
HAL Id: hal-00657577
https://hal.science/hal-00657577

Submitted on 7 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Displacement correction for punching at a dynamically
loaded bar end

K. Safa, G. Gary

To cite this version:
K. Safa, G. Gary. Displacement correction for punching at a dynamically loaded bar end. International
Journal of Impact Engineering, 2010, 37 (4), pp.371. �10.1016/j.ijimpeng.2009.09.006�. �hal-00657577�

https://hal.science/hal-00657577
https://hal.archives-ouvertes.fr


Accepted Manuscript

Title: Displacement correction for punching at a dynamically loaded bar end

Authors: K. Safa, G. Gary

PII: S0734-743X(09)00168-7

DOI: 10.1016/j.ijimpeng.2009.09.006

Reference: IE 1835

To appear in: International Journal of Impact Engineering

Received Date: 5 June 2009

Revised Date: 14 September 2009

Accepted Date: 19 September 2009

Please cite this article as: Safa K, Gary G. Displacement correction for punching at a dynamically loaded
bar end, International Journal of Impact Engineering (2009), doi: 10.1016/j.ijimpeng.2009.09.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.ijimpeng.2009.09.006


M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

1 
 

Displacement correction for punching at a dynamically loaded bar end 

 

K. Safa1, G. Gary2 

 

 
1 Laboratoire de Mécanique des Solides, Ecole Polytechnique, 91128 Palaiseau, France 

Safa@lms.polytechnique.fr 
2 Laboratoire de Mécanique des Solides, Ecole Polytechnique, 91128 Palaiseau, France 

Gary@lms.polytechnique.fr  

  

Abstract:  
The object of this work is to provide a 3-D displacement correction for local punching due to axial 

load at the end of a bar. For this purpose, an analytical calculation of the indentation at the end of an 

elastic isotropic bar subjected to a dynamic loading is carried out. It provides a first-order correction 

of the displacement obtained through the 1-D wave analysis commonly used in SHPB processing. 

This correction improves the results obtained for the dynamic behavior of the specimen, in particular 

at early instants of loading where its response is often purely elastic. Tabulated values are provided 

for easy use in SHPB testing. 

 

Keywords: SHPB, wave, semi-infinite bar, self-equilibrated load, punching. 

 

 

List of nomenclature. 
 
a  : Radius of the specimen 

R : Radius of the SHPB input or output bar 

r : Radial cylindrical coordinate 

ρ : Ratio of the radial coordinate of a point to that of the input or output bar Rr /=ρ  

aρ : Ratio of the specimen radius to that of the input or output bar Raa /=ρ  

μλ, : Lame’s parameters for the constitutive material of the input or output bar 

ν : Poisson ratio 

0c : Longitudinal waves velocity in a thin rod 
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21 , cc : Dilatational and shear waves velocities in a medium 

Rc : Rayleigh (surface) waves velocity 

t : Time variable 

1t : Time after which the punching correction )(tp becomes valid 

)(tF : Axial force applied on the specimen measured by the SHPB device 

)(tσ : Axial stress in the specimen, corresponding to )(tF   

α : Rate of the axial stress in the specimen at the beginning of the loading, assumed as constant   

      tt ασ =)(    

)(tp : Average local axial displacement under the specimen (called punching displacement in the 

       paper) 

)(tu : Axial displacement at the specimen-bar interface obtained by classical SHPB processing 

)(td : Total average displacement under the specimen )()()( tptutd +=  

pK : Punching correction coefficient. pK/1 is homogeneous to a spring stiffness 

)(),( xExK : Respectively the complete elliptic integrals of the first and second kind 

)(xJ n : Bessel function of the first kind 

 

.
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1. Introduction 
We are interested in the evaluation of the local displacement induced at the end of a bar by a central 

axial load, a phenomenon referred to as punching. The elementary 1-D theory of wave propagation in 

bars, and also some more advanced theories that consider wave dispersion due to lateral inertia 

effects [1,2,3], do not tackle this problem. Rather they investigate wave propagation at large distances 

from the bar end [4]. The determination of the local displacement at a bar end is of practical 

importance for the use of the SHPB device, as suggested by some authors [5]. 

 The SHPB device, also called Kolsky apparatus, is widely used to measure the stress-strain 

behavior of materials at high rates of loading. This behavior is derived from the forces and velocities 

at the specimen faces. These quantities are obtained from the axial strains recorded by use of strain 

gauges glued to the sides of the input and output bars. The 1-D force deduced from this measured 

strain is assumed to be equal to the resulting applied force at the end of the bar, as validated in [6, 7]. 

These forces and speeds allow for the use of inverse methods to investigate the specimen behavior 

[8]. A particular use of such methods is to compute the initially elastic response of the specimen as it 

was proposed in [9] for an optimized determination of the relative position of the origin of the three 

waves involved. This technique has been intensively used in our laboratory [10], where we have 

observed that the calculated value of the Young’s modulus of the specimen is always smaller, in 

particular with small-diameter specimens, than the expected or known value. We have suspected that 

this systematic error was due to an imperfect measurement of the average strain of the specimen. The 

bar face in contact with the specimen does not remain plane as it is non-uniformly loaded, i.e. 

subjected to a local elastic punching. The corresponding displacement field is restricted to the impact 

zone and is not recorded by the strain gauges located far from the bar end. This is in agreement with a 

recommendation for SHPB found in the book of Buchar, Bilek and Dusek [11], that the specimen 

diameter must be large enough compared with that of the bars (less than 10% difference). 

 We propose to determine more accurately the displacement of the bar face by use of a local 3-D 

approach divided into two parts. The first part is based on transient wave analysis, valid at the early 

instants of loading. Oliver [12], followed by Safford [13], addressing the force measurement at these 

early instants, mentioned some limitations of the Pochhamer and Chree model to describe a punctual 

loading. Field et al. [14] mentioned the local displacement due to the indentation of a half space. In 

the second part of the solution of our problem that applies at later times, a quasi-static analysis is 

used.  This problem has been studied by Knowles and Horgan [15] who only addressed the force 

measurement. The quasi-static solution that we obtain is the same as the dynamic, except for highest 



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

4 
 

frequencies seen as radial oscillations of the section of the bar. The temporal juxtaposition of both 

solutions gives an estimation of the punching displacement. 

 Numerical and experimental studies were also carried out. They provide estimations of the 

consequence of the proposed displacement correction to the dynamic response of a specimen. A 

closed-form expression for this correction is provided that has practical advantages for 

implementation. The correction is especially significant at the beginning of the loading where it 

permits estimation of the elastic modulus of the tested material. Tabulated values are provided for 

easy use in SHPB testing. 

 

2. Statement of the problem 
 
 A typical SHPB device for compression testing is shown in Fig. 1. Three waves are involved in the 

experiment: an incident compressive wave generated by the impact of the striker, a reflected tensile 

wave due to the lower impedance of the specimen, and a transmitted compressive wave. The incident 

and reflected waves  and  are recorded at gauge A of the input bar and the transmitted 

wave  at gauge B of the output bar.  

 

 By use of wave theory, usually taking account of dispersion, the strains measured at A and B are 

obtained at the bar-specimen interfaces. Forces, velocities and displacements at each bar face are 

obtained subsequently. 

 In Fig. 2, the sample is shown together with the output bar, with a deformed configuration of the 

bar end under a uniformly distributed force . The SHPB displacement is . The additional 

displacement  resulting from the local elastic 3-D axisymmetric deformation of the bar is referred 

to as elastic punching. It appears when the diameter of the specimen is smaller than that of the bar. 

The determination of the elastic punching makes it possible to correct the SHPB measured 1-D 

displacement and to obtain the displacement at the specimen-bar interface as .  

 

 We make the following assumptions which are usually accepted in SHPB practice: 

• The friction between the sample and the bar faces is negligible. 

• The uniaxial stresses within the specimen are uniformly distributed through the cross section. 

 

 Based on these two assumptions, the problem becomes that of a semi-infinite elastic bar with 

traction-free lateral faces, axisymmetrically loaded at its end by a uniform distribution of 
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time-dependent normal stress. The resulting force  and the corresponding uniform axial stress in 

the specimen  are assumed to be known. The 3-D dynamic problem can be solved to a good 

approximation through superposition of the 1-D dynamic and a 3-D quasi-static loading solutions, as 

shown in Fig. 3. 

• The first loading case is obtained by applying a uniform stress to the whole section of the bar 

such that the resulting force equals . This case can be approximated as a 1-D dynamical 

loading case, provided that the highest frequencies  in the spectrum of the force are 

negligible compared with Rc 2/0  [16]. The displacement  derived from this 1-D case is 

that of the classical SHPB processing. 

• The second loading case is obtained by the application of a quasi-static self-equilibrated load 

as shown in Fig. 3. This configuration leads to vanishing displacements far from the loading 

zone and produces a local displacement , thus providing a quasi-static approximation of 

the dynamic punching. At some time after impact, the waves propagating radially at the bar 

end tend to a quasi-static state. This approximation is valid if the load duration is large enough 

compared with the time needed by the surface waves to make several transits along the radius 

of the bar.  

The quasi-static nature of this solution in the framework of small displacements means that it can 

be expressed in terms of a linear relation )()( tFKtp p=  between the total force )(tF and the 

average punching )(tp  linked by a constant pK  that depends on the specimen and bar diameters 

and the elastic constants of the bar. 

 

 At the very early instants of the loading, when the reflected waves at the lateral sides of the 

cylinder hove not yet superimposed, the above analysis (referred to as problem B in the following) is 

not valid. The problem is therefore that of a half space suddenly loaded by a time-varying force. This 

will be referred to as problem A in the following.   

 

3. Mathematical formulation 
 
 Cylindrical coordinates  are used. In the axisymmetric case considered, the non-zero 

components of displacement are ru and zu and those of stress are zr σσσ θ,, and rzσ . The normal stress 

applied to the specimen is 2/)()( atFt πσ = , where a is the radius of the specimen. Fig. 4 shows the 
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typical evolution of the axial stress )(tσ  in the specimen (in the present example: brass specimen 

Ø5-H5 mm; SHPB diameters 20 mm; average strain rate 80 s-1). 

The boundary conditions are, for ,  

      )(tz σσ = ,   ar <≤0        (1) 

      0=zσ ,   Rra ≤<                  (2) 

      0=rzσ ,       Rr ≤≤0       (3) 

and for r = R; 

      0== rzr σσ ,     z≤0       (4) 

The initial conditions are 

      ,     (5) 

        .     (6) 

The equations of motion are 

  (7) 

 

 
,
 (8) 

where  are Lamé’s parameters for the bar material. In terms of these parameters, the dilatational 

and shear waves velocities are  and   , respectively. In the quasi-static case,
 

the acceleration terms vanish. 

 

 As mentioned before, the problem is divided in two parts. At early instants, (Problem A), the 

waves produced by the loading are the same as they would be in a semi-infinite solid. This state lasts 

as long as the reflected waves at the free cylindrical surface of the bar are not superimposed. The 

solution of Problem A is therefore valid for a very short time t1 (if compared with the SHPB test 

duration). After a time much larger than t1, the waves propagating radially at the bar end tend to a 

quasi-static state while the axial waves produced early on in the loading are now far from the end of 

the bar (Problem B). It will be shown that the solution of this problem provides a sufficient correction 

for punching in SHPB applications. 
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4. Solution of Problem A. 

 
 This first part of the solution concerns the determination of the displacement during the first stage 

of the loading. We assume that, at this stage, the loading is approximated by stresses varying linearly 

with time (Fig. 4). In terms of the Heaviside step function, the boundary condition at the end of the 

bar can be written 

 . (9) 

 The procedure used here is to apply the Laplace and Hankel transforms to the equations of motion. 

To ensure the validity of the solution, we have to assume that the waves reflected at the sides of the 

cylinder have no influence on the displacement that we are looking for, as would be the case for a 

half-space. This assumption is true until a time  (to be determined later). The method that follows is 

similar to the one used in [17,18] for a half-space medium suddenly loaded.   

The Laplace transform of a function  is defined as . By applying the Laplace 

transform to equations (7), (8) we obtain:  

  (10) 

 . (11) 

 

 The Hankel transform of a function  is defined by , where  are 

Bessel functions of the first kind. By multiplying (10) and (11) by , respectively, and 

integrating with respect to  from 0 to , we obtain 

  (12) 

 . (13) 

These equations have the general solution 

  (14) 

 , (15) 

where     ;   . Putting Eqs. (14) and (15) into Eqs. (12) and (13), we 

obtain  ; 
 
 which gives
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  (16) 

       . (17) 

The parameters A and B are obtained from the boundary conditions for  and  at . Their 

derivation and subsequent results are given in Appendix 1 and summarized here. When  and  are 

obtained, applying the inverse Laplace transform leads to a complex integral. Its solution relies on the 

use on Cauchy’s residue theorem. Applying the inverse Hankel transform to this solution, one finally 

obtains the axial surface displacement under a specimen of radius a at radius ar≤  and time t 

(71),(72). It becomes 

 

(18) 

for , and 

 

  (19) 

for . 

 The conditions leading to Eq. (18) or to Eq. (19) define a time Rr crat /)( +=  for which the Rayleigh 

waves propagating from every part of the loaded area have reached the point at radius r, as (a+r) is 

the distance of the most distant point. 

 We recognize the first term of Eq. (18) as the quasi-static displacement of a half-space subjected to 

a disk r < a of uniform pressure  [19 (chapter 13 §124)]. The second term of Eq.(18) which is a 

function of time for t < rt  reduces to a constant for rtt ≥ . Then, Eq. (19) shows that the displacement 

at any point of the loaded area is a linear function of time for rtt ≥ . The greatest possible value of rt  

is obtained when ar= . Consequently, the solution for Problem A shows the existence, for t> Rca/2 , of 

a displacement that increases linearly with time in every part 0<r<a of the loaded area. In order to 

illustrate the above result and to obtain the time  after which this solution diverges from that for a 

cylinder, the displacement at the origin  is compared in Fig. 5 with that obtained from 

numerical simulations (see Appendix 3) for a cylinder of radius R subjected to the same force 

uniformly distributed over disks of different radii 0<a<R. In this particular case ( 0=r ) the response 

is linear with time for t > Rca / . It is expected that this holds true until the first return of Rayleigh 
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waves from the lateral surface of the cylinder, that is, for Rca/ < t < RcaR /)2( − . The linear parts of 

the solutions, given by Eq. (19), are plotted for each case of loading. We notice that as a becomes 

closer to R, this linear solution lasts a shorter and shorter time till it vanishes at Ra= . The values of 

Rca /  give the time where starts the linear time-displacement relation (Eq. (19)), while those of 

RcaR /)2( −  correspond to its upper limit after which the half-space solution is no longer applicable. 

The intensity of the force being unchanged, the corresponding domain is limited by a horizontal line 

(t varying with Rca / ) and a hyperbola (t varying with RcaR /)2( − ). This domain (hatched in Fig. 5) 

represents the interval of time corresponding to each loaded diameter where the displacement at the 

point 0=r  is obtained by Eq. (19).   

 The average axial displacement  under the sample at a given time t can be obtained by 

integrating (19) along . It gives 

 , (20) 

where  ; . 

This integration is valid provided that Eq.(19) applies for any value of r such as ar ≤<0 . 

Consequently it applies for Rca/2 <t< 1t . 1t = RcaR /)(2 −  is the time needed by Rayleigh waves to 

travel forth and back between the edge of the specimen and that of the bar. 
 

We now have to calculate the displacement at the bar end for .  

 

5. Solution of Problem B. 

 
 As explained in the Statement of the Problem, to determine the correction  at large times we 

consider the quasi-static self-equilibrated end-loading problem of a semi-infinite cylinder. The 

solution of this problem will provide the correction  to be added to the measured displacement 

 at any time . In this section the force  can be of any form.  

 The problem of self-equilibrated axisymmetric loadings acting on the ends of a cylinder with 

stress-free lateral sides has received wide attention in the frame of the theory of elasticity. The 

solutions hold true for any value of the load. A solution in the form of eigenfunction expansions has 

been proposed by Lurie [20 (section 5.7.9)]. The method consists in finding a set of tractions (of the 



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

10 
 

desired form) at the end surface that approximates the exact boundary conditions (the least squares 

method of error control is used). The unknown quantities that multiply the eigenvalues in the 

eigenfunction expansions are called participation factors, and cannot be directly obtained because 

these expansions are not orthogonal. 

 Later, Little and Childs [21] developed a set of orthogonal vectors that allow the determination of 

the participation factors in a direct way but only for the case of mixed boundary conditions (traction 

and displacement prescribed at the plane face). When only tractions are prescribed, the participation 

factors need to be obtained by truncation of an infinite set of equations. Horvay and Mirabal [22] 

have proposed another approach for the problem based on the use of a variational approximate 

solution that did not present practical advantages and was lacking completeness [23]. These methods 

have been used to solve particular end-loading problems, mainly the thermal one. The prescribed 

tractions on the end face when using the methods mentioned are continuous and slowly varying from 

the center of the cylinder to its boundary. In the case of discontinuous and irregular loading functions, 

as in our case, the convenient way to approach the cylinder problem is to expand the tractions on the 

end face in Fourier-Bessel series. Benthem and Minderhood [24] solved the problem of a cylinder 

compressed between two rough rigid stamps by using the orthognonal functions of Little and Childs 

[21] and by developing the stresses at the boundary in Fourier-Bessel series. Recently, Wei et al. [25] 

developed a displacement potential for solving the axisymmetric problem of a finite cylinder 

subjected to rigid axisymmetric indenters. Even though this solution applies for finite cylinders, the 

exponential stress decay near the boundary leads to the same field of stresses as the one in semi-

infinite cylinders subjected to the same tractions [20, (section 5.7.9)]. This happens, in particular, 

when the end face of the cylinder is subjected to self-equilibrated stresses, and when the length-to-

diameter ratio is large.  

 We consider a cylinder of diameter R2  and height HH (2 > )2R  subjected on its plane surfaces to 

self-equilibrated stresses, each corresponding to a total normal force F, considered at any time 

. The origin of the cylindrical coordinates  is at the center of the cylinder (Fig. 6).  

 

The axial component of the displacement (denoted here as ) is expressed in terms of the 

displacement potential  as [26]: 

 . (21) 

The expressions for the normal and shear stresses in terms of the potential  are [26] 

  (22) 
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  (23) 

 , (24) 

where  is the Laplace operator. The expression for the potential  is [25]: 

   

 , (25) 

where , , ,  is the th root of , , , and 

 are the unknown coefficients to be determined by use of the boundary 

conditions. Substituting Eq. (25) into Eqs. (23) and (24), and applying the boundary conditions 

 at  lead to the relations [25]: 

  (26) 

  (27) 

between the unknown coefficients, where 

                             ;  . 

The coefficients  and  are related to the original unknowns  by the  relations: 

  (28) 

 . (29) 

To apply the boundary conditions on the flat surfaces of the cylinder , the tractions need to 

be expanded into Fourier-Bessel series. The boundary conditions at  are 

  (30) 

where  .The Fourier-Bessel expansion of (30) is 

 . (31) 

Substituting Eq. (25) into Eq. (22) and identifying with (31) at , we obtain the relations  

  (32) 
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  (33) 

between the unknown variables, where 

         . (34) 

Equations (26), (27), (32) and (33) constitute a set of simultaneous equations from which coefficients 

0A , 0C ,  and  can be obtained by taking enough terms of the series in the calculation.  and  

are equal to zero as implied by equations (26) and (32) and represent a homogeneous state of stress. 

With the aid of these coefficients and equation (21), the displacements inside the cylinder can be 

calculated.  

 In order to obtain the displacements at the flat end of the cylinder, we substitute Eq. (25) into 

Eq. (21) and set , which gives 

 . (35) 

 

6. A closed-form approximate expression for punching. 

 
 Although Eq. (35) provides an analytical solution for the problem, some numerical calculations 

are needed to obtain a quantitative result. Moreover, it does not help for an estimation of the influence 

of the mechanical parameters of the problem. Therefore, we shall now search for an approximate 

closed-form expression for the average displacement under the specimen that will be more convenient 

for SHPB practice. 

 The displacement (35) depends on the material properties , , and the normalized 

variables ,  and . The height of the cylinder is sufficient to ensure that 

at  (in the middle) the stresses and displacements tend to zero. This is verified for . When 

the boundary conditions have no influence on the stress and displacement fields at the center of the 

cylinder, it can be considered as “long” compared to the “short” cylinder  in which the 

mechanical fields are nowhere homogenous.   

 The correction of the 1-D SHPB displacement  is especially significant when the radius of the 

specimen  is small. Moreover, it is expected from the above theoretical results, that the correction 

becomes very small when the specimen diameter is large. Consequently, the subsequent analysis is 



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

13 
 

carried out for . We are looking for the displacement under the specimen for: 

. The Poisson’s ratio of the bar can take any value in the interval . 

The Poisson’s ratio occurs in Eq. (35) and inside the expression for (34). We can evaluate its 

contribution in (34) by writing (35) in the form: , where the factor  is calculated for 

different values of . We find that  is almost independent of ν  (less than 2% variation). Therefore 

the term  sufficiently takes into account the material properties of the bar as far as zp  is 

concerned.  

 Equation (33) shows that the variables  and  are proportional to  since this factor 

multiplies the second member of the simultaneous set of equations. As the displacement (35) is 

generated by a linear summation of , it can be factorized by . By setting 
 
we 

can write (35) as 

 . (36)  

 

To identify the behavior of the series in (36) we consider the function 

 which we have plotted versus  for several values of  

 (Fig. 7).    

 

Figure 7 shows that  and  have characteristic forms and appear to be almost linear 

functions of , i.e., 

  (37) 

 , (38) 

where  is the slope of  , undetermined yet. 

 Substituting Eq. (37) into Eq. (36), we obtain the displacement at  for any value of 

 

 . (39) 

In order to obtain the displacement at any point under the specimen, we adopt the following 

procedure that starts by identifying . For this, we plot in Fig. 8 the function 
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. 

Figure 8 shows that  can be approximated by  with an error less than 1%, where  is 

the complete elliptic integral of the second kind with argument . The choice of the elliptic integral 

is also justified since  constitutes the second term of (37). Now we suppose that  

can be written as 

 , (40)   

where  is a function for which two particular values are known:  and 

 as deduced from equations (37) and (38). 

 In the same manner as for , we determine  by plotting the function 

. We find that it can be accurately represented by . In order to 

validate these approximations, we display in Fig. 9 both  and 

  for all values of  and  in the intervals  and , 

respectively.  

Finally, the expression for the elastic punching (35) for  reduces to 

 . (41) 

The average displacement under the specimen of radius  is obtained by integrating Eq. (41) over the 

specimen area: . This gives: 

      ,       (42) 

where  

    .    (43)

Here  is the complete elliptic integral of the second kind : , and 

 is the complete elliptic integral of the first kind  .  

An analysis of the behavior of the short and long term displacement solutions in the vicinity of  is 

given in Appendix 2. 
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7. Application to SHPB. 
 

Based on Eq. (42): )()( tFKtp p= , the displacement  obtained by the SHPB standard processing at 

each face of the sample can be corrected as follows, for : 

 .  (44) 

 A dynamic numerical simulation is performed with Abaqus explicit code, in order to illustrate 

this result, for a cylinder of diameter 50 mm subjected to uniform distributions of pressure of 

diameters 15 and 25 mm, of the same force magnitude (see Appendix 3 for details). Fig. 10 shows the 

average displacement as calculated with formula (44); for  the solutions given by Eq. (18),(20) 

are used. The 1-D displacement at large distance from the impact zone as it is given by the SHPB 

processing,  is also shown.  

This simulation confirms that the closed-form solution is almost equal to the one given by the 

numerical simulation (which is supposed to accurately describe the real solution). The test lasts 85  

and simulates the behavior of a brittle material. We purposely chose a short loading duration to 

conveniently visualize the solutions obtained. In the present case, it appears that the amplitude of the 

correction is of the order of magnitude of the displacement itself up to a force of about 40 kN (250 or 

90 MPa for specimens of 15 mm or 25 mm respectively). In the case of a 25 mm diameter specimen 

loaded by the same total force, the correction for punching becomes rather small. This result also 

confirms that there was no need to develop a closed-form formula for ratios a/R greater than 0.5. An 

accurate correction in the interval 0.5<a/R<1 can be obtained through linear interpolation between the 

correction for a/R=0.5 and the value zero for a/R=1. The distance between the corrected displacement 

 and the 1-D displacement  given by the SHPB, constitutes the elastic punching  that 

vanishes when a=R.  

 

Practical implementation of the displacement correction 
 Now that the elastic punching  is obtained, it has to be incorporated to the end displacement 

of the bar. In the case of SHPB, both displacements at input and output faces of the specimen are 

concerned. 

 An example of the strain recorded at a long distance from the bar end (5 diameters) is given in 

Fig.11. We observe that it shows a “foot”, at the beginning of the curve. It corresponds to the time 

(same order of magnitude as ) needed to reach a homogeneous state of stress along the radius of the 
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bar. In other words, this result expresses the fact that there is a delay between the beginning of the 

loading and the one expected from the 1-D analysis, since the wave-guide solution effectively begins 

after a time of the order of . This is in agreement with some other results or remarks found in the 

literature [1,27].   

 When the force is known, the calculated elastic punching (the sum of the elastic punching 

calculated for each bar) can be used for the determination of the strain of the specimen, all along the 

test duration. Note that if the bars have different diameters, the punching will not be the same for both 

bars.  

 In Fig. 12, the shape of one bar face is shown. If we consider the case of two identical bars and 

we denote by  the initial length of the specimen, its current length becomes 

 where  and  are the displacements of the input and output 

bars faces, respectively, derived from the standard SHPB analysis. The value  

therefore under-estimates the length of the specimen. Consequently the real strain in the specimen is 

less than that given by the classical SHPB analysis, as expected if the bar ends indent.  

Recall that , where pK  defined in (43) is a function of the specimen and bar diameters 

and of the elastic properties of the bar. Clearly, pK/1  represents the stiffness associated with 

punching. 

Thus, for given bars and specimen, the punching effect is equivalent to that of a spring of stiffness 

 acting between each bar and the specimen. It explains why SHPB processing without punching 

corrections leads to underestimated Young’s modulus for the specimen. Indeed, for input and output 

bars with the same impedance, punchapparentreal EEE /1/1/1 −= , where aKlE pspunch
22/ π= ,  is the specimen 

length,  is the real modulus,  that deduced from standard SHPB processing. 

  

Taking account of punching, classical formulas used to derive forces and velocities at bar ends from 

measured strains become  

))()(()( ttEAtF riiii εε +=   

dt
tdFKttctV i

piriii
)())()(()( 0 +−−= εε       (45) 

at the input interface and 

)()( tEAtF tooo ε=  

dt
tdFKtctV o

potoo
)()()( 0 −−= ε        (46) 
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at the output interface. 

Note that in these expressions, Fi and Fo are positive in tension. Vi and oV are the velocities of the 

input face of the specimen and of the output face of the specimen, respectively, both positive in the 

direction from the input bar towards the output bar. The nominal strain rate is then ( ) sio lVV /− . 

 

Experimental illustration and applications 
 In the SHPB processing procedure used in our laboratory, the waves are first transported to bar 

ends, taking account of dispersion. For an improved shifting of the waves, this procedure involves a 

transient calculation called “elastic simulation” [9]. The incident wave at the input face of the 

specimen is used in a 1-D transient simulation assuming an elastic behavior of the specimen. This 

calculation provides reflected and transmitted waves as they would be obtained with an elastic 

specimen of known Young’s modulus. 

 

 In the example presented in Appendix 4, the recorded waves of a test on a steel specimen 

)25.0/( =Ra  are shown (Fig. 13).  

 The results of the elastic simulation are presented (with a Young’s modulus of 200 GPa, as 

expected for a steel specimen) in Fig. 14 : “incident”, “reflected” and “transmitted” show real 

waves.“tr-sim1” and “ref-sim1” show simulated transmitted and reflected waves taking account of 

punching. “tr-sim2” and “ref-sim2” show simulated transmitted and reflected waves without 

punching. It is observed that considering punching provides waves in good agreement with the real 

ones, at the early instants of the test.  

 

In Fig. 15, it is shown that the punching correction is significant, as it was expected with a specimen 

diameter smaller than that of the bars. When a test is processed with a specimen that has the same 

diameter than the bar, there is no punching effect, and one recovers directly the expected modulus. 

 

The main results, for a possible easier implementation in SHPB processing, are summarized in 

Fig. 16 
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8. Conclusion. 

 
 The problem of the local punching of a bar axially loaded at one end has been investigated. When 

a known axial stress is dynamically applied on a circular central part of a bar end, it induces an axial 

displacement which varies with the radius of the loaded area. The effect of punching is the same as 

that of a hidden spring inside the bar end. A closed-form approximate expression for the displacement 

due to punching, depending on the mechanical parameters of the bar and of the parameters of the 

loading is given. It can be easily applied to SHPB testing. It allows for the punching correction and, 

consequently, for a direct measurement of material properties at low strains, in particular the Young’s 

modulus.  
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Calculations details for solution of Problem A 
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The parameters A and B in Eqs. (16) and (17) are obtained with the help of the boundary conditions 

for  and  at . Let’s write the expressions for the normal and shear stress in terms of the 

displacements as: 

  (47) 

                                                  
.
 (48) 

By multiplying (47) and (48) by  and , respectively and then applying the Laplace 

transform and integrating with respect to  from 0 to , we obtain 

  (49) 

                                                         . (50) 

Applying Laplace and Hankel transforms on boundary condition (9), we obtain 

  (51) 

                                                            . (52) 

Substituting in equations (49) and (50) the expressions of  and  found in (16) and (17), then 

applying the boundary conditions we obtain: 

  (53) 

                                                    
.   (54) 

Solving (53),(54) we obtain 

  (55) 

  

                                            . (56) 

 

Substituting these expressions for A and B into Eqs. (16) and (17), we get: 
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  (57) 

                                  . (58) 

By applying the inverse Laplace transform to Eq. (58), we obtain: 

 . (59) 

This complex integral is similar to the one obtained by Eason [18] in the case of a half-plane loaded 

by a sudden constant force. In the current problem, we have a double pole at  and simple poles 

at , where  is the speed of Rayleigh waves. We have branch points at   and 

 resulting from variables  and  in the numerator. These two variables are square-roots 

functions of the complex number  and therefore are multi-valued at the point .      

Consider the integral  

  (60) 

along the vertical path of the contour  (Fig. 17). Applying Cauchy’s residue theorem, we obtain 

  (61) 

  . (62) 

  ,  (63) 

where  ;  .
 

 

 

 

 Integrals along the horizontal path vanish since ; it is the same for the integrals along the 

contour at infinity and around the branches. In the present problem, we are interested in calculating 
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the axial component of the displacement at the surface  ; hence we are mainly concerned with 

the residue of  at the Rayleigh pole, which describes the contribution of the surface waves to the 

total displacement, and also at large times which corresponds to . The displacements given by 

the remaining integrals are related to dilatational and shear waves; they are neglected since their 

contribution to the surface displacement is negligible, as it has been shown [17,18]. The residue of 

 at  and can be designed as the pseudo-static value of the displacement; this point is clarified 

here after. The integral (60) becomes 

 . (64) 

 

Substituting Eq. (64) in (59) we obtain 

 . (65) 

 

With Eqs. (62) and   (63) inserted, Eq. (65) gives 

 . (66) 

Applying the inverse Hankel transform leads to 

  (67) 

The two integrals of (67) will be evaluated at .  

Integrals of the type  are discontinuous; their solutions are given by Watson 

[28, ]. For ;  we have   , where  is the complete 

elliptic integral of the second kind :  .The first term of integral (67) 

becomes 

 . (68) 
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The integral  appears in the second term of (67). Using the property 

[28, ]:   , 

where , we can write: 

 . (69) 

For  

 

For  

 

Introducing these results in Eq. (69) , we get: 

 

  (70) 

Finally, introducing (68) and  (70) in (67) we obtain the axial surface displacement under a 

specimen of radius , at radius  and at time : 
 

(71) 

for   

  (72) 

for   

 

Appendix 2 
Analysis of the corrected displacement function  at the neighborhood of  
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In the solution of Problem  A of this paper, the instant of transition between the transient state and the 

pseudo quasi-static situation at the end of the cylinder, has been estimated as . It 

cannot be expected that the displacements given by equations (20) and (44) have exactly the same 

value at .  

   We calculate the function  (Fig. 18) that expresses the relative distance at 

, between the short and long time displacement solutions. We use for the speed of Rayleigh 

waves the accurate approximation [29] , and we keep in mind that in the 

neighborhood of  we still can approximate the real applied force  by a linear loading function of 

time:  

Then,  can be written: . 

Fig. 18 shows that depending on  and , the displacements given by solutions (20) and (44) at 

 are not equal. For a steel bar  the relative distance between both solutions varies 

between 0 and 12%, according to the diameter of the sample (relatively to that of the bar). 

 

This gap is observed at the very early instants of the test and does not last more than some 

microseconds. Furthermore, at this time, the value of the strain is still very small (typically less than 

0,1% for standard specimen).  This point can be checked with the results of the subsequent numerical 

simulation (Ref. part 7 of the present paper).  

 

Appendix  3 
Information about the numerical simulations carried out 

Numerical calculations are performed using the general-purpose finite element code Abacus/Explicit 

version 6.7, with element type CAX4R (axis symmetric element, reduced integration). An automatic 

time-integration scheme offered by the software is used throughout the simulations. A structured 

meshing technique was used with square meshes of 0.5 mm side. Non-linear geometry effects were 

not considered –stiffness matrix remaining the same during the calculations- since in the analytical 

solutions we consider the initial and final deformed shape of the cylinder as identical (small 

deformations hypothesis). The mesh distortion correction is automatically controlled by the software 

and was checked to be without influence on the results. 
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The loading was introduced by the mean of tabulation, and did not lead to numerical perturbations 

that are usually induced by the high frequencies, since the beginning of the load is mainly a linear 

function of time. Displacements are considered at the nodes located at the loaded surface of the 

cylinder, and not at the integration points.  

 

Appendix  4 
Information about the experiments carried out 

 

The characteristics of the steel specimen are given in the table below. The SHPB set-up is made of 

steel bars  

 

In Fig.19 the basic schematics of the experimental equipment is shown:  

• Li – the length of the bars and striker 

• gi – the distance between specimen faces and the strain gages 

 

 

Table 1 – “Steel_08” 

Element 
 

Length (m) 
 

Diameter (m) 
 

Mass density 
(Kg/m3) 

Wave Speed 
(m/s) 

Gage Position 
(m) 

Striker 1.204 0.0203 7960 4795   

Input Bar 3.01 0.02017 7960 4795 1.495 

Output Bar 2.009 0.02017 79607 4795 0.375 

Specimen 0.00645 0.00513 7805     

 

Striker speed: 2.79 m/s 

 

 

List of captions 
 

Fig. 1. Split Hopkinson pressure bar (SHPB) set-up 

 

 

Fig. 2. Shape of the bar end at the bar-specimen interface 



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

27 
 

 

 

Fig. 3. Determination of the local displacement  by superposition of states of stresses. 

 

Fig. 4. Experimental axial stress curve )(tσ  

 

Fig. 5. Axial displacement at the origin  for a cylinder of radius R subjected to uniform 

distributions of pressure of different radii  applied linearly with time.  

 

Fig.6. Long cylinder  subjected to self-equilibrated tractions with resultant F. 

 
Fig.7. Values of  for  

 

Fig.8. Values of  for . 

 

Fig.9. Exact and approximate generating functions of the displacement  
 

Fig 10. Numerical, analytical and 1-D average displacements under disks of pressure of diameters 15 

and 25 mm, applied on a 50 mm diameter cylinder, according to the same time-dependent function.  

 

Fig 11. Strain recorded by axial gages at long distance from the bar end (same loading as for Fig 9) 

 

Fig.12. Schematic view of the output bar end face displacement during a SHPB experiment. 

 

Fig. 13. Basic recorded waves of the test “Steel_08” – see Appendix 4 for technical details 

 

Fig. 14. Waves at bar ends (test “Steel_08”) 

 

Fig 15. Nominal stress-strain curve: influence of the punching correction 

 

Fig. 16.  NO CAPTION (the title is inside the figure) 

 

Fig. 17. Mapping on s-plane  
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Fig.18. Percentage of the relative error  on the displacement at  between the solutions at 

short and long times.  

 

Fig. 19. Basic schematics of the experimental equipment. 
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