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Abstract 

The valve flow coefficient is commonly used as a parameter to assess the erosion state of choke 
valves in offshore oil platforms. In particular, the difference between the theoretical value of the 
valve flow coefficient and its actual value calculated during operation is retained as the valve health 
indicator. The actual valve flow coefficient is analytically calculated from the oil, water and gas 
mass flow rates. These quantities, which are allocated on a daily basis based on the measured 
total production from a number of wells, on physical parameters (pressures and temperatures) 
related to the specific well, and on a physical model of the process, can be affected by large 
uncertainties. Based on such values, the evaluation of the health indicator becomes unreliable and 
undermines the possibility of using it for prognostic purposes. Similar situations arise every time 
health monitoring rely on unreliable measurement taken by sensors subject to hard working 
condition, as often happen in the nuclear industry. This paper proposes a method to obtain more 
accurate daily estimates of the actual values of the oil, water and gas flow rates, from which 
improved estimates of the flow coefficient will follow. In this respect, an hybrid ensemble 
aggregating the physical model with data-driven models built using the Kernel Regression (KR) 
method has been used. Ensemble diversity is ensured by using different training sets;a local 
procedure based on the historical performance of the models is adopted to aggregate their 
predictions. The method is verified on real measurements performed on a number of similar 
offshore choke valves.  

1. Introduction 

In this paper, we consider the degradation of choke valves located topside at wells on the 

Norwegian Continental Shelf [1] [2]. The difference between the actual valve flow coefficient and its 

theoretical value is retained as the indicator of the choke valve health state and is used to assess 

the degree of erosion affecting the choke. While the theoretical value of the valve flow coefficient 

depends only on the choke opening, the actual valve flow coefficient is analytically calculated on a 

daily basis as a function of the pressure drop through the choke which is directly measured and oil, 

gas and water flow rates which are allocated based on the measured total production from a 

number of wells and on physical parameters (pressures and temperatures) related to the single 

well. Such flow rates are actually measured only during a number of well tests carried out 

throughout the valve life.  

In practice, the resulting indicator of the choke valve state is very noisy and lacks the physical 

monotonicity of the erosion process. In [3] it has been shown that the allocated values of oil, gas 

and water flow rates can cause large inaccuracies and uncertainties in the calculation of the actual 

valve flow coefficient. In this work, an ensemble of Kernel Regression (KR) models has been 

devised to correct these values based on the relations among all parameters and aggregated to the 

outcome of the physical model to increase its accuracy. KR is a distance-based regression 

algorithm [4] [5]; an ensemble of multiple KR models is used to avoid the need of selecting the 



   

optimal model and to increase the robustness and reduce the uncertainty of the estimate [6]. 

Diversity is injected in the ensemble by differentiating the training procedure for each KR model. 

The aggregation of the KR model outcomes is obtained based on the models performance on 

historical data closed to the test data under reconstruction. This approach can be found in literature 

under the name of local fusion (Barald, 2010). 

The paper is framed as follows. The traditional procedure for the construction of a health indicator 

assessing the choke valve erosion state is presented in Section 2; in Section 3, an ensemble of KR 

models is proposed to improve the accuracy of the allocated flow rates; Section 4 shows the results 

of the application of the method to the choke dataset; finally, conclusion and potential perspectives 

for future work are drawn in Section 5. 

2. Choke valve erosion assessment 

In oil and gas industries, choke valves are normally located on top of each well and are used to 

balance the pressure on several wells into a common manifold to control flow rates and protect the 

equipment from unusual pressure fluctuations.  

In Figure 1, a choke valve is sketched. The throttle mechanism consists of two circular disks, each 

with a pair of circular openings to create variable flow areas. One of the disks is fixed in the valve 

body, whereas the other is rotated either by manual operation or by actuator, to vary or close the 

opening. For large pressure drops, the well streams which contain gas, liquid and sand particles 

can reach 400-500 m/s and produce heavy metal loss mainly due to solids, liquid droplets, 

cavitation and combined mechanisms of erosion-corrosion, resulting in choke lifetimes of less than 

a year. Erosion management is vital to avoid failures that may result in loss of containment, 

production being held back, and increased maintenance costs. Moreover, several chokes are 

located subsea, where the replacement cost is high. Then, the need has increased for reliable 

models to estimate erosion and lifetime of choke valves, in order to allow implementing effective 

maintenance strategies [8] [9] [10]. 

 
Figure 1. Typical choke valve of rotating disk type (http://www.vonkchokes.nl/). 

A common indicator of the valve flow capacity is the flow coefficient CV, which is related to the 

effective flow cross-section of the valve.  

For a specific valve opening, erosion produces a gradual increase of the valve area available for 

the flow transit, thus determining an increase of CV (eq. 1). For this reason, knowing the value of 

the flow coefficient is fundamental for assessing the health state of the choke. During operation, CV 

is not directly measured but computed for a two-phase flow as [11]: 
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where gwo mmmm    is the total mass flow rate of the oil-water-gas mixture, 
mmf gwogwo
 /,,,,   is the fraction of the oil, water and gas mass flow rates, respectively, ρo,w,g are 

the corresponding densities, J is the gas expansion factor, Fp(θ) is the piping geometry factor 

accounting for the geometry of the valve/pipe reducer assembly and ΔP is the pressure drop 

through the choke. Eq. (1) and the values of ρo,w,g, J, Fp(θ) and N6 are derived from fluid dynamics; 

parameters ΔP, θ, om , wm  and gm  are measured or allocated during operation. 

2.1 Choke valve dataset 
For a correct assessment of the choke erosion state, it is fundamental to obtain frequent and 

reliable measurements or estimates of the parameters ΔP, θ, om , wm  and gm  used to compute 

the flow coefficient CV. Nevertheless, only the pressure drop ΔP and the valve opening θ are 

measured during standard daily inspections (SI), whereas measures of water, oil and gas flows 

rates are taken downstream of the choke only during well tests (WT) with a multiphase flow 

separator. On a daily basis, the values of om , wm  and gm  are allocated for a single well by a 

software based on the measured total production from a number of wells and on physical 

parameters (pressures and temperatures) related to the specific well. In this work, we consider 

data regarding valve degradation collected on a daily basis from five different wells. Table 1 and 2 

outlines the available information: the daily allocated values of om , wm  and gm , the daily 

measured value of ΔP and θ and the om , wm  and gm
 
real values measured during well tests. 

Since degraded valves are replaced, data collected for a single well refer to different chokes. 

Table 1. Available information 
 Standard Inspections (SI) Well Test Inspections (WT) 

ΔP and θ Measured Measured 

gwo mmm  and,  Allocated Measured 

Table 2. Number of SI and WT patterns for each choke. 
Well NSI NWT Nval 

1 1854  87  68 

2 2143  96  59 

3 657  39  20 

4 1859  96  54 

5 1678  71  36 

3. Improving the quality of the allocated parameters 

Since the allocated values of om , wm , and gm  are noisy and unreliable [3], an on-line procedure 

for improving the accuracy of the estimates of those parameters values is here proposed. The 

procedure is based on empirical models which learn from a training set the relationships between 

the parameters, and provides as output an estimate x̂  of the input parameters x. Different 

regression techniques such as those based on the use of principal component analysis [12], 

artificial neural networks [13] [14], support vector machines [15], evolving clustering methods [16] 



   

have been applied to this purpose. In this work, Kernel Regression models [4] [5] have been 

chosen. 

3.1 Kernel regression models 

Nonparametric Kernel Regression (KR) is used to build a model for improving the quality of the 

allocated values of oil, water and gas mass flow rates. Compared with parametric methods, which 

are defined by sets of parameters and predefined functional relationships, nonparametric methods 

have the advantage that they do not require any assumption about the mathematical structure of 

the regression model [4]. 

KR models provide estimates by developing local models in the neighborhoods of the test patterns 

they are fed with. Estimates are obtained as weighted averages of the training patterns, with 

weights decreasing as the distance between the test and the training pattern increases. In this 

view, training patterns closer to the test pattern are conjectured to be more similar to it, thus giving 

the most relevant contribution to its estimate. 

Let Xtrn={xk}, k=1,…, Ntrn be the training set used for the estimate of the test pattern xtst. To develop 

the KR model, parameters are divided into a predictor group (PG) and a response group (RG) (with 

the two groups possibly overlapping). For the estimate of xtst, the KR algorithm assigns to each 

training pattern xk a weight wk=K[dPG(xtst,xk)], where K is the kernel function which produces the 

weight for a given distance dPG(xtst,xk), between the training and the test patterns, computed 

considering only the parameters of the predictor group. The estimate RG
tstx̂  of the RG parameters of 

the test patterns is obtained as a weighted average of the RG parameters of the training patterns: 
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The kernel function K must be such that training patterns with small distances from the test pattern 
are assigned large weights and vice versa. Among the several functions which satisfy this criterion, 
the Gaussian kernel is commonly used [17]: 
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where the parameter h defines the kernel bandwidth and is used to control how close training 
patterns must be to the test pattern to be assigned a large weight. In order to compute dPG, the PG 
parameters are normalized to mean equal to 0 and standard deviation equal to 1. 

In the present case study, the choice of training dataset and predictor parameters is critical. In this 
respect, four different models can be devised by differentiating the training set as listed in Table 2. 

Table 3. Model training procedures. 

Model Training set Predictor parameters 

1 Well test data XWT Measured ],[ PPG
k x  

2 Standard inspections data XSI Measured ],[ PPG
k x  

3 Well test data XWT Measured & allocated ],,,,[ gwo
PG
k mmmP x  

4 Standard inspections data XSI Measured & allocated ],,,,[ gwo
PG
k mmmP x  



   

In any case, for estimating the test pattern xtst collected for a specific choke, only patterns 
concerning the same choke are considered. This is done because, although valves are similar, the 
well behavior, and thus the relation among the observed parameters, tends to vary with time and 
from one well to another. Thus, data collected from other chokes do not provide useful information 
about the behavior of the choke under study.  

In practice, when estimating the test pattern xk for a specific choke c, only the patterns xj , j=1,…,k-
1 previously collected during the life of the c-th choke are used as training patterns. 

In order to verify the performance of the process parameter estimation models, we have 
considered a test set formed by the NWT patterns of XSI collected the same day of a well test. Since 
an accurate measure of the process parameters under estimation is available for these patterns, 
they can be used to assess the performance of the estimation models.  

The response group is formed by the unreliable parameters that need to be estimated 
],,[ gwo

RG
k mmm x . 

3.2 Ensemble approach 

Since the performance of the models depends on the characteristics of the parameter to be 
estimated and the intensity of the noise, it is difficult to identify a single best model [3].  

Using an ensemble of models allows overcoming this dilemma. Indeed, the general idea underlying 
ensembles is to create many models and combine their outputs in order to achieve a performance 
better than that provided by each individual model in the ensemble [6]. Models’ prediction diversity 
plays a fundamental role when ensemble approaches are devised. In fact, individual models 
committing diverse errors can be opportunely combined in such a way that the error of the 
aggregated prediction is smaller than the error of any of the individual models. 

Different techniques for the aggregation of the outcomes of individual models have been proposed 
in literature, the most common being statistics methods like the simple mean, the median and the 
trimmed mean [12] [18]. Other aggregation techniques, which allow improving the ensemble 
performance, consider weighted averages of the model outcomes with weights proportional to the 
performance of the individual models. In this respect, both global approaches (in which the 
performance is computed on all the available patterns) and local approaches (which measure the 
performance only on the patterns closed to the test pattern) have been proposed [19]. Since in the 
choke valve case study a complete input-output set of patterns is not available, model weighting 
cannot be based on a measure of the performance of the individual model. For this reason, a new 
strategy is here proposed based on the use of the Analytic Hierarchy Process (AHP) [7].  

3.3 Outcome aggregation with Analytic Hierarchy Process 

AHP is used to assign performance weights to the models of the ensemble. The procedure allows 
ranking different models outcomes using relative performance measurements, without resorting to 
an absolute measurement of the model performance. AHP is a multi-criteria decision method that 
uses hierarchic structures to represent a decision problem and provides ranking of different choices 
[7]. It consists of two main steps: 1) structuring a hierarchy; 2) assigning priorities to the elements 
of each hierarchy level by comparative judgments of the elements based on a pre-defined scale. 



   

In this application, the hierarchy structure sketched in Figure 2 is used. The four models on level 3 
are compared with respect to the two criteria Z1 and Z2 of the level 2 towards the goal (level 1) of 
obtaining high model accuracy. 

 
Figure 2. Model weighting hierarchy structure. 

The basic tool for assigning priorities to the elements of a level of the hierarchy are matrices of 
pairwise comparisons based on the criteria defined at the previous level. For the hierarchy of 
Figure 2, two matrices of comparisons 

1ZA  and 
2ZA  have to be defined, each one containing 

elements aij representing the relative importance of model i when compared to model j based, 
respectively, on criteria Z1 and Z2. 

Once a matrix of comparisons 
lZA  is defined, the vector of priorities 

lZπ  of the models in level 3 
of the hierarchy with respect to criterion Zl is given by the eigenvector associated to the maximum 
eigenvalue of matrix 

lZA . The priority vectors obtained for each criterion are weighted with the 
priority assigned to the corresponding criterion and averaged to obtain the overall priority vector 
π=[π1, π2, π3, π4] assigning the priority πm to model m. 

In the proposed aggregation method, the priorities assigned to each model are used as weights to 
aggregate the models’ outcomes through a weighted average: 
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where mRG
tst

,x̂  is the estimate provided by model m of the response group parameters in RG
tstx . 

In this application, the first criterion Z1 chosen to evaluate the relative importance )( tstija x of model 
i with respect to model j in the reconstruction of a test pattern tstx  is the relative similarity of the 
two models outcomes iRG

tst
,x̂  and jRG

tst
,x̂  to the remaining models outcome mRG

tst
,x̂ , m≠i, j. Assuming 

that the model outcomes of the models left out of the pair-wise comparison are distributed around 
the correct value, this criterion assigns larger weights to the model (i or j) whose outcome is more 
similar to that of the models left out. 

The similarity of two patterns iRG
tst

,x̂  and mRG
tst

,x̂  has been estimated by the inverse of their 
Euclidean distance )ˆ,ˆ( ,, mRG

tst
iRG

tstd xx ; the relative importance )( tst
m
ija x of a model i with respect to 

model j when model m is taken as reference is defined by: 
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and the entry aij of the comparison matrix 
1ZA  is given by the product of the relative importance 

values )( tst
m
ija x  m=1,…,4, m≠i, j: 

 ∏
≠i,jm

tst
m
ijij aa )(x  (6) 

According to the AHP method, the quality of a matrix of comparison can be evaluated considering 

its consistency. Matrix 
1ZA  is consistent if the following equation is satisfied for any i, j and k [7]: 
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In our case, substituting eqs. (5) and (6) in eq. (7) gives: 
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ij dd xx=  and, by definition, jiij dd = . This shows that, in the proposed approach, 
matrix 

1ZA  is consistent. 

A second criterion Z2 for evaluating the performance of a model takes into account the RMSE in 

reconstructing the reliable parameters ΔP and θ, i.e. the root mean square difference between the 
reconstructed and measured values. This second criterion takes into account the fact that robust 
and reliable models should be able to correctly reconstruct the reliable parameters despite the 

noise on the mass flow rates. 

Since all model performances are evaluated with respect to the same reference, i.e., the reliable 
measurements of ΔP and θ, the pair-wise comparison is not needed, and the vector of priorities 

2Zπ  is computed by taking for each model h=1,…,4, the inverse of its RMSE, i.e., 
mm

Z RMSEπ 1
2

= . 

Finally, the two criterions Z1 and Z2 of level 2 of the hierarchy are given the same importance and 

thus the priority vector π is given by:  
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4. Results 

The KR models in Table 2 are applied to the choke valve case study to obtain estimates of the 
mass flow rates om , wm  and gm . The performance of the models is evaluated by considering the 
mean square error (MSE) between the estimates of the mass flow rates om , wm  and gm

 
and the 

corresponding well test measurements. 

Table 4 compares the MSE of the four models and that which is obtained by considering the 
allocations as mass flow rate estimates. Notice that only model 2 allows achieving estimates more 

accurate than the allocations. Furthermore, using all five parameters as predictor parameters 
produces, in general, best results. 

Table 4. Comparison of the performance of the SI allocations with the KR models estimates. 



   

 SI allocations Model 1 Model 2 Model 3 Model 4 

om  0.1205 0.0925 0.0794 0.1086 0.1267 

wm  0.1547 0.1967 0.1445 0.2658 0.2060 

gm  0.1993 0.2875 0.2068 0.3087 0.2096 
Average 0.1582 0.1923 0.1436 0.2277 0.1808 

Table 5 compares the performance of the allocations with respect to those obtained by three 
different AHP ensembles: a first ensemble aggregating all four KR models in Table 4, a second 
ensemble considering only the three best performing models (i.e., models 1, 2 and 4) and a third 

one considering both the allocations and the three best performing models. 

Table 5. Comparison of the performance of the SI allocations with those of three different ensemble 
estimates 

 Allocations Ensemble 1 Ensemble 2 Ensemble 3 

om  0.1205 0.0672 0.0646 0.0647 

wm  0.1547 0.1666 0.1302 0.1271 

gm  0.1993 0.2103 0.1915 0.1862 

Average 0.1582 0.1480 0.1288 0.1260 
. 

Results show that all the three AHP-based ensembles outperform the allocations; moreover, 
ensembles 2 and 3 outperform all single models. 

In Figure 3, the MSE of the allocations and of Ensemble 3 are compared for every choke valve. 

The obtained results show that the ensemble estimates do not always outperform the allocation. 
This can be due to two main reasons:  

1. for some choke valve the allocations are highly accurate, and thus they cannot be improved 
through the KR estimates; 

2. in some cases characterized by abrupt changes in the operating conditions of the choke 

(e.g., large variations of the choke opening), the pattern used for the model training may not 
cover the range of parameter values of interest for the test pattern. 

To this purpose, future research work should be devoted to the a priori identification of those cases 

in which the KR ensemble will not outperform the allocations. In particular, with respect to the 
situation at point 1) one can have an a-priori indiction of the allocations and the KR ensemble 
accuracy by considering the corresponding MSE obtained in the estimates of the previous well test 

performed on the same choke, whereas with respect to the situation at point 2) an estimate of the 
confidence of the ensemble outcome should be provided by analyzing the position of the test 
pattern with respect to the distribution of the training patterns. 



   

 
Figure 3. Comparison of the allocation and estimation performance for each choke. 

5. Conclusions 

In this paper, we have tackled the problem of improving the quality of the estimates of some 
process parameters used in offshore oil platforms for assessing the health state of choke valves in 
which undergoes erosion. To this purpose, we have proposed a method which estimates the 

allocated process parameters based on available measurements of other parameters, which are 
conjectured to be reliable, and on few reliable measurements of the process parameters collected 
during a number of well tests performed throughout the valve life. 

The method is based on an ensemble of Kernel Regression models trained using different 
procedures in order to inject diversity into the models ensemble. To aggregate the outcomes of the 
individual models, an original technique based on the Analytic Hierarchy Process (AHP) method 

has been used. The results obtained on a number of similar eroding choke valves have confirmed 
the improved performances of the ensemble with respect to any of the single KR models, allowing 
significant improvement of the oil, water and gas mass flow rates estimates. 

It has been shown, however, that in some cases the allocated value of the uncertain parameters 
are more accurate than those estimated by the proposed KR models ensemble; two main 
situations which causes this have been identified and a possible strategy for the improvement of 

the flow rate estimates, based on the identification of these situations, has been briefly sketched. 
The development of a method for the implementation of this strategy will be the object of future 
research work. 

Althoght the methodology has been developed in the oil and gas context, a general application of 
the proposed approach is envisioned in situations in which unreliable parameters’ measurements 
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can be improved by resorting to a set of reliable parameters. The goal of the research is the 

application of such methodology to obtain reliable component health state indicators and 
prognostic models for remaining useful life estimation also in the nuclear energy field where 
diagnostics and prognostics are critical issues. 
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