
HAL Id: hal-00656686
https://hal.science/hal-00656686

Submitted on 5 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Ontological Approach to Business Process Modeling
Antonio de Nicola, Mario Lezoche, Michele Missikoff

To cite this version:
Antonio de Nicola, Mario Lezoche, Michele Missikoff. An Ontological Approach to Business Pro-
cess Modeling. 3th Indian International Conference on Artificial Intelligence 2007, Dec 2007, India.
pp.ISBN 978-0-9727412-2-4. �hal-00656686�

https://hal.science/hal-00656686
https://hal.archives-ouvertes.fr

An Ontological Approach to Business Process Modeling

Antonio De Nicola, Mario Lezoche, Michele Missikoff

LEKS, IASI-CNR
 Viale Manzoni 30, 00185 Rome Italy

{denicola, lezoche, missikoff}@iasi.cnr.it

Abstract. Business people use informal methods to represent business
processes (BP), having the main objective to support an enterprise organization.
On the other hand, application software is increasingly based on Service
Oriented Architectures, where the application logic is represented by executable
BP (e.g., by using BPEL.) Despite both are aiming at BP modelling, the
methods used by business people and IT specialists are quite different. The
former use informal, descriptive methods, with an intuitive semantics difficult
to be translated to the formal representation needed in the IT world. This paper
presents the main lines of an ontological framework for the representation of
BP semantics: BPAL (Business Process Abstract Language.) It is primarily
conceived to provide a formal semantics to BPMN, an informal BP modelling
method that is emerging in the business world. The modelling categories of
BPAL are based on well accepted business notions, such as activity, decision,
role. We believe that it may be useful beyond BPMN, in more general business
contexts. BPAL is an abstract language (no drawing symbols are provided)
having a procedural semantics (allowing a translation to an executable form,
BPEL), and a declarative semantics, to be processed by an inference engine.

1. Introduction

This paper illustrates a method aimed at an effective involvement of business people
in the development of software applications. This is achieved by providing a
framework that allows the semantic enrichment of process models produced by
business experts. Semantic enrichment is obtained by the semantic annotation of the
business models based on a core business process ontology (CBO).

Today there is a renewed interest in business processes (BP), especially from a
technological point of view. After a long time since the notion of a business process
or a workflow was introduced [27], the recent advent of Service Oriented
Architectures [28] gave a new momentum to this modelling practice. However, there
is still a great difference between what is seen as BP modelling in the business world
and in the IT world. In the former, processes are described mainly for human-to-
human communication, for decision making in production processes, administrative
processes, to understand their impact on the enterprise organization. In the IT world,
processes are seen as a form of high level programming language (see for instance
BPEL [9] [10]), conceived to achieve a better use of web services (and, more

2 Antonio De Nicola, Mario Lezoche, Michele Missikoff

generally, e-services), i.e., they represent an executable form of the application logics,
as part of a complex software artefact.

While the IT view of a BP is based on a prescriptive, executable form, aiming at a
running software application (based on the service-oriented paradigm), the business
view of a BP remains at an intuitive level, with models independent from the
underlying technology. For its deep nature, a business model is highly intuitive, easy
to be read and understood by humans, but at the same time exhibits a degree of
ambiguity, incompleteness, bearing often internal contradictions. The dichotomy
between business and IT approaches, that represents a serious problem in enterprise
automation, has been addressed by the Model-Driven Architecture (MDA) approach
proposed by the OMG. The MDA approach is structured in three main levels, with a
progression of modelling activities that go from a business perspective (CIM:
Computational Independent Modeling) to an application design perspective (PIM:
Platform Independent Modeling) and, finally, reaches the implementation perspective
(PSM: Platform Specific Modeling.) The MDA appears today as one of the most
relevant proposals aimed at bridging the business world with the IT world. With its
progressive modeling framework, it addresses one key problem laying in the different
nature of business models and IT models. However, MDA is still in an early stage and
currently it mainly represents a general reference framework with a limited actual
impact. In parallel, there are intense research activities aimed at producing specific
methods and tools, capable of providing a smooth and coherent evolution of models
from the business perspective to the technical one.

To improve the picture, one idea is to move upstream the moment where formal
methods are introduced. However, it is difficult to impose new, formal languages to
business people. Therefore, the solution is to “inject” formal semantics in existing
business modelling methods. In this way, business people continue to use their
modelling methods, having in parallel a formal support to such established solutions.

Semantic annotations make use of ontologies (see OPAL [29].) However, current
semantic technologies [30] are particularly suited to model static structures, e.g., the
information part of a business model. The semantic enrichment of the behavioural
part is still an open research issue, despite existing encouraging results [17], [16],
[15].

In the literature, several languages for BP have been proposed. Such languages can
be sketchily gathered in three large groups.

• Descriptive languages. They have been conceived within the business
culture, but they lack of a systematic formalization necessary to be
processed by an inference engine. In this group we find diagrammatic
languages, such as EPC [3], IDEF [5] [6] UML-Activity Diagram [1], and
BPMN [7] [8]. Also UML-Activity Diagram can be listed here, even if
originally conceived for other purposes. The BP defined with these
languages are mainly conceived for inter-human communication and are
not directly executable by a computer.

• Procedural languages. They are fully executable by a computer but are
not intuitive enough for being used by humans, and lack of a declarative
semantics, necessary to be processed by a reasoning engine. Example of
these languages are BPEL [9] and XPDL [8] [11].

An Ontological Approach to Business Process Modeling 3

• Formal languages. They are based on rigorous mathematical foundations,
but are difficult to be understood and are generally not accepted by
business people. In this group we find languages such as PSL [13] [20],
Pi-Calculus [21], Petri-Nets [24].

Finally, there are the ontology-based process languages, such as OWL-S [17],
WSDL-S [31], WISMO [15], and Meteor-S [16]. This group of languages have a
wider scope, aiming at modeling semantically rich processes in an ontological
context, and have been conceived not directly connected to the business world. They
are hence not considered here.

In this paper we analyse the three above categories of languages, with the intent of
proposing a solution that combines the key advantages of the three above groups:
intuititivity and ease of use, rigorous mathematical basis, and possibility of execution.
Below, we illustrate a first version of a proposal aimed at defining the key modelling
notions of a Process Ontology, referred to as BPAL: Business Process Abstract
Language. It has been conceived to support the formal definition of a BP, having in
mind the modelling notation proposed by OMG, mainly directed to business people:
Business Process Modeling Notation (BPMN.)

Furthermore, in the proposed representation method we include, inherently,
modelling facilities to support a stepwise development of a BP.

Summarising, we propose BPAL, as a Core BP ontology to support the use of
BPMN (but it is general enough to be used in conjunction with any other BP
modelling method), characterised by the following properties:

• key constructs corresponding to concepts and modelling notions drawn
from the business community;

• formal grounding, with the possibility of translating it to a formal
language such as KIF [12];

• axiomatization to allow inference mechanisms to be applied;
• possibility of execution, by mapping BPAL to the popular BPEL.

The rest of the paper is organised as follows. Section 2 presents the related work,
organised in the three mentioned groups. Section 3 introduces the main BPMN
constructs while Section 4 is the central part that introduces BPAL. Section 5
provides a mapping between BPMN, PSL and BPAL, followed by Section 6 with
the conclusions.

2. Related Work

In this section we briefly present the major BP modelling methods and languages,
organised according to the three groups identified in the previous section.

2.1 Descriptive methods

As anticipated, this group gathers the BP modelling methods that are mainly
conceived for inter-humans communications. Here, among the most renewed
methods, we have: UML, EPC, IDEF, and BPMN.

4 Antonio De Nicola, Mario Lezoche, Michele Missikoff

The Unified Modeling Language1 (UML) is an OMG2 standard providing the
specification for a graphical, general purpose, object-oriented modeling language. It
defines 13 types of diagram, classified as structural, behavioural, and interaction
oriented, according to what aspects of a system or a scenario they describe. These
diagram types adopt a common meta-model, MOF3, defining their abstract syntax.
UML has just an informal semantics associated and therefore it presents a high risk of
ambiguities and contradictions in its models. Here there is not an explicit notion of a
BP, however, the behavioural diagrams, and in particular the activity diagram and the
sequence diagram, can be used to model a BP.

Another important method is EPC: Event-driven Process Chains, a modeling
technique for business processes modeling developed in the 1990’s. The basic
elements of EPC are: functions, corresponding to activities to be executed; events,
describing the situation before and/or after a function execution; and logical
connectors (and, or, xor) used when events determine the branching of the control
flow. EPC has been proposed to model BP in the context of SAP R/3 application
platform, then it has spread and there are popular modelling tools, such as Visio and
ARIS, that support it (the latter is based on an extensions, eEPC, that integrate also
the modelling of the enterprise data and organization.) EPC is very limited in term of
its modelling scope, but at the same time it is simple and therefore its learning curve
is rather steep. However, since neither the syntax nor the semantics are well defined,
it is not possible to formally check the model for consistency and completeness.
Furthermore the lack of a formal representation can generate ambiguities, in
particular, when models are exchanged between different tools. To solve this problem
there are a number of proposals for a formalization, e.g., by using Petri Nets [4].

The ICAM Definition method (IDEF) is a set of standardized modeling techniques,
initially proposed by an initiative of the United States Air Force. Among these
techniques we mention IDEF0, the function modeling method, and IDEF3, the
process description capture method. IDEF0 is a method designed to model the
decisions, actions, and activities of an organization or a system. It allows activities
and important relations between them to be represented in a non-temporal fashion. It
does not support the complete specification of a process. The IDEF3 provides a
mechanism for collecting and documenting processes, by capturing precedence and
causality relations between situations and events. There are two IDEF3 description
modes, process flow, capturing knowledge of "how things work" in an organization,
and object-state transition network, summarizing allowable transitions an object may
undergo throughout a particular process. Here we have a limited scope (e.g., actors
are not modeled) and a fragmentation due to the need to use more than one diagram
for the same BP.

The Business Process Modeling Notation (BPMN) is the most recent standard
notation proposed by OMG to design business processes. The main goal of this
graphical notation is to be readily understandable by all business users, from the
business analysts that create the initial drafts of the processes, to the technical
developers responsible for implementation to the business people who will manage

1 www.uml.org
2 Object Management Group: www.omg.org
3 Meta-Object Facility

An Ontological Approach to Business Process Modeling 5

and monitor those processes. Since we selected BPMN as the candidate BP modelling
method, we will specifically elaborate on it in the next Section 3.

2.2 Procedural methods

This second group gathers the BP models endowed with a precise operational
semantics, having therefore an associated execution engine (i.e., an interpreter.)

The Business Process Execution Language for Web Services (BPEL4WS, or BPEL
for short) is a de-facto standard for implementing processes based on web services.
According to BPEL, processes can be described as executable processes, modeling
the behavior of a participant in a business interaction, or as abstract processes,
specifying the mutually visible message exchange among the parties involved in the
protocol, without revealing their internal behavior. To obtain an executable BPEL
process, modelers need to specify primitive and structured activities, execution
ordering, messages exchanged, and fault and exception handling. Furthermore, a
recent proposal, BPEL4People [14], extends BPEL4WS specification to describe
scenarios where users are involved in business processes. BPEL is a powerful and a
widely adopted standard. Among its major drawbacks there are its inherent
complexity, the verbosity of the XML encoding and the lack of a specific graphical
representation. Such characteristics make it scarcely accepted by business people.

The XML Process Definition Language (XPDL) is a WfMC standard for
interchanging process models among process definition tools and workflow
management systems. It provides the modeling constructs of BPMN and allows a
BPMN process to be specified as an XML document. XPDL process models can be
run on compliant execution engines, even if has been originally conceived as a
process design and interchange format specifically for BPMN. It represents the linear
form of the process definition based on BPMN graphics.

2.3 Formal methods

In this section we present three formal methods conceived to model a business
process in formal terms.

Process Specification Language (PSL) is a general process ontology developed at
the National Institute of Standards and Technology (NIST) for the description of basic
manufacturing, engineering and business processes. In the manufacturing domain,
PSL’s objective is to serve as an interlingua for integrating several process-related
applications (including production planning, process planning, workflow management
and project management) throughout the manufacturing process life cycle [18]. In
view of our objective of associating a formal semantics to BPMN, PSL is a good
candidate, hence we will present it in more details, after the description of the Petri
Nets and Pi calculus, below.

Petri Nets (also known as place/transition nets) is one of several mathematical
representations of discrete distributed systems [24]. As a modeling language, it
graphically depicts the structure of a distributed system as a directed bipartite graph
with annotations. A Petri net consists of places, transitions, and directed arcs. Arcs

6 Antonio De Nicola, Mario Lezoche, Michele Missikoff

run between places and transitions. Places may contain any number of tokens.
Transitions act on input tokens by a process known as firing. Execution of Petri nets
is nondeterministic. This means two things: multiple transitions can be enabled at the
same time, any one of which can fire, none are required to fire — they fire at will,
between time 0 and infinity, or not at all. Since firing is nondeterministic, Petri nets
are well suited for modeling the concurrent behavior of distributed systems [25].

In theoretical computer science, the Pi-Calculus (π-calculus) is a process calculus
originally developed by Robin Milner, Joachim Parrow and David Walker as a
continuation of the body of work on the process calculus CCS (Calculus of
Communicating Systems). The aim of the π-calculus is to be able to describe
concurrent computations whose configuration may change during the computation.
The π-calculus belongs to the family of process calculi, mathematical formalisms for
describing and analyzing properties of concurrent computation [22]. In fact, the π-
calculus, like the λ-calculus, is so minimal that it does not contain primitives such as
numbers, booleans, data structures, variables, functions, or even the usual flow
control statements (such as if... then...else, while...). Central to the π-
calculus is the notion of name. The simplicity of the calculus is due to the fact that
names play a dual role as communication channels and variables. The process
constructs available in the calculus are the following: concurrency, representing two
processes or threads executed concurrently; communication, with input/output
prefixing c<y>; replication, when a process creates a new copy. Although the
minimality of the π-calculus prevents us from writing programs in the normal sense,
it is easy to extend the calculus. In particular, it is easy to define both control
structures such as recursion, loops and sequential composition and datatypes such as
first-order functions, truth values, lists and integers [23].

Formal methods are not suited to be directly released to the end users. They are
mainly conceived to study formal properties of certain categories of processes. The
objective of our work is to select a formalism suited to be associated to BPMN. For its
characteristics, we identified PSL, as a good candidate, therefore it will be presented
in more detail in the next subsection.

2.4 PSL

The primary component of PSL is an ontology designed to represent the primitive
concepts that, according to PSL, are adequate for describing basic manufacturing,
engineering, and business processes [18]. The challenge is to make the meaning of the
terminology in the ontology explicit. Any intuitions that are implicit are a possible
source of ambiguity and confusion. The PSL ontology provides a rigorous
mathematical characterization of process information as well as precise expression of
the basic logical properties of that information in the PSL language [20]. In providing
the ontology the creators specify three notions: language, model theory and proof
theory.

An Ontological Approach to Business Process Modeling 7

The Language
A language is a lexicon (a set of symbols) and a grammar (a specification of how

these symbols can be combined to make well-formed formulas). The lexicon consists
of logical symbols (such as boolean connectives and quantifiers) and nonlogical
symbols. For PSL, the nonlogical part of the lexicon consists of expressions
(constants, function symbols, and predicates) chosen to represent the basic concepts in
the ontology. Notably, these will include the 1-place predicates ‘activity’, ‘activity-
occurrence’, ‘object’, and ‘timepoint’ for the four primary kinds of entity in the basic
PSL ontology, the function symbols beginof and endof that return the timepoints at
which an activity begins and ends, respectively; there are also the 2-place predicates
is-occurring-at, occurrence-of, exists-at, before, and participates-in, which express
important relations between various elements of the ontology.

The underlying grammar used for PSL is roughly based on the grammar of KIF
[12] (Knowledge Interchange Format). KIF is a formal language based on first-order
logic developed for the exchange of knowledge among different computer programs
with disparate representations. KIF provides the level of rigor necessary to
unambiguously define concepts in the ontology, a necessary characteristic to
exchange manufacturing process information using the PSL Ontology. Like KIF, PSL
provides a rigorous BNF (Backus-Naur form) specification [19]. The BNF provides a
rigorous and precise recursive definition of the class of grammatically correct
expressions of the PSL language. Furthermore, the rigorous specification eases the
development of translators between PSL and other, similarly well-defined BP
representation languages.

Model Theory
The model theory provides a rigorous, abstract mathematical characterization of

the semantics, or meaning, of the language of PSL. This representation is typically a
set with some additional structure (e.g., a partial ordering, lattice, or vector space).
The model theory then defines meanings for the terminology and a notion of truth for
sentences of the language in terms of this model. The objective is to identify each
concept in the language with an element of some mathematical structure, such as
lattices, linear orderings, and vector spaces.

Given a model theory, the underlying mathematical structures becomes available
as a basis for reasoning about the concepts intended by the terms of the PSL language
and their logical relationships, so that the set of models constitutes the formal
semantics of the ontology.

Proof Theory
The proof theory consists of three components: PSL Core, one or more

foundational theories, and PSL extensions.
PSL Core. The purpose of PSL-Core is to axiomatize a set of intuitive semantic

primitives that is adequate for describing the fundamental concepts of business
processes. Consequently, this characterization of basic processes makes few
assumptions about their nature beyond what is needed for describing those processes,
and the Core is therefore rather weak in terms of logical expressiveness. In particular,
PSL-Core is not strong enough to provide definitions of the many auxiliary notions
that become necessary to describe all intuitions about business processes. The PSL
Core is a set of axioms written in the basic language of PSL. The PSL Core axioms
provide a syntactic representation of the PSL model theory, in that they are sound and

8 Antonio De Nicola, Mario Lezoche, Michele Missikoff

complete with regard to the model theory. That is to say, every axiom is true in every
model of the language of the theory, and every sentence of the language of PSL that is
true in every model of PSL can be derived from the axioms. Because of this tight
connection between the Core axioms and the model theory for PSL, the Core itself
can be said to provide a semantics for the terms in the PSL language.

Foundational Theories. The purpose of PSL Core is to axiomatize a set of intuitive
semantic primitives that is adequate for describing basic processes. Consequently,
their characterization does not make many assumptions about their nature, beyond
their elementary description. The advantage of this is that the account of processes
given in PSL Core is relatively straightforward and uncontroversial. However, a
corresponding liability is that the Core is rather weak in terms of pure logical strength.
In particular, the theory is not strong enough to provide definitions of the many
auxiliary notions that become needed to describe an increasingly broader range of
processes in increasingly finer detail. For this reason, PSL includes one or more
foundational theories. A foundational theory is a theory whose expressive power is
sufficient for giving precise definitions of, or axiomatizations for, the primitive
concepts of PSL. Moreover, in a foundational theory, one can define a substantial
number of auxiliary terms, and prove important metatheoretical properties of the core
and its extensions.

For PSL’s purposes, a suitable foundation is a modified and extended variation of
the situation calculus. The reason for this is that the situation calculus’s own
primitives – situation, action, fluent (roughly, proposition) – are already highly
compatible with the primitives of PSL. It is very natural to identify PSL primitives
with, or define them in terms of, the primitives of the situation calculus. In addition,
the situation calculus is also strong enough to define a wide variety of auxiliary
notions and, with the addition of some set theory, it can be used as a basis for proving
basic metatheoretic results about the Core, and its extensions as well.

Extensions. The third component of PSL are the extensions. A PSL extension
provides the resources to express information involving concepts that are not part of
PSL Core. Extensions give PSL a clean, modular character. PSL Core is a relatively
simple theory that is adequate for expressing a wide range of basic processes.
However, more complex processes require expressive resources that exceed those of
PSL Core. Rather than clutter PSL Core itself with every conceivable concept that
might prove useful in describing one process or another, a variety of separate,
modular extensions have been, and continue to be, developed that can be added to
PSL Core as needed. In this way a user can tailor PSL precisely to suit his or her
expressive needs. To define an extension, new constants and/or predicates are added
to the basic PSL language, and, for each new linguistic item, one or more axioms are
given that constrain its interpretation. In this way one provides a “semantics” for the
new linguistic items. When combined with a foundational theory like the situation
calculus, a distinction can be drawn between definitional and nondefinitional
extensions. A definitional extension is an extension whose new linguistic items can be
completely defined in terms of the foundational theory and PSL Core. Theoretically,
then, definitional extensions add no new expressive power to PSL Core +
foundational theory, and hence involve no new theoretical overhead. However,
because definitions of many subtle notions can be quite involved, definitional
extensions can prove extremely useful for describing complex processes in succinct

An Ontological Approach to Business Process Modeling 9

manner. Nondefinitional extensions, called also core theories are extensions that
involve at least one notion that cannot be defined in terms of PSL Core and the
chosen foundational theory. All extensions within PSL must be consistent extensions
of PSL-Core, and may be consistent extensions of other PSL extensions. However,
not all extensions within PSL need be mutually consistent [20].

As anticipated, seen its rich articulation, PSL has been the first candidate to
associate a formal semantics to BPMN. Next we illustrate BPMN and then we will
return on this issue.

3. BPMN: an emerging modeling method for business people

As anticipated, among the methods accepted by business people, we select BPMN for
a number of reasons. Besides being the most recent one, outcome of several research
activities, it allows a BP to be modeled with a single diagram type, avoiding the
fragmentation inherent in the UML and IDEF solutions. With respect to EPC it has a
wider scope, being capable to capture a good number of business notions, from actors
to messages.

3.1 The main constructs of BPMN

The main goal of BPMN is to standardize a business process modeling notation in
order to provide a simple means of communicating process information among
business users, customers, suppliers, and process implementers. It defines a
diagrammatic notation and an intuitive semantics for business process modeling. In
the following, the basic BPMN constructs are presented with the support of a practical
example.

We have categorized the BPMN constructs using four basic conceptual categories
(see Table 1): actor, behavior, object, and co-action.

Actor. This category refers to the constructs devoted to model any relevant entity
that is able to activate or perform a process. The BPMN elements of this category are
pool, and lane, representing more aggregate organization units and more specific
ones, respectively. They allow for a partitioning of activities according to the
performers.

Behavior. This category refers to the constructs used to model the dynamic aspects
of a domain.

An activity is a generic term for work performed within a company. It can be
atomic or non-atomic (compound). The types of activity are: task, process, and sub-
process. A task is an atomic activity included within a process. Processes are either
contained within a pool or unbounded. Sub-processes are composed activities
included within a process. There are two types of sub-processes: embedded and
independent. The independent are re-usable in different processes.

A gateway is a modeling element used to represent the interaction of different
sequence flows, as they diverge and converge within a process. When the sequence
flows arrive at a gateway, they can be merged together on input and/or split apart on
output. There are different types of gateway according to the types of behavior they

10 Antonio De Nicola, Mario Lezoche, Michele Missikoff

define in the sequence flow. Decisions and branching are represented by the following
gateways: OR-Split, exclusive-XOR, inclusive-OR, and complex. Merging is
represented by the OR-Join gateway. Finally, forking is represented by the AND-Split
gateway, and joining by the AND-Join gateway.

Another construct referring to this modeling category is event. An event is
something that “happens”, like a trigger or a result, during the execution of a business
process affecting the flow of the process. Since an event can start, suspend, or end the
flow, we can distinguish between start events, intermediate events, and end events4.

The last basic construct referring to this category is the sequence flow (modeled
with an arrow), used to represent the ordering of activities within a process. Their
source and target must be events, activities, and gateways. A sequence flow can not
cross the boundaries of a sub-process or a pool (messages are used instead).

Gateway (Data/Event
based, AND/OR/XOR)

Decision

Sequence FlowTransition

Event (Start,
Intermediate, End)

Event

Process, Task, Sub-
process

Behavior

Message Event,
MessageFlow

Coaction

DataObjectObject

Pool, LaneActor

Graphical NotationBPMN elementsModeling categories

Task

…

…

Table 1 Categorization of BPMN constructs and corresponding graphical

notation

Object. This category refers to the constructs devoted to model passive entities
involved in one or more business processes. The main BPMN element of this
category is data object. A data object is used to represent how data and documents
are used within a process. They can be used to define input and output of activities.

4 Despite event is basic modeling construct in BPMN, its semantics is not clear. In fact, when

mapped into BPEL, they are considered as atomic activities (e.g., receive, wait, and throw)
[7].

An Ontological Approach to Business Process Modeling 11

Furthermore, data objects are used to represent the “state” of a document (e.g. request
document issued or received) and how this state changes during the process.

Co-action. The last category refers to the constructs devoted to model the
interaction between different actors. Message events represent start, intermediate, and
end events associated to the sending or receiving of a message. The message flow is
used to show the flow of messages between two participants of a process. It can be
connected to the boundary of a pool, representing a participant in a process, or to an
activity within the pool.

3.2 An example: Existence Verification of a Company

To better illustrate the BP modeling by using BPMN, below we introduce a simple
example (Figure 1), drawn from a case study addressed in the LD-CAST European
Project5: the search for a partner in a cross-border off-shoring. In particular, we
address the activities related to the Supply Sub-Contracting, according to a specific
EU directive.

Figure 1 An excerpt of the existence verification process

 The case study concerns a Polish company that needs to purchase a set of lift
components to be locally assembled. To this end, it publishes in the Official EU
Gazette a call for proposals. The company receives tenders submitted by a Rumanian
company for supplying the cables, by an Italian company for providing the engine,
and by a Bulgarian company for the cabin. Having received the tenders, the Polish
company needs to perform a number of verifications. In particular, for each proponent
company, the following verifications are performed: (i) existence verification, (ii)
fiscal verification, and (iii) technical requirements and quality standards verification.
Such verifications are performed through the local Chambers of Commerce. The
Figure 1 represents the BPMN process concerning point (i), the request for verifying

5 Local Development Cooperation Actions Enabled By Semantic Technology (LD-CAST)

Project: http://www.ldcastproject.com

12 Antonio De Nicola, Mario Lezoche, Michele Missikoff

the actual existence of the potential partner. According to the process in the figure, the
legal office of a company sends a request message to the marketing department of the
local Chamber of Commerce (CoC) to obtain an existence verification of that
company. The CoC checks if the requested document should have a legal validity or
not. Accordingly, the CoC releases a certificate or a survey, respectively. Finally, the
CoC sends the document, the company receives it and the process ends.

This example will be represented in formal terms by using BPAL, as reported in
the appendix.

4. BPAL: an ontological framework6 for BP

In this section we present BPAL, a framework for the management of BP ontologies,
in the context of BPMN business process modeling method.

BPAL is structured according to a number of modeling notions defined in
accordance with the business culture, corresponding also to the constructs of BPMN.
The set of symbols denoting such modeling notions is the lexicon of the BPAL. The
corresponding concepts, in the form of atomic formulae (atoms), represent the core
BP ontology. BPAL atoms are used to build abstract diagrams that, once validated
with respect to the BPAL Axioms, yield to abstract processes. An abstract process is
isomorphic to a BPMN7 process and provides its formal semantics.

BPAL Atoms – represented in the form of predicates. They are the core of the
BPAL ontological approach and a specific BP ontology is modeled by instantiating8
one or more Process Atoms. Atoms represent unary and n-ary business concepts.
Furthermore, there are special atoms aimed at supporting the modeling process (see
below.)

BPAL Axioms – represent the rules and constraints that a BPAL Diagram must
respect to be a BPAL Process.

BPAL Diagram – a set of BPAL Atoms represents an abstract diagram. In
general, a diagram is an intermediate form assumed by a modeling artifact during the
design process. It is not required to satisfy all the axioms.

BPAL Process – this is a BPAL Diagram that has been validated with respect to
the BPAL Axioms. In the paper, we will refer to it as an abstract process.

BPAL Application Ontology – a collection of BPAL Processes cooperating in a
given application.
Below we report a list of the BPAL Atoms and then we give a few examples of their
use for building abstract diagrams and BPs. Please remember that BPAL is not a
diagrammatic notation, for this reason we refer to a BPAL artefact as an abstract

6 The term “framework” is overloaded. Here we mean a language (lexicon and grammar), a set

of axioms, an inference mechanism, and a collection of methods, tools, and best practices
aimed at producing a valid BP model. Here we illustrate the BPAL framework at a
descriptive level, since a formal treatment falls outside of the scope of this paper.

7 For sake of conciseness, here we will refer to a simplified version of BPMN, sufficient to
present the BPAL methodology.

8 Please note that this is a second order instantiation, very different from the more usual round
instantiation. In fact, BPAL contains meta-concepts used to create a BP ontology.

An Ontological Approach to Business Process Modeling 13

diagram. Seen it originates from BPMN, the latter is used whenever we need a
concrete (displayed) diagram.

4.1 BPAL Atoms

The BPAL atoms are predicates where functors represent ontological categories,
while arguments are typed variables representing concepts in the Core Business
Ontology (CBO). For instance, an activity variable can be instantiated with a process
name in the CBO. Variables are characterized by a prefixed underscore and, in
building a BP ontology, will be instantiated with concept names of the category
indicated by the functor. A process ontology is built by instantiating the following
unbound predicates with the constants (i.e., concept names) declared in the CBO9.

Unary predicates (upre)

• act(_a) – a business activity, element of an abstract diagram.
• role(_x) – a business actor, involved with a given role in one or more

activities.
• dec(_bexp) – a generic decision point. Its argument is a Boolean expression

evaluated to {true, false}. It is used in the preliminary design phases when
developing a BP with a stepwise refinement approach. In later phases, it will
be substituted with one of the specific decision predicates (see below).

• adec(_bexp), odec(_bexp) - decision points representing a branching in the
sequence flow, where the following paths will be executed in parallel, or in
alternative respectively.

• cont(_obj) – an information structure. For instance a business document
(e.g., purchaseOrder).

• cxt(_obj) – a context, represented by a collection of information structures.

Relational predicates

• prec(_act|_dec,_act|_dec) – a precedence relation between activities,
decisions, or an activity and a decision.

• xdec(_bexp,_ trueAct) - this is a decision where only one successor will
receive the control, depending on the value of _bexp.

• iter(_startAct,_endAct,_bexp) – a subdiagram, having startAct and endAct as
source and sink, respectively. It is repeated until the boolean expression
_bexp evaluates to true.

• perf(_role,_act) – a relation that indicates which role(s) is dedicated to which
activities.

• msg(_obj,_sourceNode,_destNode) – a message, characterized, for instance,
by a content (_obj), a sending activity (_sourceNode), and a receiving
activity (_destNode).10

9 Here, for sake of simplicity, we refer to the CBO as a sort of catalogue of concepts. Indeed, it

is implemented by a reference ontology built according to the OPAL framework [29]
10 Please note that the message flow is not constrained by the control flow, unlike BPMN.

14 Antonio De Nicola, Mario Lezoche, Michele Missikoff

Development predicates
The following predicates are used during the BP development process. They are

part of the BPAL core ontology, but are not used to categorise business concepts
(therefore will not contribute to the generation of the executable image.)

• pof(_upre,_upre) – Part-of relation that applies to any unary predicate. It
allows for a top-down decomposition of concepts.

• isa(_upre,_upre) – Specialization relation that applies to any unary predicate.
It allows to build a hierarchy of BP concepts, supporting a top-down
refinement.

Finally, we have two operations acting on a BP abstract diagram:
Assert (BP_Atom). It allows a new atom to be included in the ontology;
Retract (BP_Atom). It allows an existing atom to be removed from the

ontology.
To improve readability, multiple operations of the same sort can be compacted in a
single operation on multiple arguments (see the example below.)

4.2 BPAL diagrams and processes

By using BPAL atoms it is possible to compose an abstract diagram first and, after its
validation, a BPAL process. An abstract diagram is a set of BPAL atoms respecting
the (very simple) formation rules.

In Figure 2 we illustrate an abstract diagram; the presentation is supported by a
concrete diagram, drawn with a BPMN style. The node labels are concepts in the
CBO.

a d

c

b
e

Figure 2 A simple BPMN Diagram

Here we have the corresponding BPAL abstract diagram.

act(a), act(b), act(c), act(d), act(e);
prec(a,b), prec(a,c), prec(c,d), prec(b,d), prec(d,e).

A BPAL Abstract Diagram

An Ontological Approach to Business Process Modeling 15

Please note that in a BPAL diagram the order of the atoms is ininfluent and, in the
punctuation, comma and colon are equivalent, while the full stop ends the abstract
diagram.

4.3 The BPAL Axioms

The BPAL framework is characterised by a number of axioms that must be satisfied
by a BPAL Process. They are conceived starting from the guidelines for building a
correct BPMN process. As anticipated, there is neither a formal specification nor a
widely accepted view of the formation rules for a BPMN process, therefore we
provide a “reasonable” solution, derived from the analysis of a number of publications
and practical experiences. In any case, we are ready to update the proposed
axiomatization as soon as an official specification will be available. Here we do not
intend to present a complete treatement of the BPAL axiomatic theory, we rather wish
to achieve a clear description of our proposal, trading completeness with conciseness.

BPAL axioms address different features of a BPMN process formalization. Here
we will formalize just one axiom, to provide a first insight in the BPAL methodology.

Branching

Each time a node is followed by more than one immediate successor activities, such a
node must be a decision.

Axiom1:
{ ()})(1)(, :y)()(:, xdecxSyxprecxSyactCBOyx →>∧=∧∈∀

According to Axiom1, the diagram of Figure 1 is invalid and needs to be transformed
in the diagram of Figure 3.

a d

c

b

ek

Figure 3 A Generic BPAL Process

This transformation is obtained by a number of updates on the original BPAL abstract
diagram, sketchily summarised as follows:

16 Antonio De Nicola, Mario Lezoche, Michele Missikoff

assert: dec(k), prec(k,b), prec(k,c), prec(a,k)
retract: prec(a,b), prec(a,c)

Accordingly, the BPAL abstract diagram in Figure 2 is transformed into:

act(a), act(b), act(c), act(d), act(e), dec(k);
prec(a,k), prec(k,b), prec(k,c), prec(c,d), prec(b,d), prec(d,e).

Abstract BPAL generic process

Please note that we have now a Generic BPAL abstract process. It is a process

since the Axiom1 is no more violated and therefore the Diagram 1 is validated.
However, it is Generic, since there is a generic atom dec(k) that need to be substitute
with a specific atom (one of: adec, odec, xdec.) Such a substitution, assuming that in
the following steps of the BP design we discover that we need an and branching, will
be achieved by the following design operations:

assert: adec(k)
retract: dec(k)

Further steps of design refinement will involve other BPAL atoms, to specify roles,
messages, etc.

4.4 Transforming BPAL abstract process in an executable form.

The BPMN tool that we considered as a reference point allows a BPEL executable
process to be generated starting from the built diagram. Since there is a tight
correspondence between the BPMN and the BPAL constructs, it is easy to adopt an
equivalent correspondence between BPAL and BPEL constructs, and then provide the
generation of an executable BPEL file starting from a complete BPAL process. A full
elaboration of this part falls outside the scope of this paper.

5. The semantic enrichment of BPMN: a mapping to PSL and
BPAL

The initial objective of this paper was to provide a formal account of a BPMN
diagram. This can be achieved by building a mapping between the constructs of the
latter and a formal language for BP modeling. To this end we considered as a
candidate PSL, presented in Section 2. However, we realized that BPMN-PSL
mapping is not straight, being PSL a sound and rich BP modeling framework, not
primarily conceived having the business modeling needs in mind. Therefore we
decided to propose BPAL. In the table 2, we report a sketchy representation of a

An Ontological Approach to Business Process Modeling 17

comparison between the two mappings: BPMN with PSL and BPAL, for an easy
checking the better mapping yield by the latter.

A first consideration concerns the fact that PSL Core is far to succinct and it must
be considered with some extensions in any concrete case. For a fair comparison we
considered the following PSL extensions (the semantics of the constructs is intuitive):

PSL-Core:

• Activity
• Before
• Object

Outer Core:
• SubActivity

Activity Extension:
• Branch

Actor and Agent theories
• Activity performance (under constraction)

Duration and Ordering Activity
• Iterated Activity

Modeling categories BPMN constructs PSL BPAL

Actor Pool, Lane Activity
performance

role

Behavior Process, Task, Sub-
process

Activity,

Subactivity

activity, iter,
isa

Decision Gateway (Data/Event
based, AND/OR/XOR)

Branch dec, adec,
odec, xdec

Event Event (Start,
Intermediate, End)

 activity

Transition Sequence Flow Before precedence

Object DataObject Object content,
context

Coaction Message Event,
MessageFlow

Envelop message

Table 2 Comparison between the BPMN, PSL, and BPAL

From the table it emerges that, with respect to the BPMN modeling paradigm,
BPAL shows a better coverage than PSL. Furthermore, BPAL is compact, while PSL
is fragmented in different extensions. These considerations justify our work on BPAL.

18 Antonio De Nicola, Mario Lezoche, Michele Missikoff

The different mappings should not be confused with the respective expressive power
(our intuition is that, with its various extensions, PSL is more expressive than BPAL.)
Here we prefer to talk about “adequacy”, i.e., the affinity between the two modeling
methods.

6. Conclusions and future work

In this paper we presented the main ideas of BPAL, an ontological framework for
business process modeling. There are a very large number of BP modeling languages,
so the decision to build a new peoposal in this area started from a number of
motivations.

- the advent of a new BP modeling method, BPMN, proposed by OMG;
- the fact that BPMN does not have a formal grounding, being it specified in an

informal way;
- BPAL has been initially conceived to develop a formal account of BPMN

processes, carefully taking in consideration the business experts needs;
- The BPAL approach also considers the BP design process, therefore including

primitives that support a stepwise refinement of processes being designed;
- BPAL remains at an abstract level, since it relies on BPMN for its concrete

diagrammatic representation and on BPEL for its actual execution;
- BPAL framework includes an axiom system that allow an automatic validation

check to be performed. Since its formal semantics is based on KIF, the
inference component is based on a KIF reasoner.

After a careful analysis of the literature we identified PSL as a possible candidate

to match the above requirements, but finally we decided that BPAL was more suited
to our needs.

The current BPAL version is a preliminary one. We are consolidating it by
proceeding along two lines. One is methodological, necessary to strengthen its formal
grounding, and another is empirical, necessary to check its value in real business
settings. About the latter, we are using BPAL in several pilot applications, the most
relevant being the LD-CAST European project, for the Chambers of Commerce, and
TOCAI, a national project aiming at an advanced platform for autonomic logistics
services.

References

[1] Unified Modeling Language: Superstructure version 2.1.1.
(http://www.omg.org/docs/formal/07-02-03.pdf)

[2] G. Engels, A. Förster, R. Heckel, S. Thöne. Process Modeling Using UML. In
“Process-Aware Information Systems”. Edited by M. Dumas, W. van der AAlst,
A.H.M ter Hofstede. WILEY-INTERSCIENCE, Pages 85-117, (2005).

[3] A.-W. Scheer, O. Thomas, O. Adam. Process Modeling Using Event-Driven
Process Chains. In “Process-Aware Information Systems”. Edited by M. Dumas, W.

An Ontological Approach to Business Process Modeling 19

van der AAlst, A.H.M ter Hofstede. WILEY-INTERSCIENCE, Pages 119-145,
(2005).

[4] B. F. van Dongen, W. M. P. van der Aalst, H. M. W. Verbeek. Verification of
EPCs: Using Reduction Rules and Petri Nets. CAiSE 2005: 372-386

[5] IDEF Function Modeling Method. [http://www.idef.com/IDEF0.html]
[6] IDEF Process Description Capture Method. [http://www.idef.com/IDEF3.

html]
[7] Object Management Group. Business Process Modeling Notation Specification.

Version 1.0. February 2006 [www.bpmn.org/Documents/OMG%20Final%20Adopted
%20BPMN%2010%20Spec%2006-02-01.pdf]

[8] J. Mendling, M. zur Muehlen, A. Price. Standards for Workflow Definition and
Execution. In “Process-Aware Information Systems”. Edited by M. Dumas, W. van
der AAlst, A.H.M ter Hofstede. WILEY-INTERSCIENCE, Pages 281-316, (2005).

[9] R. Khalaf, N. Mukhi, F. Curbera, and S. Weerawarana. The Business Process
Execution Language for Web Services. In “Process-Aware Information Systems”.
Edited by M. Dumas, W. van der AAlst, A.H.M ter Hofstede. WILEY-
INTERSCIENCE, Pages 317-342, (2005).

[10] IBM Inc., Microsoft Corp., BEA Inc., SAP AG, and Siebel Systems Inc. The
Business Process Execution Language for Web Services, version 1.1, May 2003.
[http://www-128.ibm.com/developerworks/library/specification/ws-bpel]

[11] WFMC. Process Definition Interface – XML Process Definition Language,
version 2.00, October 2005. [http://www.wfmc.org/standards/docs/TC-1025_xpdl_2_
2005-10-03.pdf]

[12] M. R. Genesereth, R. E. Fikes (Editors). Knowledge Interchange Format,
Version 3.0 Reference Manual. Computer Science Department, Stanford University,
Technical Report Logic-92-1, June 1992.

[13] Bock, C., Gruninger, M., "PSL: A Semantic Domain for Flow Models,"
Software and Systems Modeling Journal, 2005.

[14] IBM, SAP AG. WS-BPEL Extension for People–BPEL4People. Whitepaper.
[http://www.ibm.com/developerworks/webservices/library/specification/ws-
bpel4people/], 2005.

[15] D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg, A.
Polleres, C. Feier, C. Bussler, and D. Fensel: Web Service Modeling Ontology,
Applied Ontology, 1(1): 77 - 106, 2005.

[16] P. Rajasekaran, J. Miller, K. Verma, A. Sheth, Enhancing Web Services
Description and Discovery to Facilitate Composition, International Workshop on
Semantic Web Services and Web Process Composition, 2004 (Proceedings of
SWSWPC 2004).

[17] The OWL Services Coalition. OWL-S: Semantic Markup for Web Services.
http://www.daml.org/services/owl-s/1.0/owl-s.pdf.

[18] Gruninger Michael, Schlenoff Craig, "Process Specification Language (PSL):
results of the first pilot implementation", Proceedings of IMECE: International
Mechanical Engineering Congress and Exposition, pp 1-10, 1999.

[19] Schlenoff Craig, Ivester Rob, Knutilla Amy: “A robust process ontology for
manunfacturing system integration”, NIST, 1998.

[20] Schlenoff Craig, Gruninger Michael, et al “The Process Specification
Language (PSL) Overview and Version 1.0 Specification”, NIST, 2000

20 Antonio De Nicola, Mario Lezoche, Michele Missikoff

[21] Robin Milner: Communicating and Mobile Systems: the Pi-Calculus,
Cambridge Univ. Press, 1999, ISBN 0-521-65869-1

[22] Robin Milner: The Polyadic π-Calculus: A Tutorial. Logic and Algebra of
Specification, 1993.

[23] Davide Sangiorgi and David Walker: The Pi-calculus: A Theory of Mobile
Processes, Cambridge University Press, ISBN 0-521-78177-9

[24] Peterson, James L. (1977). "Petri Nets". ACM Computing Surveys 9 (3): 223–
252.

[25] Peterson, James Lyle. Petri Net Theory and the Modeling of Systems. Prentice
Hall. ISBN 0-13-661983-5.

[26] Petri, Carl A. (1962). "Kommunikation mit Automaten". Ph. D. Thesis.
University of Bonn.

[27] Workflow Management Coalition (WfMC). [http://www.wfmc.org/]
[28] OASIS. Reference Model for Service Oriented Architecture 1.0 (Committee

Specification) www.oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf.
(2006).

[29] F. D’Antonio, M. Missikoff, F. Taglino. Formalizing the OPAL eBusiness
ontology design patterns with OWL. Third International Conference on
Interoperability for Enterprise Applications and Software, I-ESA 2007.

[30] G. Antoniou, F. van Harmelen. Web ontology language: Owl. In Handbook on
Ontologies. (S. Staab and R. Studer, ed.), Springer, pages 67-92, 2004.

[31] W3C. Web Service Semantics - WSDL-S. [http://www.w3.org/Submission/
WSDL-S, 2005.]

An Ontological Approach to Business Process Modeling 21

Appendix 1: BPAL Example of a BP ontology for the Existence
Verification process

act(request_for_existence_verification), act(checking_the_requested_document),
act(releasing_certificate), act(releasing_survey), act(sending_document),
act(receiving_document)
role(company), role(chamber of commerce), role(legal office), role(marketing
department)
xdec(Is_The_Requested_Document_Legally_Valid, releasing_certificate)
cont(certificate), cont(survey), cont(request), cont(existence-document)
prec(request for existence verification, receiving document),
prec(checking_the_requested_document, Is_The_Requested_Document_Legally_
Valid), prec(Is_The_Requested_Document_Legally_Valid, releasing_certificate),
prec(Is_The_Requested_Document_Legally_Valid, releasing_survey),
prec(releasing_certificate, sending_document), prec(releasing_survey,
sending_document)
perf(legal_office, request_for_existence_verification), perf(marketing_department,
checking_the_requested_document), perf(marketing_department,
releasing_certificate), perf(marketing_department, releasing_survey),
perf(marketing_department, sending_document), perf(legal_office
receiving_document)
msg(request, request_for_existence_verification,
checking_the_requested_document,), msg(existence-document, sending_document,
receiving_document)
pof(company, legal office), pof(chamber of commerce, marketing department)
isa(existence-document, certificate), isa(existence-document, survey)

Appendix 2. Sampling of BPAL in KIF

Primitive Lexicon

The Lexicon is represented by the atoms reported in the Section 4 with a prefix syntax
and variables preceded by the question mark, all enclosed in parenthesis. Example:
(act ?a), (role ?r), (dec ?d).

22 Antonio De Nicola, Mario Lezoche, Michele Missikoff

KIF atoms

(act ?a) is TRUE in an interpretation of BPAL if and only if ?a is a member of the set
of activities in the universe of discourse of the interpretation. Intuitively, activities can
be considered to be reusable behaviours within the domain.
(role ?r) is TRUE in an interpretation of BPAL if and only if ?r is a member of the
set of roles in the universe of discourse of the interpretation.
(dec ?d) is TRUE in an interpretation of BPAL if and only if ?d is a member of the
set of decisions in the universe of discourse of the interpretation.
(cont ?t) is TRUE in an interpretation of BPAL if and only if ?t is a member of the
set of contents in the universe of discourse of the interpretation.
(cxt ?c) is TRUE in an interpretation of BPAL if and only if ?c is a member of the set
of contexts in the universe of discourse of the interpretation.
(prec ?a1 ?a2) is TRUE in an interpretation of BPAL if and only if the activity ?a1 is
before ?a2 in the linear ordering over activities in the interpretation.
(xdec ?f ?a1 ?a2) is TRUE in an interpretation of BPAL if and only if ?f is a function
that maps sentences in truth values TRUE or FALSE, consequently, if the ?f maps to
TRUE, activity ?a1 is executed otherwise activity ?a2 is executed.
(msg ?c ?a1 ?a2) is TRUE in an interpretation of BPAL if and only if activity ?a1
sends a content ?c to activity ?a2.
(iter ?a1, ?an ?f) is TRUE in an interpretation of BPAL if and only if the activities
contained between ?a1 to ?an are repeated until the conditional ?f returns value
TRUE.

AXIOMS

Axiom 1 (Branching) Each time an activity is followed by more than one immediate
successor activities, a decision atom must be interposed.

(forall (?x ?y)
 (if
 (and (act ?y)
 (prec ?x ?y)
 ((abs ?y) > 1))

 (dec ?x)))

Axiom 2 The precedence relation only holds between activities and decisions.

(forall (?x ?y)
 (if (prec ?x ?y)
 (or (and (act ?x) (dec ?y))
 (and (act ?x) (act ?y))
 (and (dec ?x) or (act ?y)))))

An Ontological Approach to Business Process Modeling 23

Axiom 3 Everything is either an activity, a role, a decision, a content, or a context.

(forall (?x)
 (or (act ?x)
 (role ?x)
 (dec ?x)
 (cont ?x)
 (cxt ?x)))

Axiom 4 Activities, decisions, roles, contents, and contexts are all distinct kinds of
things.

(forall (?x)
(and (if (act ?x)
 (not (or (dec ?x) (role ?x) (cont ?x) (cxt ?x)))
 (if (dec ?x)
 (not (or (role ?x) (cont ?x) (cxt ?x)))
 (if (role ?x)
 (not (or (cont ?x) (cxt ?x)))
 (if (cont ?x)
 (not (cxt ?x)))))

Axiom 5. The msg function holds only between a content and activities or roles.

(forall (?c ?n1 ?n2)
 (if (msg ?c ?n1 ?n2)
 (and (cont ?c)
 (or act ?n1 role ?n1)
 (or act ?n2 role ?n2)))

Axiom 6. The xdec function holds only between an expression and an activity.

(forall (?f ?a1)
 (if (xdec ?f ?a1)

 (and (bexp ?f)
(act ?a1)))

Axiom 7. The iteration function holds only between activities and an expression.

(forall (?a1 ?a2 ?f)
 (if (iter ?a1 ?a2 ?f)

 (and
(act ?a1)
(act ?a2)
(bexp ?f))).

