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 ABSTRACT  

Neuroanatomic analysis depends on the reconstruction of complete cell shapes. High-

throughput reconstruction of neural circuits (“connectomics”) using volume electron 

microscopy requires dense staining of all cells, where even experts make annotation errors. 

Currently, reconstruction rather than acquisition speed limits the determination of neural 

wiring diagrams. We present methods for the fast and reliable reconstruction of densely 

labeled datasets. Our approach, based on manually skeletonizing each neurite redundantly 

(multiple times) with a special visualization/annotation software tool (KNOSSOS), is ~50 

times faster than volume labeling. Errors are detected and eliminated by a “redundant-

skeleton consensus procedure” (RESCOP), which uses a statistical model of how true 

neurite connectivity is transformed into annotation decisions. RESCOP also estimates the 

consensus skeletons’ reliability. Focused re-annotation of difficult locations promises a 

rather steep increase of reliability as a function of the average skeleton redundancy and 

thus the nearly error-free analysis of large neuroanatomical datasets.   
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INTRODUCTION  

The reconstruction of neuronal circuits has been a central approach toward 

understanding the function of the nervous system since the earliest studies by Golgi and 

Ramòn y Cajal1-2. While many neurons extend over tens of centimeters, the caliber of thin 

neurites can be as small as 40 nm (spine necks3).  This range of length scales is bound to 

challenge any method aimed at the extraction of neuron morphology from the data. For 

sparsely stained tissue, with only a small fraction of all neurons labeled, such as with the 

Golgi method2 or by selective dye injection4-5, imaging techniques operating at a resolution 

of around 1 µm are sufficient to follow all processes. This holds true even if the neurite 

caliber falls well below the imaging resolution, because in very sparsely stained data the 

identity of each neurite is easily established. Manual reconstructions of individual neurons 

from such data are, therefore, assumed to be highly reliable, even though little validation of 

this reliability has been reported. Almost all available neuroanatomical data at single-cell 

resolution stem from such experiments, but as fluorescence imaging data from samples 

with a much higher staining density are becoming available (hundreds of neurons per 1 

mm3, labeled using various genetic or virus-based techniques6-7), high reconstruction 

reliability can no longer be presumed. 

For the reconstruction of complete cellular wiring diagrams (“connectomes”8-9) assuring 

reconstruction reliability is even more difficult because the morphologies of all neurons, 

not only those of a small subset, have to be extracted. This may eventually be possible at 

light-microscopic resolution by staining all neurons with a sufficient number of 

distinguishable colors7, 9 but otherwise requires imaging at a resolution high enough to 

follow all neurites in densely packed neuropil (discussed in10). Such a reconstruction was 

performed for the entire nervous system (302 neurons) of  the nematode C. elegans11 using 

serial-section electron microscopy.  
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Recently developed techniques for automated volume electron microscopy12-15 enable 

the imaging of volumes large enough to contain more complex neural circuits16. However, 

extracting information about neuron morphology and circuit structure from such data poses 

two major challenges. First, the total neurite path length in many neural circuits is typically 

in the range of meters (at least 0.3 m for small circuits such as a (100 µm)3 region of retina, 

and as much as 400 m for a mouse cortical column10). Using currently available software 

tools for neurite contouring (e.g., Reconstruct17) the complete analysis of such circuits is 

very slow and thus prohibitively expensive. Contouring every neurite for a path length of 

0.3 m would require an estimated 60,000 hours (30 person years) of annotation time. 

Reconstruction accuracy is the second major concern. While for sparsely stained data the 

selectivity of the stain makes following the neurites easy, connectomic reconstruction 

requires a large number of decisions (as many as one every ~4 µm in the retina) about 

whether to continue, branch, or terminate a neurite. Some of these decisions are difficult 

and, more importantly, because they have to be made constantly while annotating, their 

reliability depends on the uninterrupted attentiveness of the human annotator. As a third 

obstacle, synapses must be identified with sufficient accuracy. 

Here, we describe a set of tools that substantially improve both the speed and the 

accuracy of neurite reconstruction. We chose to annotate the data by following a single 

core line along the inside of each neurite, creating a “skeleton” representation of each 

neuron’s morphology. When using the KNOSSOS software tool, which we developed for 

the convenient browsing and annotation of large datasets, we observed a 50-fold (range 20-

130-fold) increase in the amount of neurite path length reconstructed per unit time. We 

quantified discrepancies between multiple (redundant) skeletons of the same neurite and, 

based on their distribution, optimized the correction of errors and the creation of a 

consensus skeleton (which is actually a bundle of closely spaced skeleton pieces). We call 

our method “REdundant-Skeleton COnsensus Procedure, RESCOP”, with ‘redundant’ used 
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in the sense of “multiple redundant systems working in parallel to increase reliability”. We 

show that the accuracy of the consensus skeleton quickly rises with the number of 

redundant skeletons, even when employing only slightly trained annotators. We have used 

our set of reconstruction tools to skeletonize all rod bipolar cells in a block of mouse retina.  
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RESULTS  

Browsing large-scale EM data 

We first developed a software tool (KNOSSOS, s. Supplementary Movie) for browsing and 

annotating large-scale volume data. Such data are generated,  for example, by serial block-

face electron microscopy (SBEM12). At nanometer resolution, imaging volumes that are 

large enough to contain entire circuits yields datasets that are at least several hundreds of 

gigabytes in size. KNOSSOS was designed to make 3D navigating and viewing of such 

data sets convenient. KNOSSOS allows quick navigation along all axes by selectively 

loading only the data surrounding the currently viewed location. Neurites can be oriented 

along any direction in dense neuropil and can often be followed more conveniently using 

views other than the imaging plane (the block face in SBEM), in particular if the data, as is 

the case for SBEM, are nearly isotropic in resolution. KNOSSOS, therefore, displays three 

orthogonal views of the data (see also V3D18), which were found to be essential to navigate 

along neurites oriented obliquely to the slice plane. KNOSSOS runs smoothly on laptops 

with the data located on an external hard drive. This allowed us to distribute the work load 

to a large number of non-expert annotators (in our case >80 undergraduate students).  

Fast neurite reconstruction by skeletonization 

In order to densely reconstruct even a local neuronal circuit, at least several hundred 

millimeters of neurite need to be correctly followed. This can, in principle, be done by 

contouring (volume labeling) of neurites (Fig. 1a). However, contouring is slow (200-400 

hours per mm of neurite length10).  

KNOSSOS, therefore, provides a skeletonization mode (Fig. 1b, Supplementary Movie). 

The user starts at a location within a neuron (which we call “seed”), for example the cell 

body, and places a marker (which we call “node”, Fig. 1c). Then, the user advances 

through the data along a neurite, and places nodes at intervals of approximately 7-10 image 
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planes, approximately at the center of the neurite. Importantly, the user can move in any of 

the cardinal directions, and can place nodes in any of the three orthogonal view ports. 

Sequentially placed nodes are connected by line segments (which we call “edges”, Fig. 1c). 

When a location where the neurite branches is encountered, the user designates the current 

node as a branch point, and is later directed back to this branch point after completing one 

of the branches. Skeletonization allows the user to focus annotation to the core line of a 

neurite. We found that skeletonization reduced annotation time to 5.9±2.8 hours per 

millimeter path length, which is roughly 50-fold (range 20-130-fold) faster than fully 

manual volume labeling (Fig. 1d, Supplementary Fig. 2).  

Discrepancies between skeletons 

We next investigated how frequently annotators disagreed when skeletonizing the same 

neurite, starting from the same initial location. Figure 2 shows the overlay of 2 skeletons 

generated by two experts (i.e., experienced neuroscientists), both starting at the soma of an 

amacrine cell in a SBEM dataset of rabbit retina (dataset E1088, s. Methods). The 

skeletons disagreed at 12 locations along the dendritic tree, which has a total path length of 

0.8 mm. Most of the disagreements (10 out of 12) were caused by missed branch points 

(Fig. 2, locations 1, 2, 4, 6-12, see Supplemental Material for image stacks centered at 

those disagreement locations). Upon re-inspecting these 10 locations, both annotators 

quickly reached agreement, which suggests that the missed branch points had simply been 

overlooked. This implies that continuous attention is needed in order not to miss any of the 

branches along the neurite. Two of the disagreements (locations 3, 5) were not missed 

branches but instead were locations where one annotator continued the neurite skeleton and 

the other annotator did not. While one of these two locations (location 3) was easily 

resolved, agreement between the annotators could be reached for location 5 only upon 

close inspection, which means this location was truly difficult to annotate. In this case, the 

difficulty was caused by the local neurite geometry (a tip-to-tip contact). We similarly 
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found both attention- and difficulty-related errors when skeletonizing axons in fluorescent 

data (imaged by confocal microscopy; data not shown). It is this variation in difficulty that 

can be captured by our statistical model of neurite detectability, introduced below.  

These initial results indicated that even experts make annotation errors and that skeletons 

have to be cross-checked. We, therefore, proceeded to further quantify skeleton accuracy 

across a number of annotators, and then developed an algorithm to find the consensus 

skeleton and to estimate its accuracy.  

Error quantification 

To detect errors in the skeletons, we asked multiple annotators to skeletonize the same 

neurite (Fig. 3a). For each edge (line segment, s. above), that one of the annotators had 

created, we then measured how many of the other annotators agreed with the decision to 

create this edge (Fig. 3b). Our agreement measure is based on the following reasoning: 

when one annotator skeletonized an edge he/she made the decision that the neurite 

continues at the location of this edge. A second annotator agreed with this decision if 

his/her skeleton also reaches the edge location and continues beyond it. Conversely, a 

second annotator disagreed with this decision if his/her skeleton reaches this location but 

does not continue. To detect and distinguish these two cases we used the following 

procedure to evaluate the proximity between skeletons. 

To evaluate an edge created by one of the annotators we first considered only the edge 

in question plus a few edges on each side (skeleton A, Fig. 3b), yielding an evaluation 

spotlight moving along the skeleton (Fig. 3b). The size of the spotlight was a sphere of on 

average 700 nm radius, depending on how closely the annotator had placed the neighboring 

skeleton nodes. (Fig. 3b; for the choice of the spotlight size s. below and Methods). We 

then temporarily removed the edge in question, splitting the skeleton into two pieces (Fig. 

3c), and then measured the distances between each of these two skeleton pieces and all the 

other annotators’ skeletons (skeletons B, C, D, etc). If another annotator’s skeleton 
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(skeleton C in Fig. 3b,d) was close enough to both skeleton pieces, this other annotator was 

considered to have voted for the edge in question (agreeing vote, Fig. 3d). Conversely, if 

another annotator’s skeleton was close to only one of the skeleton pieces (skeleton D in 

Fig. 3b,e), this other annotator was considered to have voted against the edge in question 

(disagreeing vote, Fig. 3e), because this corresponds to a skeleton reaching the location of 

the edge but not continuing. If the other skeleton was too distant from both skeleton pieces 

it likely belonged to a different neurite and was, therefore, disregarded. Skeletons were 

considered close enough when the root-mean-square distance between the nodes of the 

skeleton piece and the edges of the other annotator’s skeleton was smaller than 625 nm.  

The value of this maximal distance, and the value of the spotlight radius used above were 

determined by searching for those parameters that minimized the disagreements between a 

50-fold and 15-fold consensus skeletons (s. below and Methods). Note that this procedure 

for measuring the agreement between skeletons requires a sufficient node density but does 

not require the node density to be the same or the node locations to be in register for 

different skeletons.  

After applying this distance measurement to all edges in all annotator’s skeletons, we 

obtained for each edge the number of agreeing votes and the total number of votes cast for 

that particular edge (the sum of agreeing and disagreeing annotators). We then counted the 

number of edges that had a certain combination of agreeing and total votes (say, 6 agreeing 

votes out of 10 total votes), and reported these for all encountered combinations of 

agreeing and total votes in a 2-dimensional vote histogram (Fig. 3f).  

The distribution of inter-annotator agreement 

We had one amacrine cell (~600 µm total neurite path length) skeletonized by 50 different 

annotators (s. Fig. 4e, left). Before voting we divided the set of 50 skeletons 3 times into 

two subsets, to which skeletons were randomly assigned. This created 6 subsets of 25 

skeletons each. Their vote histograms were calculated separately, in order to later assess 
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the variability of our procedure, but for now we used the sum of these vote histograms 

(Fig. 3f, left panel). Note that most parts of the amacrine cell were found and annotated by 

all (25 total votes) or almost all (~20-24 total votes) annotators (Figs. 3f, 4e). Since some 

branches were followed only by a few annotators the vote histograms also contains entries 

for small number of total votes (Fig. 3f). In this histogram, we found complete agreement 

between annotators (number of agreeing votes equal to the total number of votes, evaluated 

for edges with at least three votes) for 68 % of all locations, for 8 % only one annotator 

disagreed, and 10 % of the locations were annotated by only one annotator. The locations 

where one annotator disagreed can be interpreted, at least for a large number of total votes, 

as having been missed due to inattention. The locations found by only one annotator were 

interpreted as erroneous continuations or branches. Most of the remaining 14 % of 

locations, where more than one annotator disagreed, are presumably more difficult 

locations in the data, because it is unlikely that two or more attention-related mistakes 

occur at the same location.  

To measure annotation agreement for different kinds of neurites from different types of 

cells, we also calculated the vote histogram (Fig. 3f, right panel) for 98 skeletonized 

neurite fragments densely packed in another region of the same data set (Supplementary 

Fig. 4, 166,472 annotated edges with a total path length of 43.2 mm). In this case the total 

number of votes was lower on average (3.2±2.9, Fig. 3f, right panel) and varied much 

more. In both cases most annotators agreed for most edges, i.e. the votes were concentrated 

near the diagonal of the vote histogram. The vote histograms can be used to compare the 

difficulty of datasets, provided that the annotators were similarly trained and similarly 

attentive.  

Skeleton consensus rules 

Our next goal was to find the consensus skeleton based on multiple annotations of the same 

neurite by eliminating edges that were unlikely to be correct, based on the number of 
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agreeing and disagreeing votes.  The intuitive choice for whether to accept or eliminate an 

edge is the majority vote, but it is not clear whether this is also the optimal decision. We, 

therefore, analyzed the annotation process in order to determine the rule to find the best 

consensus skeleton and to estimate the residual error rate of the consensus skeleton.  

The model for annotation decisions 

To describe the annotation process we used the following decision model, which reflects 

the fact that the annotation difficulty varies with location (Fig. 3i,k). While two 

intracellular voxels are either connected (i.e. belong to the same neurite) or not connected 

(i.e. belong to different neurites), this ground truth is to some degree obscured by fixation, 

staining, and imaging of the sample at limited resolution and signal-to-noise ratio. This 

makes annotation an inherently noisy process, with a probability, pe, for each pair of points 

that annotators will create an edge, i.e. label the points as connected (Fig. 3i,k, middle, we 

also refer to pe as edge detectability). The edge detectability depends on whether the points 

are actually connected (see below), but it also varies as a consequence of the local neurite 

geometry (wide, straight, or bundled neurites are, for example, easier to follow) and local 

staining quality.  

In this model, the decision to create an edge between a pair of points corresponds to a 

biased coin toss, with the bias equal to the edge detectability pe. Therefore, the decisions of 

the annotators will follow binomial statistics with a bias of pe (Fig. 3i, bottom, Methods 

Eqn. 4). Obvious neurite continuities (where the edge detectability is close to 1, pe ≈ 1) and 

neurite discontinuities (where the edge detectability is close to 0, pe ≈ 0) will both result in 

a high agreement amongst annotators. Difficult locations have edge detectabilities pe closer 

to 0.5.  

We cannot determine the edge detectability, pe, at a given location directly (except by 

annotating it a very large number of times). However, for any assumed distribution of edge 

detectabilities p(pe) in the data, we can compute the expected distribution of agreeing and 
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disagreeing votes (predicted vote histograms, for details see Eqns. 5,7, Methods). 

Comparing measured and predicted vote histograms (Fig. 3f vs. g), allowed us to search 

for the optimal distribution of edge detectabilities p(pe), i.e. that best explained the 

measurements.  We found that the optimal distribution of edge detectabilities p(pe) consists 

of a number of peaks with a large peak near one (Fig. 3h), which reflects the high 

frequency of obvious neurite continuities.  Note that because we cannot measure zero total 

votes the fit is not well constrained near pe=0. In fact, a delta function at pe=0 can be added 

to the distribution of edge detectabilities p(pe) without changing the goodness of the fit and 

without affecting the following results.  

To explore how variable the distribution of edge detectabilities p(pe) is for different 

annotations of the same cell, we separately fitted vote histograms for the 6 sets of 25 out of 

50 skeletons and found similar distributions of edge detectabilities p(pe) (Supplementary 

Fig. 5c,d); What varies is the exact location of the peaks in the middle part of the pe range. 

We also determined the optimal distribution of edge detectabilities p(pe) for the vote 

histogram of the dense annotation (Supplementary Fig. 4). Again, we found the same 

general structure, with a strong peak near 1 and several peaks throughout the rest of the 

range (Fig. 3h, right).   

Computing the consensus skeletons 

We next used the annotation-decision model to find the consensus skeletons. We 

estimated (Eqn. 2) the edge detectability pe (more precisely, its distribution) for each edge, 

given the agreeing and disagreeing votes. We made the assumption that true connectivity 

results in above-chance edge detectability (pe > 0.5).  This implies that the annotation 

decisions will converge towards the ground truth as the number of redundant annotations 

increases. When training the annotators, we encouraged this by providing training 

examples rich in difficult locations.  
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This assumption about the relationship between the detectability of an edge pe and its 

actual connectedness is likely not to be entirely correct. The number of locations for which 

this assumption is incorrect is, however, likely to be small (the crossover region between 

the sketched curves in Fig. 3k, middle panel).  

We, therefore, based our consensus rule for an edge on whether the estimated distribution 

of edge detectability given the agreeing and disagreeing votes cast for that edge, 

p(pe|(T,N)), indicated that the edge at that location was more likely to be detected than not. 

(Fig. 4a, for details see Methods, Eqn. 3). By evaluating this rule for all possible 

combinations of agreeing and disagreeing votes, we obtained the optimal decision 

boundary in the vote histogram between “eliminate edge” and “keep edge” (white line in 

Fig. 4b, note that this optimal decision boundary is substantially below the majority rule, 

i.e. edges with less than majority agreement are typically accepted). Since the consensus 

rule depends on the distribution of edge detectabilities p(pe), the optimal boundary is 

generally different for different neurite datasets (Fig. 4b top vs. bottom). 

Because edge elimination splits some skeletons (Fig. 4c), it is necessary to determine 

which skeleton pieces still belong together. Whenever annotators had started from a soma, 

we simply checked whether there was still a connection between the skeleton pieces and a 

seed region in the proximal dendrite (Fig. 4c). Figure 4e shows how for the 50-fold-

annotated cell, the consensus skeleton now lacks a large number of (presumably) erroneous 

neurites. In other cases, multiple annotators were instructed to start at different seed points 

along the same neurite (Supplementary Figs. 4,5, see Methods). There, finding the 

consensus skeletons is substantially more complicated, but our model still yields 

reasonable consensus skeletons. Note that each consensus skeleton is actually a bundle of 

closely spaced skeleton pieces (Fig. 4e, right panel).     
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Annotator quality  

So far we have assumed that the error rates of different annotators are similar. To 

determine how much error rates vary across annotators, we assessed for each annotator 

how close his/her skeletons ran to those of others by calculating 1) the average number of 

total votes for or against that annotator. This measure, when low, indicates that an 

annotator had followed many neurites in little agreement with the other annotators; and 2) 

his/her average ratio of agreeing to total votes (Fig. 4d). For the majority of annotators, the 

average ratio of agreeing to total votes was between 95% and 98% (Fig. 4d). The worst 

performing annotator (circle in Fig. 4d, black skeleton in Fig. 4e, left) generated a skeleton 

with more than 4 times the total path length, even entering additional cells. The best 

annotators, on the other hand, had as few as 2 disagreements with the 50-fold consensus 

skeleton. 

 

The residual error rates of RESCOPed skeletons 

To estimate how many errors one would still have to expect in the consensus skeletons, we 

computed the error probabilities for each of the decisions to eliminate or accept an edge. 

As described above, an edge is eliminated whenever the vote count for this edge indicated 

that it was more likely than not that the edge was incorrectly annotated. However, there 

remains an error probability that the edge was in fact correctly annotated and should have 

been accepted. To calculate the error probabilities for eliminated edges and accepted edges 

we integrated the distributions of edge detectability given the agreeing and disagreeing 

votes cast for that edge, p(pe|(T,N)), for pe>0.5, and pe<0.5, respectively (Fig. 4a). Because 

the distribution of edge detectability given the votes p(pe|(T,N)) becomes more sharply 

peaked as the total number of votes increases (Fig. 5b), the error rate for a given ratio of 

agreeing to total votes decreases.  
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As the number of annotators rises the accuracy of the consensus skeleton increases (Fig. 

5c) initially steeply but then more slowly. The reason for this slowing is that, as the 

detectability of an edge approaches 0.5 the number of votes needed to achieve a given error 

rate diverges (edges with an edge detectability of exactly 0.5 are fundamentally 

undecidable). Therefore, near an edge detectability of pe=0.5 the error for a large number 

of votes N is very sensitive to the shape of the probability distribution, p(pe), and the error 

predictions for a large number of votes can scatter substantially for different neurites, or 

even different groups of annotators (s. Supplementary Fig. 5d). 

We next compared this error-rate prediction with the actual accuracy of the consensus 

skeletons. We randomly selected from the 50 skeletons sets of 25, 10, 5, and 1 skeletons 

(n=6, 15, 20, 10, respectively) and computed the consensus skeleton for each set 

independently (Fig. 5a). Then we visually assessed the differences between all those 

consensus skeletons and the 50-fold consensus skeleton (which we took as reference). We 

found the average number of disagreements to be 1.0±0.4, 2.1±0.3, 7.2±0.9, and 15.5±3.5 

(mean ± s.e.m.) for the 25-fold, 10-fold, 5-fold and single skeletons respectively, 

corresponding to mean distances between errors of  600.2 µm, 281.3 µm, 83.4 µm and 38.7 

µm (Fig 5c, top panel).  

So far we have considered the case where the entire length of neurites is multiply 

annotated. Since for most locations connectedness is easy to determine, increasing the 

overall redundancy is wasteful. We, therefore, explored focused re-annotation: repeatedly 

examine each edge until a given accuracy (which RESCOP provides) is reached rather than 

annotating each edge a fixed number of times. This should concentrate the annotators’ 

effort onto difficult locations. In order to determine the redundancy-accuracy tradeoff for 

focused re-annotation we performed Monte-Carlo simulations and found that for focused 

re-annotation the accuracy should rise much more steeply, almost exponentially, with the 

average redundancy (Fig. 5c).  
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Variation of error rate with data quality 

To test how the error rate depends on the staining method and on the data quality, we 

annotated a conventionally stained data set (K0563, s. Supplemental image stacks) at its 

original resolution (12×12×25 nm3 voxels), with added noise (Gaussian, s.d.=20, original 

gray value range (101, 196), 3rd and 97th percentile, respectively), and at half the resolution 

(24×24×50 nm3 voxels) (Fig. 5d). We found that error rates were actually slightly lower 

for the added-noise case, possibly due to increased attention, but that for the reduced-

resolution data annotation reliability was substantially degraded (Fig. 5c, lower panel). 

 

Dense reconstruction 

To illustrate the feasibility of dense neuron reconstruction from SBEM data using the tools 

presented here, we selected all rod bipolar cells (RBCs, Fig. 6) from a SBEM data set that 

is in the process of being skeletonized (data set E2006, currently at 2 fold redundancy, 

Helmstaedter et al., in preparation). The E2006 data set covers a different block of tissue 

(sized 80 µm x 117 µm x 135 µm, s. Methods), came from a mouse rather than a rabbit 

retina, was imaged at a higher resolution, and stained more intensely. RBCs were initially 

identified on the basis of geometrical parameters using automatic clustering (Helmstaedter 

et al., in preparation). The selection was then refined by manually removing 23 of 137 cells 

because they were obviously cone bipolar cells (14 cells) or had an aberrant morphology, 

which indicated a substantial annotation error (9 cells), not yet eliminated due to the only 

2-fold redundancy. The remaining 114 cells displayed the tiling patterns of axons and 

dendrites expected for rod bipolar cells (Fig. 6c,d). The annotation speed for these 

skeletons was 5.3 h per mm path length (the RBCs had an average neurite length of 

368±103 µm, mean±s.d.). Using the model described above, we expect about 10 errors per 

cell for double annotation. To reduce the error rate to one per cell, a redundancy of 18 or 

19 (and a redundancy of 4 on average for focused re-annotation) should be sufficient. 
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These numbers indicate that it is feasible to reconstruct all bipolar cells and all the 

dendrites or dendrite fragments of all ganglion cells with their somata in such a block of 

tissue using ~7500 work hours (s. Methods). 
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DISCUSSION  

Dense vs. sparse reconstruction 

Our data show that the dense reconstruction of neurites in SBEM volume electron 

microscopy data is feasible, but also that manual annotations contain errors, even when 

performed by experts. Many of these errors are caused by insufficient attention, 

particularly where neurites branch (Figs. 2,3).  This problem does not occur when the 

labeling is sufficiently sparse but is prevalent for densely stained tissue, as is needed for 

any kind of connectomic analysis of neurite networks. Branching-type errors are likely to 

occur even for light-microscopic data as soon as the stained-neurite density is so large that 

the frequency of close encounters between neurites becomes substantial, as it does with 

even a moderate fraction of neurons stained. It is likely that annotation errors are 

widespread, but they are rarely acknowledged, let alone quantified. Annotation error rates 

are clearly related to the information content and quality of the staining (Figs. 2,5). For the 

study of local synaptic geometry, where a solid body of serial EM studies exists, a modest 

error rate will only rarely affect the conclusions. Error rates need, however, to be much 

lower for connectomic neuroanatomy, where a single missed branch point typically means 

thousands of lost or wrongly attributed synapses. Other errors are less costly; a missed 

spine neck would mean the loss of a few synapses at most. We have so far only quantified 

errors caused by incorrect neurite reconstruction. While the identification of synapses can 

be error-prone as well, one such error affects only one particular synapse, with a much less 

severe effect on the connectomic reconstruction error than the typical neurite continuity 

error has.  

The few published reconstructions of entire neurites from EM data were performed by 

highly trained and dedicated experts, and extensively proof-read by the same or other 

experts3, 11, 19-20. For the C. elegans connectome a number of corrections were published 

recently21, using the original image series. Some form of proof-reading clearly is necessary 
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during the connectomic reconstruction of neuronal networks22-23. Proofreading existing 

skeletons is, however, not only very tiresome (Helmstaedter et al., unpublished) but may 

well be less efficient than redundantly (multiply) annotating the same neurites followed by 

the detection of inconsistencies. Different from conventional proofreading, redundant 

annotation also allows the quantification of the annotation difficulty (Fig. 5c).  

 

Mass annotation, distribution of skill and training levels 

Finding the consensus of multiple annotations using RESCOP may reduce the error rate 

to a level sufficient for almost any application of connectomic circuit reconstruction. In 

addition, RESCOP estimates of the number of reconstruction errors remaining in the 

consensus skeleton, and points to likely locations for those errors, a prerequisite for 

focused re-annotation. Our analysis also shows that the optimal vote threshold (the 

decision boundary) can be substantially different from majority voting (Fig. 4b). 

RESCOP allows the creation of connectomic reconstructions with a known accuracy 

while using annotators that have no prior neurobiological knowledge and are only slightly 

trained. Even if the error rate is rather high for individual annotators, it should be possible 

to reduce the error rate in the consensus skeleton substantially, with only a moderate 

increase in the average redundancy if focused re-annotation is used. Most of the effort 

could then be concentrated onto difficult locations (pe near 0.5) which require a higher 

redundancy to reach a given reliability. In our data, difficult locations appear to be rare, as 

the prevalence of vote ratios near one shows (Fig. 3). The low density of difficult locations 

also means that ambiguous vote ratios (T/N near 0.5) are rare and the fits for p(pe) are not 

very well constrained in the region around pe=0.5, making estimates of error rates for large 

N somewhat uncertain (Supplementary Fig. 5). Ultimately, the error rate will be affected 

by the assumption we made that an infinite number of annotators will converge to the 
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correct decision. This limits the validity of the accuracy predictions (Fig. 5c) for very large 

N. We expect that the availability of improved staining and imaging methods will further 

reduce the frequency of locations at which the data biases even the expert towards the 

wrong conclusion. 

 One advantage of using weakly trained annotators is that the reliability increase can be 

achieved at a lower cost than with expert proof readers, who might still make attention-

related errors at an unacceptable rate (Fig. 2); Also, requiring PhD-students or post-docs to 

do several thousand hours of annotating is hardly a good use of their talents. Finally, 

untrained personnel can in many academic settings be recruited quickly and on a temporary 

basis. The ability of RESCOP to automatically direct annotator effort and assess annotator 

quality makes it well suited for web-based crowd sourcing. All this makes it practical to 

scale the annotation capacity up, limited only by the available budget. RESCOP thus 

removes a major obstacle to high-throughput circuit reconstruction. This is demonstrated 

by our reconstruction of bipolar cells (Fig. 6), which took 5.3 h per mm of skeleton length, 

roughly 60 times faster than volume labeling.    

Evaluation of automated reconstruction algorithms 

Computer algorithms, especially those using machine learning24-26 can help with the 

reconstruction of neural circuits. In the long run, such tools may well replace or at least 

greatly reduce the need for manual annotation. However, automatic methods need to be 

evaluated by comparing them to a reliable ground truth. The consensus among manual 

annotations can serve as such a ground truth, in particular when, as is the case for 

RESCOP, the error rate is known. Such an estimation of annotator errors is, incidentally, 

not available for other major benchmark datasets in machine learning (e.g., Berkeley 

Segmentation Dataset27).  In medical imaging (MRI, CT), expert annotation (by trained 

radiologists) is the “gold” standard, but those expert annotations frequently differ 
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substantially28. Therefore, algorithms to estimate optimal annotations have recently 

received increasing attention (e.g., STAPLES29). Often, majority voting is found to be 

close to optimal30. The approach presented here is a “decision theoretic” one, which means 

finding the optimal decision criterion given a model of the belief formation (or decision) 

process31. 

Combining skeletons with automated methods 

One major shortcoming of skeleton annotations is that they do not produce a complete 

volume representation, which is especially important for detecting contacts between 

neurites, a prerequisite for synapses. This problem can, however, be solved (Helmstaedter 

et al., unpublished) by combining high-accuracy long-range manual annotation, as reported 

here, with locally accurate but globally error-prone automated volume reconstructions24-26. 

Such hybrid techniques should reduce the manual effort to create full volume 

representations by as much as two orders of magnitude and will thus enable the 

connectomic reconstruction of much larger volumes than previously possible. 
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 FIGURE LEGENDS  

Figure 1 Comparison of volume and skeleton annotation. Examples of volume labeling (a) 

and skeletonization (b) for the same two neurite fragment; cell-surface labeled data (dataset 

E1088, s. Methods). (c) Sketch of a neurite skeleton. (d) Rate of time consumption for 

volume labeling10 and for skeleton annotation (data from this study; annotated using 

KNOSSOS, s. Supplementary Movie), for both cell-surface labeled data (black) and the 

conventionally stained dataset (K0563, gray, s. Fig. 5d). Error bars: range (volume 

labeling), s.d. (skeletoniziation). (e). Outline of the Redundant Skeleton COnsensus 

Procedure (RESCOP) as described in this article. Scale bar, 250 nm (a,b). 

Figure 2 Skeletonization by expert annotators. (a) Two complete skeletons of the same 

amacrine cell annotated independently by MH and KB, starting at the soma. (b) Same 

skeletons shown looking onto the plane of the retina. Green indicates agreement between 

the annotators and black disagreement (numbers indicate disagreement locations). For 

stacks of original data surrounding the disagreement locations see Supplementary 

Material. INL, inner nuclear layer, IPL, inner plexiform layer, GCL, ganglion cell layer. 

Scale bars, 5 µm. 

Figure 3 RESCOP, step 1: skeleton-to-skeleton agreement measurement. (a) Overlay of 7 

independent skeletons of the same neurite (bipolar cell axon) annotated by weakly trained 

non-experts, all starting at the soma (red cross). (b–e) The procedure used to measure the 

agreement between multiple annotators, shown schematically for one skeleton edge 

(dashed line) in skeleton A. (f) Histograms of edge votes for the 50-fold annotation of one 

cell (left panel) and the dense skeletonization of 98 neurites (right panel). Below: vote 

count vs. total number of votes (log scale). Histograms were corrected for multiple 

counting of the same location, s. Methods. (g) Predicted vote histograms for the single cell 

(left) and for dense skeletons (right), using the distribution of edge detectabilities pfit(pe) 

(h) that best predicted the respective histograms in f. (i,k) Schematic illustration of how the 

truth (top panels) is converted to detection probability (middle panels). Bottom panels: the 

probabilities for different T (number of pro votes) for one edge (i, binomial distribution for 

pe=0.7 and N=10 annotators); and for all edges combined (k, schematic).  
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Figure 4 RESCOP, steps 2 and 3: edge elimination and skeleton recombination. (a) 

Probability that the edge detectability pe has a certain value, given different edge votes, 

without prior knowledge (blue) and for the fitted distribution of edge detectabilities pfit(pe) 

(red).  Whether an edge is kept or eliminated depends on whether the integral of p(pe|T,N) 

for pe >0.5 (green shading) is larger or smaller than that for pe <0.5 (red shading). In this 

example edges with one agreeing vote (T=1) and 4 total votes (N=4) would be eliminated, 

those with T=2/4 to 4/4 would be kept. (b) Decision error, perr(T,N), with optimal (stepped 

line) and majority vote (dashed straight line) decision boundaries for the single-cell data 

(top) and the dense skeletonization data (bottom). (c) Elimination procedure illustrated at a 

branch point. Red, eliminated edges. Green, discarded skeleton pieces (d) Variation of 

annotator performance as reflected in the average total number of votes per edge and the 

average ratio of agreeing to total votes for each annotator. Circle: worst-performing 

annotator who skeletonized the black skeleton in (e). (e) 50 skeletons of one amacrine cell 

before (left) and after (right) edge validation and consensus computation. Scale bar, 5 µm. 

 

Figure 5 RESCOP, step 4: estimating the error-rate of RESCOP-ed skeletons. (a) Stereo 

view of two superimposed sets (red, blue) of 5-fold consensus skeletons. Black asterisks 

indicate disagreements. Total neurite path length: 600 µm. (b) Estimated detectability 

distribution for one edge for a fixed ratio of agreeing to total votes (T/N) of 0.33, but 

different numbers of total votes (N). Probabilities are given that the edge was erroneously 

kept. (c) Top panel: mean path length between errors as a function of the number of 

annotators. Solid lines: estimates using Eqn. 11, for the dense neurites (red) and for the 

single cell (green), crosses: errors detected by visual comparison with the 50 fold 

consensus skeleton for the consensus of 1, 5 (includes a), 10, and 25 skeletons (error bars, 

s.e.m.). Dashed lines: the average redundancy as a function of the target error rate for 

focused re-annotation (Monte-Carlo simulations). Bottom panel: Same analysis for a 

conventionally stained dataset annotated using the original data (blue), with added noise 

(magenta), and at half the resolution (cyan). (d) Examples from the original and degraded 

datasets. Scale bar, 250 nm.  
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Figure 6 Doubly annotated skeletons of 114 putative rod bipolar cells in a block of mouse 

retina. (a) View onto the block face. (b) The two skeletons for a single rod bipolar cell. (c, 

d) view onto the plane of the retina confined (as indicated in a) to the dendrites (c) and 

axons (d) of the bipolar cells,  respectively. Cells are colored randomly in c,d. Note how, 

for the most part, the dendrites and axons tile the space. Scale bars, 10 µm. 
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METHODS  

SBEM  

The retinas (from a 6-week old rabbit for E1088, used in Figs. 1–5 and Supplementary 

Figs. 1,4, from a P30 C57BL/6 mouse for E2006, used for the data in Fig. 6 and 

Supplementary Fig. 2, and from a P30 C57BL/6 mouse for K0563 were prepared for 

E1088 and E2006 to selectively enhance cell outlines by using HRP-mediated precipitation 

of DAB (for preparation details16) stained with osmium alone (E1088) or in conjunction 

with lead citrate (E2006). For K0563 a more conventional stain was used (same dataset as 

in16). All procedures were approved by the local animal care committee and were in 

accordance with the law of animal experimentation issued by the German Federal 

Government.  

The embedded tissue was trimmed to a block face of approximately 200 μm x 300 μm 

in size, and imaged in a scanning electron microscope with a field-emission cathode 

(QuantaFEG 200, FEI Company, Eindhoven, the Netherlands) and a custom-designed 

back-scattered electron detector based on a special silicon diode (AXUV, International 

Radiation Detectors, Torrance CA) combined with a custom-built current amplifier.  The 

incident electron beam had an energy of 3.6 keV and a current of ~100 pA for E1088, an 

energy of 3.0 keV and a current of ~100 pA for E2006, and an energy of 2.0 keV and a 

current of ~100 pA for K0563. At a pixel dwell time of 8 μs and a pixel size of 22 nm x 22 

nm (E1088), 6 μs and 16.5 nm x 16.5 nm (E2006), and 5 μs and 12 nm x 12 nm (K0563), 

this corresponds to doses of about 10 (E1088), 14 (E2006), and 22 (K0563) electrons per 

nm2, not accounting for skirting due to low vacuum operation. The chamber was kept at a 

pressure of 75 Pa of water vapor (E1088) or 130 Pa of hydrogen (E2006) to prevent 

charging. K0563 was conducting enough to be imaged in high vacuum. The electron 

microscope was equipped with a custom-made microtome similar to the one described in 
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12, which allows the repeated removal of the block surface at ~30 nm (E1088) cutting 

thickness (~25 nm for E2006 and K0563). 1999 (for E1088), 3200 (for E2006), and 5765 

(K0563) consecutive slices were imaged, resulting in data volumes of 2048×1768×1999 

voxels (E1088), 8192×7072×3200 voxels (4×4 mosaic of 2048×1768 images, E2006), and 

4096 × 5304 × 5760 voxels  (2 × 3 mosaic of 2048 × 1768 images, k0563), corresponding 

to volumes of 45×39×60 µm3, 135×117×80 µm3, and 50×65×145 μm3. For E1088 the 

imaged region spanned the inner plexiform layer of the retina and included parts of the 

inner nuclear and of the ganglion cell layers. E2006 spanned the retina from the ganglion 

cell layer to the cell bodies of photoreceptors. K0563 spanned the inner plexiform layer of 

the retina and included the ganglion cell layer and part of the inner nuclear layer. 

Consecutive slices were aligned off-line to sub-pixel precision by Fourier shift-based 

interpolation, using cross correlation-derived shift vectors.  

Reconstruction software  

Neurite skeletons were annotated using KNOSSOS (written in C by Jörgen Kornfeld 

and Fabian Svara according to specifications by the authors). KNOSSOS (s. 

Supplementary Movie) will be available for download after publication. 

Skeletonization  

Data were annotated using KNOSSOS and skeletons saved in an .xml format (called 

.nml), very similar to the NeuroML format32). Each file contains a list of the skeleton 

nodes, for each node a number of parameters (including index, coordinates, radius, 

viewport used for node placement, timestamp) is given, a list of the edges between nodes, 

and a list of nodes tagged as branch points (an example file is provided in the Supplement). 

Annotators were instructed as follows: (1) start at a given seed point (typically inside the 

soma of a neuron, for randomly dense seeding strategies, see below and Suppl. Material); 

(2) follow the neurite from that location, note that the neurite generally continues in two (if 

the seed point is in an axon or dendrite) or more (if the seed point is in a soma with more 
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than 2 primary neurites) directions; (3) while annotating, focus on the viewport that is most 

orthogonal to the current neurite axis (more recent versions (after v3.0435) of KNOSSOS  

determine  the appropriate viewport, using the vector between the two most recently placed 

nodes, and highlight it); (4) accuracy is more important than speed; (5) place a node 

approximately every 7-10 planes (corresponding to ~200-300 nm edge length for SBEM 

data); (6) generously place branch-point flags, in order not to miss branches. Annotators 

were trained on at least 3 neurons (typically 10-40 hours of training). Their training results 

were compared to annotations of the same neurons by experts, and disagreements were 

inspected and discussed. Annotators were only allowed to continue with novel tasks when 

the training performance was sufficient as judged by the trainer. 

Speed measurement 

To measure the speed of skeletonization we initially asked annotators to report the time 

spent annotating. This yielded 5-10h per mm of path length annotation time. Then we 

included a time stamps feature in KNOSSOS that records the time when each skeleton 

node is placed (Supplementary Fig. 2a). To determine the effective annotation rate we 

summed up the inter-node time intervals, excluded intervals longer than 7 minutes to 

account for breaks taken by the annotators. This assumes that no single location takes that 

long to contemplate (Supplementary Fig. 2b,c). 

Edge validation algorithm  

To test each edge in a given set of skeletons { Sα, Sβ, Sγ, .. }, that were created by 

multiple annotators (α, β, γ, ..) starting at the same seed point (for different re-seeding 

strategies, s. below), we used the following procedure. To test, say, edge Eαij, (which 

connects nodes Ni and Nj in skeleton Sα),  Sα  was first pruned beyond a sphere of radius rp 

around the center of the edge Eαij, yielding two skeleton pieces Sαi1, Sαi2 starting at the ends 

of Eαij (Niα  and Njα, respectively, Piece 1 and 2 in Fig. 3b). The cutoff radius rp was set to 

ensure that at least one further edge was included at each end of the tested edge: 
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E  is the length of the shortest of the edges connected to node Njα (for the 

50-fold single cell voting, rp was on average 28 voxels, i.e. ~700 nm). Next, one of the 

other skeletons, Sβ, was taken and the root-mean-squared node-to-edge distances were 

calculated between each of the skeleton pieces Sαi1, Sαi2, and Sβ using all nodes of Sαi1 and 

Sαi2. When both root-mean-squared distances were below a set threshold θ = 625 nm  this 

was a vote in favor of the tested edge (the agreeing-vote count Tαij and the total vote count 

Nαij for edge Eαij were both raised by one); if only one but not the other distance was below 

the threshold this counted against Eαij (only the total vote count Nαij for edge Eαij was 

raised by one). For both distances above the threshold no vote was counted because this 

indicated that Sβ was not near the tested edge. θ  was on the order of the typical neurite 

radius, which, however, varies widely; both θ and rp were selected so as to minimize the 

difference between the 50-fold-consensus skeleton and sets of 10-fold-consensus skeletons. 

If the edge was within 3 nodes of a neurite ending we used θend=2*rp as the threshold for 

agreement to account for the variability in the placement of terminal nodes. This procedure 

was repeated for all remaining skeletons Sγ, Sδ, ..., and T and N were finally both raised by 

one to account for the tested edge itself (seen as agreeing with itself). While the reliability 

of consensus skeletons is likely to be lower near endings, errors near endings are also less 

consequential since the number of misallocated nodes is small. 

Finding the consensus skeleton  

After validating all edges, the consensus skeleton was computed. Finding the consensus 

skeletons means eliminating those edges that are more likely to be wrong than correct. In 

order to decide whether to eliminate or keep an edge, given a vote (T,N), we calculated the 

conditional probability distribution of the hidden parameter pe (toward which T/N would 

converge for an infinite number of annotators):          
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Because we assumed that the annotators have no additional bias, an edge should be 
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For independent annotators the model for the likelihood is the binomial distribution,  
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To determine the most likely p(pe), we computed the predicted vote histograms, histpred, 

while varying p(pe), and compared histpred to the measured vote histogram, histmeas, in the 

following way. First we needed to correct for the fact that if, at one given location, T of N 

skeletons agreed, there will be a vote entry at (T,N) in the histogram for each of the T 

skeletons. We, therefore, divided the vote counts by T ( ( ) ( )* , ,meas meashist T N hist T N T= ). 

Since we cannot measure edges with T=0, the predicted vote distribution was normalized 

for T=1..N: 
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whereby ( ) ( ) ( )
1

0

p | , p p | , pfit e fit e eT N T N p p dp=   is the probability that an edge that was 

sampled N times has exactly T pro votes. 

 

We then assumed pfit(pe) to be a function that is piecewise linear between the points ρi= 

f(i/80), with i running from 0 to 80 and f(x)=2x2 for x<0.5 and f(x)=1-2(1-x)2 for x>=0.5. 
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This ensures that pfit(pe) is more finely sampled near 0 and also near 1, where the bulk of 

the probability mass is expected. We can write pfit(pe)  as a sum over triangle-shaped basis 

functions gi with peaks at the points ρi and weights wi   

 ( ) ( )0 80
0..80

| ..p gfit e i i e
i

p w w w p
=

=  ,  (6) 

leading to a vote prediction of  
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that a given prediction leads to the observed vote distribution, assuming a Poisson 

distribution for the individual votes (with λ the expected number of events, and k the actual 

number of events). This correctly weights even small histogram numbers (including zero).  

Fitting was implemented in both Matlab (Mathworks) and Mathematica (Wolfram 

Research), yielding identical results. 

After edge elimination, we collected all skeleton nodes for all redundantly annotated 

skeletons that still were connected to a source seed area near the soma by a continuous path 

of edges (using connected components). This then constituted the RESCOP consensus  

skeleton. The remaining skeleton pieces were discarded. For methods to reuse the 

discarded skeleton pieces, especially for locally dense skeletonization, see below and 

Supplemental Material. 
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Accuracy of RESCOP-ed skeletons 

The calculation made to decide whether or not to eliminate an edge can be extended to 

calculate the probability that the decision was wrong and that the RESCOPed consensus  

skeleton therefore contains an error at that point.  

For a given (T,N) the probability that pe>0.5 is 

 ( ) ( )
1

0.5

p , p | ,
e

keep e e

p

T N p T N dp
=

=  .  (9) 

If the edge is kept, the probability of having done so erroneously is ( )1 p ,keep T N−  

Conversely, if the edge is eliminated the error probability is ( )p ,keep T N . The decision rule 

(Eqn. 3) to keep an edge if and only if pkeep(T,N)>0.5 minimizes the error probability  

 ( ) ( ) ( )( )( )p , Min p , , 1 p ,err keep keepT N T N T N= − , (10) 

and is thus optimal.  To get the error rate for a given N we now need to sum this over T 

weighted by the probability ( ( ) ( )
1

0

p | , pe e eT N p p dp ) of T occurring.  
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This is now the probability that there is still an error after finding the consensus of N 

skeletons at a given location. The mean path length between errors is then rp/perr(N) (rp was 

used rather than the edge length, because our voting procedure creates a correlation 

between errors of neighboring edges, s. Fig. 3b–e). 

Focused re-annotation 

To estimate the average annotation redundancy for the case where each edge is re-

annotated until a given accuracy goal is reached we ran a Monte Carlo simulation as 

follows. We picked a pe using p(pe) as the probability density, repeatedly tossed a coin 

biased with  pe, and incremented T and N accordingly each time, until perr(T,N) fell below 
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the set accuracy goal or Nmax were reached. The set accuracy goal was then corrected for 

the residual errors for those runs that reached Nmax (Nmax = 6000, e1088 single-cell data and 

k0563 data, Fig. 5c, Supplementary Fig. 5d), with the exception of the dense 

skeletonization data where the number of runs that reached Nmax was small. (Nmax = 200, 

Fig. 5c, Supplementary Fig. 5b). 

Random skeleton re-seeding 

For the nearly dense reconstruction of neurites in a limited region (used in Fig. 3f,g) we 

did not seed at the somata, since those were not contained in the region, but used a random 

seeding/iterated re-seeding strategy (Supplementary Figs. 1,4). Briefly, annotation was 

restricted to a sphere around a seed point but seed-point placement was iterated several 

times, each time using as new seeds the end points of the skeletons from the previous 

iteration.  To take into account that an enforced ending near a tested edge should not count 

against that edge while a natural endpoint should, RESCOP was appropriately modified. 

Another modification placed the skeletons remaining after edge elimination into clusters 

based on the proximity of the skeleton pieces. We also accounted for the possibility that 

some of the randomly placed initial seed points were in the same neurite. For details s. 

Supplement.  

Reconstruction-cost estimation 

To calculate reconstruction costs we estimated that a block of mouse retina sized 

(120×80×130)µm3 contains ~460 bipolar cells with ~0.3-0.8 mm path length each and ~40 

ganglion cell somata with 1-2 mm dendritic path length each, which in most cases is only 

part of the dendrite. Annotating these at 6 h/mm with 4-fold redundancy will take 7500 

work hours. In our setting each undergraduate student works on average 27 h per month. 

The reconstruction of all bipolar and ganglion cells at 4-fold redundancy would thus take 3 

months with a team of 120 annotators. 
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