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Abstract—Botnets are a major threat of the current Internet.
Understanding the novel generation of botnets relying on peer-
to-peer networks is crucial for mitigating this threat. Nowadays,
botnet traffic is mixed with a huge volume of benign traffic due
to almost ubiquitous high speed networks. Such networks can
be monitored using IP flow records but their forensic analysis
form the major computational bottleneck. We propose in this
paper a distributed computing framework that leverages a host
dependency model and an adapted PageRank [1] algorithm. We
report experimental results from an open-source based Hadoop
cluster [2] and highlight the performance benefits when using
real network traces from an Internet operator.

I. INTRODUCTION

The attacks in Internet and their variety have greatly in-

creased leading to the emergence of defense techniques in-

cluding firewalls, IDS (Intrusion Detection System), antivirus

software... However, recent studies have shown that new

attacks are hard to detect [3], [4]. Thus, forensics is required

for understanding these attacks and measuring their impacts.

This is helpful to recover the system back to a safe state and

counter them in the future. From a network point of view,

attacks are more distributed. Botnets are one of the most major

threat [5] and have evolved from a centralized model towards

a decentralized, highly scalable architecture [6] based on peer-

to-peer (P2P) networks [7].

Thus, detection and forensics analysis have to be shifted

from edges to the core of the network, i.e., the operators

(Internet Service Providers - ISP). However, the ISPs have to

deal with a huge volume of traffic although fast and efficient

analysis is required. Many forensic tools still rely on manual

analysis [8]. Hence, new assisted approaches have appeared

relying on host dependencies [3], profiling host behaviors [9]

or using deep packet inspection [10]. Due to scalability issues

in high speed networks, common solutions exclude that and

focus exclusively on Netflow [11] data. This is an aggregated

view of the network traffic excluding content and, thus, avoid

many privacy issues which have to be considered in forensic

analysis [9].

Therefore, we propose to detect new generation of botnets

from large dataset of Netflow data, such as those gathered

by each individual operator. Our previous approach [12] is

extended by leveraging cloud computing paradigms especially

MapReduce [13] for detecting densely interconnected hosts

which are potential botnet members.

A botnet description is given in section II. Our approach

is described in III. Section IV explains the host dependency

model and the algorithms. Section V is the experimental

evaluation. Section VI summarizes related work. Conclusion

and future work are included in section VII.

II. BOTNETS

A botnet is a network of compromised hosts (bots) which

are controlled by an attacker also called the botmaster. The

botmaster sends commands via a C&C (Command and Con-

trol) channel. Although first botnets relied on a central archi-

tecture with a core network of few interconnected IRC [14]

(Internet Relay Chat) servers, current botnets are based on P2P

technologies [15], [7]. In a P2P architecture, each bot acts as a

client and a server. Hence, for sending a command to certain

bots, other bots are involved. Therefore, P2P bots are well

interconnected and that is why we argue in this paper that

analyzing interactions between hosts is valuable for detecting

botnets.

III. SYSTEM OVERVIEW

A. Cloud computing

Today, storing large volumes of data is possible but analyz-

ing them is still a problem. In our case, 720 millions netflow

records (77GB) covering only 23 hours were collected from

a major Internet operator in Luxembourg. Hence, distributed

computing might be the only viable solution. The main idea

of cloud computing is to provide a simple interface to clients

who do not want to manage hardware related details such as

the resource allocations. The cloud computing service aims

to be very scalable and on demand without long delays:

computing power should be available instantaneously. In brief,

it can be seen as an abstraction layer taking benefit of recent

virtualization outcomes in order to provide a simple way for

final users to run tasks requiring intensive computing and

storage.

The popularity of such services is highlighted for instance

by Amazon EC2 [16] which also introduces a new economic

model where a cluster of machines can be easily rented. In

this way, individuals or companies can take advantage of

distributed computing without a huge financial investment.

B. MapReduce

MapReduce [13] is a high-level abstraction of parallel

computing introduced by Google. Although traditional ap-

proaches need to define exactly the way to carry out the

data to process, MapReduce programming model focuses on

the processing code. The key idea of the method is to shift

the network transfer from the data to the code. In brief, the

data is distributed a priori using a distributed file system. For



Fig. 1: BotCloud framework

achieving a task, the code is then distributed where the needed

data is. Therefore, the cloud computing paradigm is well suited

for problem dealing with huge volumes of data.

MapReduce comes from functional programming concepts

with functions (map and reduce) that take other functions as

inputs. The map aims to divide input data into multiple inputs

for applying a function on each of them (mapper). The reduce

function applied by reducers aggregates the individual results

from the mappers. These tasks are attributed by a master

machine to slave ones. The master is also responsible to detect

node or network failures by a ping mechanism in order to

reassign tasks to others nodes.

From a theoretical point of view, the input data is composed

of a set of key-value pairs such as (ki,vi) and the map function

is applied to each of them to produce a list of intermediate

key-value pairs:

map : (ki,vi)→ list(k′j,v
′

j)

There is no relationship between the number of initial and

intermediary keys. This intermediate list of key-value pairs

represents the intermediary outputs produced by mappers

which have to be merged by the reducers:

reduce : (k2, list(v2))→ list(k3,v3)

The input of the reduce function is an intermediate key with

a list of all intermediate values generated for this key by all

mappers. Therefore, the reducer can generate the aggregated

result for each key passed as argument of the reduce function.

More details about MapReduce are given in [17].

C. Hadoop

Our botnet detection method is based on Hadoop [2],

an open source implementation of MapReduce. A common

deployment of an Hadoop cluster is represented in the lower

part of figure 1 with a master and slave nodes. The first key

component is the Hadoop Distributed File System (HDFS) for

storing data. The namenode daemon maintains the file names-

pace (directory structure, the location of file blocks). However,

the blocks are directly stored on the slaves (datanodes) and

guarantee a redundancy. Although the master node is the entry

point to locate data, the scalability is enforced thanks to direct

data transfer between entities (slave machines, user) without

being forwarded by the master.

Considering the application side, the jobtracker takes as

input a MapReduce job and is responsible to coordinate (task

assignment) and monitor the map and reduce tasks. For im-

proving the robustness, the jobtracker and namenode daemons

may be executed on different master machines. Unlike the

number of reduce tasks, the number of map tasks is automati-

cally determined (the user can only give a hint) regarding the

data distribution on HDFS. This is the application of the main

MapReduce paradigm which aims to upload the code where

the data is. When a node is overloaded, it will transfer data

blocks to another which will then run the code. Obviously, the

user has not to deal with these aspects which is a strength of

the Hadoop.

D. Detection

Figure 1 shows the main steps of our approach using

Hadoop. The first step is to gather Netflow records (1) via

exports from routers to a collector. Then, the interactions

between hosts are analyzed in order to produce a dependency

graph (2). This graph is the input to PageRank [18] to figure

out hosts which are well interconnected themselves such as

within a P2P network. Our first experiments showed that the

bottleneck of our approach is the PageRank algorithm which

has to iterate many times before exhibiting stable results.

Therefore PageRank is executed on Hadoop by distributing

the adjacency matrix of the dependency graph among all

datanodes (3) before executing map and reduce tasks (4).



The reducers write the scores of the different nodes of the

dependency graph into the datanodes and that is why the

detection module has to access to them for retrieving all the

scores. Based on them, hosts are ranked and bots should be

highly ranked. However, normal P2P nodes can also have high

rankings and, to distinguish them from bots, we consider that

some of them are prior known using a honeypot [19]. In this

case, the PageRank algorithm can be tuned (node weight in

section IV-B) to increase the ranking of well interconnected

hosts (graph partition) containing such hosts. Thus, legitimate

P2P traffic can be discarded.

IV. ALGORITHMS

A. Dependency Graph

Netflow [11] is a standard tool for today’s large-scale

network monitoring. A record represents a series of IP packets

sharing the same source, destination address, associated ports,

and protocols. A flow collecting architecture consists of probes

and collectors. Probes or sensors are devices deployed in

different network locations, and are responsible for capturing

flow data and forwarding it to the collector. Almost all modern

commercial-grade routers support Netflow or an equivalent

format export.

Because of its wide availability and intrinsic host commu-

nication information, we utilize flow data and link analysis to

detect structured botnets. The rationale behind our approach

is that P2P structured botnets exhibit a distinguishable com-

munication pattern among bots. Each node in a dependency

graph represents a host, an edge pointing from node A to node

B indicates that there exists at least one flow which originates

from host A and destinates to host B. Hence, bots belong to

the same P2P network are linked with either directly or via

other bots.

Regarding privacy issues, Netflow records do not include

content and our method relies only on host IP addresses which

have been rendered anonymous using a reversible one-to-one

function only known by the data owner. Thus, an ISP may

use an outsourced Hadoop cluster without a high financial

investment.

B. PageRank algorithm

The PageRank algorithm [1] is a link analysis algorithm

used by the Google web search engine to weight the relative

importance of web pages on the Internet. It ranks each web

page according to the hyperlink structure among web pages.

The importance of a web page is determined by two factors:

1) how many pages contain a hyperlink pointing to it

2) the importance of the pointing pages

Intuitively, pages receiving many links are important, and also

pages receiving links from important pages are important.

Considering a dependency graph, an arbitrary initial score

is attributed to each node which only impacts the convergence

time. At each iteration, the current score of each node is

distributed through its outgoing links, and the new ranking

score for each node is the sum of distributed ranking scores

that all the incoming links bring. The iterations continue until

the score changes are sufficiently small. In case of nodes

without outgoing links (dangling nodes) we assume the scores

are distributed evenly to all nodes. To ensure convergence at

primary eigenvalue, extra links are added between each pair

of nodes. A certain portion of ranking scores is distributed

through original links, and the rest is distributed through

the added links. The portion of scores, distributed through

the original links, is call damping factor d, and is fixed

at 0.5 as an indication of how link structure influence the

final rankings. We let the 1 − d node scores distributed to

all the graph nodes according to our subjective preference

of each node (a higher node weight is assigned to nodes

representing infected honeypots). Assuming n nodes/hosts, Pt

and W are n-dimensional vectors representing the ranking

scores and weights of the nodes, each sums to one, and let

A be the adjacency matrix modified to link dangling pages to

all the graph nodes, then the PageRank computation can be

formalized as:

Pt = (1−d)W+dAT Pt−1 (1)

The direction of edges indicates where the ranking scores

are distributed. For flow monitoring, when edges point from

the source to the destination host, the ranking scores are

distributed towards the final destination of traffic, and is named

hub rank (hr) in this paper; on the other hand, when pointing

from the destination to the source host, the ranking scores are

distributed towards the origins and it is named authority rank

(ar). Equations (2) and (3) formulate this idea. Note that the

adjacency matrix for hub rank and for authority rank are the

transpose of each other.

hrt = dAhr(t−1)+(1−d)W (2)

art = dAT ar(t−1)+(1−d)W (3)

Regarding our context, both scores are relevant because P2P

bots act as client and server meanwhile.

C. MapReduce Implementation

PageRank is well fitted for MapReduce and this section

reviews the basics of executing PageRank in the MapReduce

context without taking into account the dangling nodes or the

damping factor for clarity sake (details can be found in [17]).

As highlighted in section III-B, the first step is to divide data

into multiple key-value pairs. Like other graph algorithms,

a key is a node ID and the corresponding value is the list

of adjacent nodes derived from the adjacency matrix A. In

our case, each key (node ID) is also associated to the current

PageRank score which is initialized at 1 for the toy example

in figure 2(a). For each iteration of PageRank, a mapper

distributes the current score of a node to its adjacent ones. A

reducer is dedicated to sum all scores which were computed

for a specific node ID.

This process is illustrated in figure 2(b) for the first iteration.

For instance, the first mapper distributes the score of node

1 to nodes 2, 3 and 4. Hence, they get 1
3

each. Before the
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Fig. 2: PageRank toy example

reduce step, the results are aggregated and sorted by keys by

the shuffle and sort phase. Thus, the node 3 has two scores

which are processed by a single reducer to obtain a global

PageRank score of 1.3. This score is then reused for computing

the next iteration including a set of map and reduce tasks again.

Figure 2(b) also highlights precisely the border between map

and reduce.

From a practical point of view, Hadoop master node assigns

the different tasks to slave nodes. Besides, intermediate key-

value pairs are just stored locally on mapper nodes which

transmit them directly to reducer nodes without being for-

warded by the master. Each Hadoop input data split corre-

sponds to several key-value pairs for avoiding wasting too

much time to divide data. Furthermore, there are several

optimizations such as the local aggregation of intermediate

results. Therefore, if a single node computes several scores for

the same intermediate key, it only returns the sum of values

(as for instance if a slave node deals with keys 1 and 2 in

figure 2(b), it has to sum the two values produced for node

ID 3). We used the different optimizations provided by the

Cloud9 library [20].

V. EVALUATION

A. Datasets and methodology

Because no public dataset with labeled botnet traffic at an

equivalent level than an ISP is available, our evaluation is

based on NetFlow data provided by a major Luxembourg

Internet Operator considered as free of botnet as it was

checked by a traffic screening solution dedicated to ISP [21].

This dataset involves around 16 million hosts within 720

million of netflow records. The corresponding dependency

graph contains 57 millions links. Then, synthetic additional

records reflecting the topology of three P2P protocols are

added in a similar manner than in [12]: chord [22], kademlia

[23] and koorde [24]. A P2P network maps each peer to

an ID defined in a huge ID space, as for example with a

maximal node ID equal 2160. This paper focuses on structured

P2P protocols since they guarantee high performances. Hence,

Chord is a pioneering work where the routing has a complexity

equals to log(N). Koorde is an extension of Chord with a

lower complexity: O(log(N)/log(log(N)). Finally, Kademlia

was chosen because it is well used in real world for file sharing

but also for botnet communications [7].

Although the efficiency evaluation was done using the entire

dataset (section V-C), generating synthetic botnet traces needs

a lot of computation. Hence, the first experiment (section

V-B) about the detection accuracy is based on a subpart of

the dataset: 2,133k records and 323k hosts. To strengthen the

evaluation, only 1% of IP addresses are used to generate bot

traces (stealthy botnet).

Our Hadoop configuration is composed of 11 slave nodes:

5 Intel Core 2 Duo 2.13Gz with 4 GB of memory and 6 Intel

Pentium 4 3GHz with 2GB of memory. This small cluster

is ideal for testing Hadoop capabilities to cleverly assign the

tasks even if the machines are heterogeneous.

B. Botnet detection

Figure 3 shows the ROC (Receiver Operating Character-

istic) curves without strengthening initial weight of a prior

known bot nodes for computing PageRank. Therefore, all

hosts presenting a hub or authority value higher than a

threshold are considered as bots. In this figure, this threshold

varies for calculating the TPR (True Positive Rate) which

is the proportion of bots correctly detected and the FPR

(False Positive Rate) which is the proportion of benign hosts

detected as bots. Both of these metrics are calculated in

terms of number of counted IP addresses. As highlighted,

the hub values are better to figure out bots. It means that

the client role of P2P bot is more discriminative than the

server role. There are also differences between topologies.

More precisely, Kademlia botnet detection is very effective

because this protocol is fault tolerant by guaranteeing multiple

paths for a single destination which is similar to increase the

linkage level of nodes measured by PageRank. Chord topology

is more compact (without redundant paths) and that is why

the detection accuracy is a bit lower. Bots based on these

topologies are well detected (close to 100%) with few false

positives (3%). Finally, a Koorde-based botnet is the worst

to detect since the linkage level of node is very low due

to its underlying topology (each node has few connections

and shares them with its direct neighbors). However, botnets

usually relies on robust overlay like Kademlia since Koorde

can be easily disrupted by disconnecting few nodes.



Fig. 3: Botnet detection

Knowing initially few bots using honeypot (around 20), the

accuracy is improved (TPR = 99% with FPR < 0.1% knowing

initially). However, this paper is not dedicated to accuracy

results which are fully covered in [12].

C. Efficiency

We generated different datasets from the original one by

extracting a subpart or by adding links in order to test

configurations having between 100k and 300 millions of

links. Preliminary experiments have shown that the number of

nodes has no impact on the execution time. Because scores

are propagated through them, the number of intermediate

MapReduce key-value pairs is dependent on the number of

links. Furthermore, the execution time of a single iteration is

approximatively the same for a given configuration because

the algorithm do exactly the same process at each iteration.

In figure 4, the configuration of the cluster varies with

different numbers of slave nodes. As previously argued, the

number of links highly impacts on the execution time. Because

the x-axis has a logarithmic scale, the curves seem exponential

but they are almost linear with different slopes (except for con-

figurations having few links). For example, the execution time

is multiplied by about 6 when the number of links is multiplied

by 10 with 8 slaves. Obviously, when more machines are

involved for running tasks, the execution time decreases. With

few links, the differences are small as highlighted in figure

4(b). In fact, distributing the work using MapReduce entails a

lot of additional tasks (data splitting, reduce phase) and also

more delays due to network communications. Therefore, for

problems with few links and so few computations, MapRe-

duce is useless. Our experiments show that using Hadoop

(#slaves > 1) is useful with at least 1 million links (figure

4(b)) and having more than 4 slave machines is efficient with

at least 10 millions links which is the case with the original

dataset (57 millions). Finally, using all our machines reduces

the execution time by 7 comparing to a single machine with

a huge dataset since this ratio seems stable for 100 millions

links or more.

VI. RELATED WORK

Using NetFlow records were also employed in the past from

detecting various attacks including botnets [25]. As well as the
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Fig. 4: Average execution for a single PageRank iteration

whole paper, this section focuses on traffic analysis for botnet

detection, which is one of the major threat in Internet.

Since tools and/or datasets of other approaches are not

publicly available, only qualitative aspects are considered. By

tracking hosts looking for specific DNS names, infected hosts

might be detected [26]. For P2P botnets, a honeypot must be

active to retrieve infected hosts by crawling the P2P network

[27]. Another way to detect bots is to look for malicious

activities such as spamming or scanning [28]. Correlating such

activities with potential C&C communication patterns may be

helpful [29], [30].

Considering our approach, there are also other works con-

sidering graphs especially host interactions [31] and complex

analytic methods may be employed to detect P2P networks

[32], [33]. Such traffic classification is also performed by

BLINC [34]. Discovering service or host dependencies may

be helpful for network management tasks [35]. BotGrep [36]

uses on a random walk technique to discover botnet cluster

within an interaction graph. Link analysis is leveraged in

our previous work based on flow dependency graphs [37]

and host dependency graphs [38] for finding the root cause

of attack traffic. This technique is refined in this paper to

detect botnets. Although in [12] we focused our evaluation

regarding detection performance in different scenarios, this

paper is dedicated to show the viability of the approach in a

cloud-computing environment by highlighting computational

performance benefits and specific use cases where it is more

relevant (depending on the underlying data to deal with). Other

works, like [39], aim at dividing the traffic to analyze among

different intrusion detection systems before correlating the

generated alerts. Finally, [40] is the closest relative work since

they propose also a cloud-computing based botnet detection.

The main difference with our approach is that it is focused

on detecting malicious activities, especially spam, to create

a correlation graph. Our model is dedicated to botnet C&C

channel always used even no malicious activity is observable.

VII. CONCLUSION

This paper describes a scalable method for detecting P2P

botnets regarding the relationships between hosts. Our evalu-



ation shows a good detection accuracy and a good efficiency

based on a Hadoop cluster. Our approach is easily usable, at

low costs, thanks to existing cloud computing services such

that Amazon EC2 [16]. We plan to increase our cluster capac-

ity and to execute all steps including the dependency graph

generation on Hadoop. In the future, cooperation between ISP

will be also studied and involves many issues, in particular

related to exchange anonymous information.
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