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Abstract We describe a lower bound for the critical value of the supremum of a Chi-
Square process. This bound can be approximated using a MCQMC simulation. We
compare numerically this bound with the upper bound given by Davies, only suitable
for a regular Chi-Square process. In a second part, we focus a non regular Chi-Square
process : the Ornstein-Uhlenbeck Chi-Square process. Recently, Rabier et al. (2009)
have shown that this process has an application in genetics : it is the limiting process
of the likelihood ratio test process related to the test of a gene on an interval repre-
senting a chromosome. Using results from Delong (1981), we propose a theoretical
formula for the supremum of such a process and we compare it in particular with our
simulated lower bound.

Keywords Chi-Square process · Monte-Carlo Quasi Monte-Carlo · Ornstein-
Uhlenbeck process · Quantitative Trait Locus detection.

PACS 60G99 · 6008 · 65C05 · 65C10 · 65D30 · 62M86 · 62P10

1 The Davies Upper bound

In the article of Davies (1987), the focus is on hypothesis testing when a nuisance
parameter t? is present only under an alternative. So, t? is meaningless under the
null hypothesis. If t? were known, the natural way to perform the test is to consider

Charles-Elie Rabier
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t = t?. However, as it is only known that t belongs to the interval [L, U ], Davies
suggests the use of the test statistic :

sup {S(t) : L ≤ t ≤ U} (1)

where S(t) denotes the test statistic at t. Davies also considers the case :

S(t) = V1(t)
2 + ...+ Vd(t)

2 (2)

where the Vi(t) are independent for each t and distributed as a standardized normal
under the null hypothesis. The process S(.) is called a Chi-Square process with d
degrees of freedom. The main results of Davies (1987) is the following formula :

pr

{
sup

t∈[L, U ]
S(t) > c

}
≤ pr

(
χ2
d > c

)
+

∫ U
L
Ψ(t)dt (3)

where

Ψ(t) = E (‖η(t)‖) c
d−1
2 e−c/2 π−1/2 2−d/2 / Γ (d/2 + 1/2)

Γ is the Gamma function and χ2
d is a random variable which follows a Chi-Square

with d degrees of freedom. We refer to Davies (1987) to obtain the general expression
of the quantity E (‖η(t)‖). The author specifies that formula (3) is suitable when the
processes Vi(.) have a derivative with a finite number of jumps.

In what follows, we will call Davies upper bound the right side of formula (3).
We will focus only on Chi-Square processes S(.) where the Vi(.) are independent (a
particular case of formula 2).

2 Computation of the Discretized Lower Bound

2.1 Introduction

In this section, we present a lower bound for the critical value of the supremum of
a Chi-Square process. This is a lower bound because we discretize the process. The
probabilities needed for the lower bounds can then be explicitly written as multivari-
ate normal integrals, which can be approximated with simulation methods.

The time interval [L, U ] for the process is discretized using ti = L+i(U−L)/m
for i = 1, 2, . . . ,m. hwill be the stepsize of discretization : h = (U−L)/m. Then we
define A to be the m×m covariance matrix for the discretized process, with entries
aij = r(ti − tj). If we also define X to be an d ×m matrix, with columns xj , for
j = 1, . . . ,m, the integrals that are needed for computation of the lower bound are
multivariate Normal probability integrals over a product ofm d-dimensional spheres,
given by

P (u) =

∫
||x1||2<u2

∫
||x2||2<u2

· · ·
∫

||xm||2<u2

e−
1
2

∑d
i=1[xi1,...,xim]A−1[xi1,...,xim]′

{(2π)m|A|}
d
2

d∏
i=1

m∏
j=1

dxij ,
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for real u ≥ 0. If we determine u so that P (u) = 1−α, then u will be a lower bound
for the critical value of the supremum of the Chi-Square process with covariance
function r(t).

In order to describe some simulation methods for approximation of the P (u)
integrals, we start with a change of variables designed to simplify the multivariate
Normal density. Let L be the m×m lower triangular Cholesky factor for A (so that
A = LLT ). Now define the change variables to an d ×m matrix of variables Y by
X = Y LT , so that dX = |A| d2 dY and therefore

P (u) =

∫
||x1(Y )||2<u2

∫
||x2(Y )||2<u2

· · ·
∫
||xm(Y )||2<u2

e−
1
2

∑d
i=1

∑m
j=1 y

2
ij

(2π)
md
2

d∏
i=1

m∏
j=1

dyij ,

(4)
where xij(Y ) =

∑j
k=1 ljkyik, and xj(Y ) is a function of y1, . . .yj .

2.2 Direct Simulation

A direct simulation method for approximating the integrals I(u) uses simulation from
the univariate Normal distribution. Let Y (k)

ij ∼ N(0, 1), and define

f
{
Y (k)

}
= max1≤j≤m

[
||xj

{
Y (k)

}
||
]

and g
{
Y (k)

}
=

{
1 if f

{
Y (k)

}
≤ u

0 otherwise
.

Then

P (u) ≈ PN =
1

N

N∑
k=1

g
{
Y (k)

}
with standard error

EN =

(
1

N(N − 1)

N∑
k=1

[
g
{
Y (k)

}
− PN

]2) 1
2

.

Because the g
{
Y (k)

}
is 0 or 1, EN ≈

[
P (u){1−P (u)}

N

] 1
2 ≈

{
PN (1−PN )

N

} 1
2

(see
Fishman (1996)).

If up is the value of u where P (u) = p for a given probability p, an approximate
value for up can easily be determined from this simulation. Define F to be the vector
of sorted (ascending order) f

{
Y (k)

}
values and define [pN ] to be the value of pN

rounded to the nearest integer. Then up ≈ F[pN ].

2.3 Conditional Simulation

The direct simulation method described in the previous section is an ”acceptance-
rejection” algorithm which can be inefficient for some combinations of u and A, so
a potentially more efficient method is considered in this section. This method is a
generalization of the method described in the paper by Genz (1992), where MVN
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probabilities over hyper-rectangular regions were considered. The method in this pa-
per begins with equation (4) for P (u) written in more detail in the form

P (u) =

∫
∑d

i=1(l11yi1)
2<u2

e−
1
2

∑d
i=1 y

2
i1

(2π)
d
2

∫
∑d

i=1(l21yi1+l22yi2)
2<u2

e−
1
2

∑d
i=1 y

2
i2

(2π)
d
2

· · ·
∫

∑d
i=1(lm1yi1+···+lmmyim)2<u2

e−
1
2

∑d
i=1 y

2
im

(2π)
d
2

1∏
j=m

1∏
i=d

dyij . (5)

In order to simplify the notation, we assume thatA is nonsingular and define a matrix
C, determined by scaling the rows of L by the successive diagonal elements of L,
so that cij = lij/lii, which makes cii = 1. If the scaled sphere radii are defined by
ui = u/lii, then

P (u) =

∫
∑d

i=1 y
2
i1<u

2
1

e−
1
2

∑d
i=1 y

2
i1

(2π)
d
2

∫
∑d

i=1(c21yi1+yi2)
2<u2

2

e−
1
2

∑n
i=1 y

2
i2

(2π)
d
2

· · ·
∫

∑d
i=1(cm1yi1+···+cm−1,1yi,m−1+yim)2<u2

m

e−
1
2

∑n
i=1 y

2
im

(2π)
d
2

1∏
j=m

1∏
i=d

dyij .

The structure of the integration constraints permit the conditional integrations to be
completed with many possible orderings for the variables. We describe a method
which uses a variable ordering by rows, starting with y11, y12, . . . y1m, followed by
y21, y22, . . . y2m, and so on, finishing with yd1, yd2, . . . ydm, as is indicated by the∏1
j=m

∏1
i=d dyij measure in equation (5).

The “outermost” variable y11, has constraint −u1 < y11 < u1. Given y11, the
next variable y12, has constraint −u2 − c11y11 < y12 < u2 − c11y11, and so on,
with y1j constrained by−uj <

∑j−1
k=1 cjky1k+ y1j < uj . If values are given for yik,

i = 1, . . . , l − 1, k = 1, . . . ,m, and ylk, k = 1, . . . , j − 1, then the integral for ylj
has the constraint

l−1∑
i=1

(

j−1∑
k=1

cjkyik)
2 + (

j−1∑
k=1

cjkylk + ylj)
2 < u2j .

Solving for ylj , the constraint for ylj becomes

−

{
u2j −

l−1∑
i=1

(

j−1∑
k=1

cjkyik)
2

}1/2

−
j−1∑
k=1

cjkylk ≤ (6)

ylj ≤

{
u2j −

l−1∑
i=1

(

j−1∑
k=1

cjkyik)
2

}1/2

−
j−1∑
k=1

cjky1k.

So the limits for yij , which depend on

yij = (y11, y12, . . . , y1,j−1, y21, y22, . . . , y2,j−1, . . . , yi1, . . . , yi,j−1),
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are

M±ij (yij) = ±

{
u2j −

i−1∑
s=1

(

j−1∑
k=1

cjkysk)
2

}1/2

−
j−1∑
k=1

cjkyik.

Using these limit expressions,

P (u) =

∫ M+
11(y11)

M−11(y11)

φ(y11)

∫ M+
12(y21)

M−12(y12)

φ(y12)

∫ M+
1m(y1m)

M−1m(y1m)

φ(y1m)

∫ M+
21(y21)

M−21(y21)

φ(y21)

∫ M+
22(y22)

M−22(y22)

φ(y22)

∫ M+
2m(y2m)

M−2m(yn2)

φ(y2m)

· · ·
∫ M+

d1(yd1)

M−d1(yd1)

φ(yd1)

∫ M+
d2(yd2)

M−d2(yd2)

φ(yd2)

∫ M+
dm(ydm)

M−dm(ydm)

φ(ydm)

1∏
j=m

1∏
i=d

dyij ,

where φ(y) = e−
1
2y

2

/(2π)
1
2 , the standard univariate Normal pdf. If the changes

of variables zij = Φ(yij), where Φ(y) is the standard univariate Normal cdf, with
dzij = φ(yij)dyij , are completed, then

I(u) =

∫ N+
11(z11)

N−11(z11)

∫ N+
12(z12)

N−12(z12)

· · ·
∫ N+

1m(z1m)

N−1m(z1m)

∫ N+
21(z21)

N−21(z21)

∫ N+
22(z22)

N−22(z22)

· · ·
∫ N+

2m(z2m)

N−2m(z2m)

· · ·
∫ N+

d1(zd1)

N−d1(zd1)

∫ N+
d2(zd2)

N−d2(zd2)

· · ·
∫ N+

dm(zdm)

N−dm(zdm)

1∏
j=m

1∏
i=d

dzij .

withN±ij (zij) = Φ
[
M±ij

{
Φ−1(zij)

}]
and zij = (z11, z12, . . . , z1m, . . . , zi1, . . . , zi,j−1).

Now make the final changes to (0, 1) variables using

zij = N−ij (zij) +Dij(zij)wij , Dij(zij) = N+
ij (zij)−N

−
ij (zij),

and then

P (u) =

∫ 1

0

D11 {z11(w11)} · · ·
∫ 1

0

D1m {zn1(w1m)}∫ 1

0

D21 {z21(w21)} · · ·
∫ 1

0

D2m {z2m(w1m)}

· · ·
∫ 1

0

Dd1 {zd1(wd1)} · · ·
∫ 1

0

Ddm {znm(wdm)}
1∏

j=m

1∏
i=d

dwij

≡
∫ 1

0

f(w)

1∏
j=m

1∏
i=d

dwij ,

with

f(w) =

d∏
i=1

m∏
j=1

[
N+
ij {zij(wij)} −N+

ij {zij(wij)}
]
,



6 Charles-Elie Rabier, Alan Genz

so that P (u) can be approximated using any numerical integration method for the
unit hypercube H(dm) = [0, 1]dm.

If up is the value of u where P (u) = p for a given probability p, an approximate
value for up can be determined by applying a numerical root-finding method (e.g. the
the bisection or secant method) to function h(u) = P (u)− p.

2.4 Numerical Integration

A simple Monte Carlo (MC) method for the approximate computation ofP (u), which
uses U(0, 1) random numbers, takes the form

P (u) ≈ PN =
1

N

N∑
k=1

f(Wk),

with standard error

EN =

[
1

N(N − 1)

N∑
k=1

{f(Wk)− PN}2
] 1

2

,

with all components of Wk ∼ U(0, 1).
MC methods using N points have errors that are typically O(1/N

1
2 ), so quasi-

Monte Carlo (QMC) methods (see Fox (1999), Sloan et al. (1994)), with asymptotic
errors which can be approximatelyO(1/N) forN points, are often be used to provide
improved simulation approximations for these kinds of computations. Given a set of
QMC points Z1,Z2, . . . ,ZM fromH(dm), a typicalM -point QMC method for P (u)
uses

P (u) ≈ QM =
1

M

M∑
s=1

f(Zs).

Error estimates forQM can be computed if the QMC method is randomized. A simple
method for randomization uses random shifts of the QMC approximations in the form

QM (W) =
1

M

M∑
s=1

f({Zs +W}?),

where W has random U(0, 1) components and {X}? denotes the vector of fractional
parts of the components in X. Then an MCQMC approxmation for P (u) is given by

P (u) ≈ QN,M =
1

N

N∑
k=1

QM (Wk),

with standard error

EN,M =

[
1

N(N − 1)

N∑
k=1

{QM (Wk)−QN,M}2
] 1

2

.

For these approximations, N is usually chosen to be small (e.g. N = 12) relative to
M .
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3 Illustration of Davies upper bound and the discretized lower bound

In order to illustrate Davies upper bound and the MCQMC lower bound, we have
to choose a process suitable for Davies assumptions : we will consider the Chi-
Square process where each Vi(.) is a stationary process with covariance function
r(∆) = e−∆

2/2. As mentioned previously, we consider independent processes Vi(.).
Let V ′i (t) = ∂Vi(t)/∂t. As the processes Vi(.) are independent, we have ∀j 6= i :

cov
{
V ′i (t), V

′
j (t)

}
= 0 and cov {V ′i (t), Vj(t)} = 0

Since V ′i (t) = lim∆→0
Vi(t+∆)−Vi(t)

∆ , then E {V ′i (t)} = 0. Also, r′′(0) = −1, so
var {V ′i (t)} = 1. On the other hand,

E {Vi(t)V ′i (t)} = lim
∆→0

E {Vi(t)Vi(t+∆)}
∆

− lim
∆→0

E
{
V 2
i (t)

}
∆

= lim
∆→0

r(∆)− 1

∆
= 0

As a consequence, if we denote V(t) =

V1(t)
...

Vd(t)

, V′(t) =

V ′1(t)
...

V ′d(t)

 and I2d

the identity matrix 2d× 2d, then

var
(

V(t)
V′(t)

)
= I2d (7)

As the covariance matrix (7) is the identity, we can use the following result of Davies
:

E(‖η‖) = 21/2 Γ (d/2 + 1/2)/Γ (d/2)

Then, according to formula (3) :

pr

{
sup

t∈[L, U ]
S(t) > c

}
≤ pr(χ2

d > c) + (U − L) c(d−1)/2 e−c/2 π−1/2 2(1−d)/2/Γ (d/2)

In order to perform a test at the level α, the challenge is to obtain the critical value
c such as pr

{
supt∈[L, U ] S(t) > c

}
= α : the MCQMC bound and Davies’ bound

allows us to obtain respectively a lower and an upper bound for the critical value c.
Tables 1, 2 and 3 give these bounds as a function of the level of the test α, the

interval [L, U ] and the number of degrees of freedom d of the Chi-Square process.
The discretization used for the MCQMC method results in these tables was h = 1

4
(so m = 4 (U − L) ) for all cases.
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4 About the supremum of a non regular Chi-Square process : the
Ornstein-Uhlenbeck process

4.1 Introduction

In this section, the interest is on the critical value for the supremum of a non regular
Chi-Square process : the Ornstein-Uhlenbeck Chi-Square process. It corresponds to
the process S(.) of formula (2) with the processes Vi(.) independent and cov {Vi(t), Vi(t′)} =
e−2|t−t

′|. Such a process has a direct application in genetics, in particular in Quanti-
tative Trait Locus (QTL) detection.

4.2 The Ornstein-Uhlenbeck Chi-Square process in the QTL detection

A QTL denotes a gene with quantitative effect on a trait. The method used by most
of geneticists in order to detect a QTL on a chromosome, is the Interval Mapping
proposed by Lander and Botstein (1989) (see Wu et al. (2007)). Using the Haldane
(1919) distance and modelling, each chromosome is represented by a segment [0,U ].
The distance on [0,U ] is called the genetic distance (measured in Morgans). At each
location t ∈ [0,U ], using the “genome information” brought by genetic markers, a
likelihood ratio test (LRT) is performed, testing the presence of a QTL at this position.
So, multi-testing leads to a LRT process, and taking as test statistic the supremum of
this process comes down to perform a LRT in a model when the localisation of the
QTL is an extra parameter.

In Rabier et al. (“Likelihood Ratio Test process for Quantitative Trait Loci de-
tection”, hal-00421215), the authors considered a population of progenies which are
structured into families of sires. They prove that when the number of genetic markers
and the number of progenies tends to infinity, the limiting process of the LRT process
is an Ornstein-Uhlenbeck Chi-Square process (the number of degrees of freedom cor-
responds to the number of sires) under the null hypothesis of the absence of QTL on
the interval [0,U ]. So, in order to take decision about the presence of a QTL on [0,U ],
the critical value for the supremum of an Ornstein-Uhlenbeck Chi-Square process has
to be calculated.

4.3 Critical value calculation for the Ornstein-Uhlenbeck Chi-Square process

Let OU denote an Ornstein-Uhlenbeck process and OUCS(d) an Ornstein-Uhlenbeck
Chi-Square process with d degrees of freedom. We propose here different ways to cal-
culate the critical value of the supremum of an OUCS(d). Since an OU is an AR(1)
process, an OUCS(d) is the sum of d independent AR(1) processes. As a conse-
quence, the critical value can easily be obtained using a Monte-Carlo method. On the
other hand, an upper bound can be obtained using the MCQMC lower bound intro-
duced in Section 2. Finally, we propose a formula in order to calculate the critical
value theoretically.
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Let W(t) =

W1(t)
...

Wd(t)

 a brownian motion in dimension d and X(t) =

X1(t)
...

Xd(t)


the process such as ∀t ∀i, Xi(t) =

Wi(e
2t)

et . We can remark that cov {Xi(t), Xi(t
′)} =

e−|t−t
′| and that Wi(t) =

√
tXi

{
log(t)

2

}
.

Besides :

‖X(t)‖2 = e−2t
∥∥W(e2t)

∥∥2
We can remark that cov {Xi(2t), Xi(2t

′)} = e−2|t−t
′| which corresponds to the

covariance of an OU. So, we impose Vi(t) = Xi(2t). Let T ∈ R+?, it comes :

sup
t∈[0, log(T )

4 ]

S(t) = sup
t∈[0, log(T )

4 ]

‖V(t)‖2 = sup
t∈[0, log(T )

2 ]

‖X(t)‖2 = sup
t∈[1, T ]

{
‖W(t)‖√

t

}2

(8)

Note that here L and U of formula (1) are respectively equal to 0 and log(T )/4. This
is convenient to deal with this case in order to relate with Delong (1981)’s work.
Indeed, in Delong (1981), there are some important results about :

pr

{
sup

t∈[1, T ]

‖W(t)‖√
t

< c

}
In order to calculate this quantity, Delong uses very difficult methods. His results are
presented in some exact tables. As a consequence, using formula (8), it is easy to
calculate exact critical values for the supremum of the process S(.).

In his article, Delong also gives an approximative formula (cf. page 2205 of the
article) suitable for c and T large :

pr

{
sup

t∈[1, T ]

‖W(t)‖√
t

< c

}
=

(c2/2)d/2 e−c
2/2

Γ (d/2)

{
log(T )(1− d

c2
) +

2

c2
+O(

1

c4
)

}
(9)

According to formulas (8) and (9), we can deduce an approximative formula for the
process S(.) suitable for c and T large :

pr

 sup
t∈[0, log(T )

4 ]

S(t) < c

 =
(c/2)d/2 e−c/2

Γ (d/2)

{
log(T )(1− d

c
) +

2

c
+O(

1

c2
)

}
(10)

With the help of a Newton’s method, it becomes easy to obtain the critical value c cor-
responding to a test at theα level, that is to say a test such as pr

{
sup

t∈[0, log(T )
4 ]

S(t) > c
}
=

α.
A numerical study is presented in Tables 4, 5, 6, and 7. Critical values for the

process S(.) are calculated according to the different methods :
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– DE refers to Delong Exact table (based on formula (8))
– DF refers to Delong Approximative Formula (based on formula (10))
– MC refers to the Monte-Carlo method using AR(1) processes
– MCQMC refers to the MCQMC lower bound

Note that Davies bound has not been considered since it is only suitable when the
processes Vi(.) have a derivative with a finite number of jumps, which is not the case
here.

The processes S(.) studied in Tables 4 to 7 are respectively the OUCS(4), the
OUCS(5), the OUCS(6) and the OUCS(7). Note that since the exact tables of Delong
are available only for d ≤ 4, DE has only been computed in Table 4. The MCQMC
bounds were computed using the discretization stepsize h = log(T )/256 (so m =
64). Note that for MC, we also use a discretization (h = 10−5) but as h is very small,
it is closer to the continuous process.

According to Table 4, DF, DE and MC give in most of cases close results. Howewer,
MCQMC give smaller critical values due to the discretization. In the same way, ac-
cording to Tables 5 to 7, DF and MC give close results whereas MCQMC give smaller
critical values. As a consequence, we can say that DF is a very good approximation
for finding the critical value of an OUCS process, which is not the case of the MC-
QMC method. The problem is that the discretization stepsize h we use for MCQMC
is to large. Table 8 shows for the OUCS(4) how the CPU time and the critical value
increase when h decreases. We can observe that as expected the critical value is af-
fected by the discretization, and the CPU time increases fairly rapidly with increasing
m.

4.4 Why is our MCQMC critical value interesting for QTL detection ?

Until now, we have computed thresholds for the OUCS(d) process. The problem is
that in real life, the number of genetic markers never tends to infinity. As a conse-
quence, we will never have to consider the OUCS(d) process to compute thresholds.
In fact, we have to deal with dense map, that is to say a map with a large (but not
infinite) number of markers equally spaced on the chromosome. Since we perform
tests at each marker location to find QTL, the process is not continuous anymore : it
is a discrete process. So, we have to compute thresholds for the Discrete OUCS pro-
cess and not for the continuous one. The stepsize of discretization will be the distance
between consecutive markers. In such a context, the MCQMC critical value can be
computed and it correponds to the true threshold (contrary to the previous Section).
Table 9 presents a comparison between MC and MCQMC thresholds. We study a
map of size 1 Morgan and we study two configurations where markers are located
every 1cM or every 2cM which is usual in genetics. We can see that MC and MC-
QMC give almost same results, but we should rather use MCQMC since it is more
accurate (cf. Section 2.4).
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α 10% 5% 1%
XXXXXXXX[L, U ]

Method
MCQMC DAV MCQMC DAV MCQMC DAV

(0, 2) 6.28 6.87 8.34 8.39 11.72 11.86
(0, 5) 8.32 8.44 9.90 9.97 13.34 13.45
(0, 10) 9.67 9.81 11.22 11.33 14.76 14.80

Table 1 Bounds for the critical value c of the Chi-Square process with 2 degrees of freedom, as a function
of the level of the test α and the interval [L, U ] considered. The upper bound refers to Davies’ method
(DAV) whereas the lower bound to MCQMC

α 10% 5% 1%
XXXXXXXX[L, U ]

Method
MCQMC DAV MCQMC DAV MCQMC DAV

(0, 2) 10.54 10.61 12.33 12.40 16.27 16.36
(0, 5) 12.34 12.48 14.15 14.24 18.03 18.15
(0, 10) 13.92 14.07 15.67 15.79 19.55 19.65

Table 2 Bounds for the critical value c of the Chi-Square process with 4 degrees of freedom, as a function
of the level of the test α and the interval [L, U ] considered. The upper bound refers to Davies’ method
(DAV) whereas the lower bound to MCQMC

α 10% 5% 1%
XXXXXXXX[L, U ]

Method
MCQMC DAV MCQMC DAV MCQMC DAV

(0, 2) 15.34 15.45 17.44 17.53 21.94 22.03
(0, 5) 17.47 17.64 19.52 19.65 23.92 24.04
(0, 10) 19.26 19.46 21.27 21.41 25.69 25.71

Table 3 Bounds for the critical value c of the Chi-Square process with 7 degrees of freedom, as a function
of the level of the test α and the interval [L, U ] considered. The upper bound refers to Davies’ method
(DAV) whereas the lower bound to MCQMC
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h m c CPU
0.047 16 12.47 10.76
0.023 32 12.88 20.87
0.012 64 13.30 46.82
0.006 128 13.61 125.23

Table 8 Critical values c and CPU time for the OUCS(4) using the MCQMC method and as a function of
the discretization stepsize h ( log(T )

4
= 0.75)

α 10% 5% 1%
`````````̀(d, h, m)

Method
MC MCQMC MC MCQMC MC MCQMC

(4, 0.02, 50) 13.65 13.72 15.47 15.43 19.66 19.74
(4, 0.01, 100) 13.99 14.04 15.91 15.75 19.94 19.72
(5, 0.02, 50) 15.57 15.33 17.45 17.48 21.70 21.88
(5, 0.01, 100) 15.86 15.88 17.90 17.62 22.23 22.16
(6, 0.02, 50) 17.36 17.31 19.36 19.30 23.67 23.65
(6, 0.01, 100) 17.67 17.87 19.78 19.50 24.29 23.72
(7, 0.02, 50) 19.03 19.01 21.08 21.45 25.81 25.09
(7, 0.01, 100) 19.42 19.57 21.55 21.74 26.34 26.03

Table 9 Critical values c for the DOUCS as a function of the number of degrees of freedom d, the dis-
cretization m, the level α and the method ( log(T )

4
= 1)


