal matrix elements, t%; = t(ry),
associated with a site change, are represented by solid lines.
Dashed lines do not effect a site change. The associated transition
rates t%; = - t(r;;) belong to the diagonal matrix
elements and are a consequence of the sum rule.

The unrenormalized propagator [Golj
Go(ri) is shown as a double-line.
Note that the propagator contains a diagonal part (for i = j the diagram has
length zero)
Go(2) := [z + pt(0)]?,
which is
formally obtained as G0(z) =
limoe Go(k,z). In most cases, this requires no
special attention. Exceptions, when these terms need to be explicitly excluded
to preserve irreducibility will be mentioned below.

Open circles will always indicate start and end points of a diagram.
156x35mm (600 x 600 DPI)
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