Constrained variable clustering and the best basis problem in functional data analysis

Fabrice Rossi 1, * Yves Lechevallier 2
* Auteur correspondant
2 AxIS - Usage-centered design, analysis and improvement of information systems
CRISAM - Inria Sophia Antipolis - Méditerranée , Inria Paris-Rocquencourt
Abstract : Functional data analysis involves data described by regular functions rather than by a finite number of real valued variables. While some robust data analysis methods can be applied directly to the very high dimensional vectors obtained from a fine grid sampling of functional data, all methods benefit from a prior simplification of the functions that reduces the redundancy induced by the regularity. In this paper we propose to use a clustering approach that targets variables rather than individual to design a piecewise constant representation of a set of functions. The contiguity constraint induced by the functional nature of the variables allows a polynomial complexity algorithm to give the optimal solution.
Type de document :
Chapitre d'ouvrage
Bernard Fichet, Domenico Piccolo, Rosanna Verde and Maurizio Vichi. Classification and Multivariate Analysis for Complex Data Structures, Springer Berlin Heidelberg, pp.435-444, 2011, Studies in Classification, Data Analysis, and Knowledge Organization, <10.1007/978-3-642-13312-1_46>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00656675
Contributeur : Fabrice Rossi <>
Soumis le : mercredi 4 janvier 2012 - 19:11:23
Dernière modification le : jeudi 9 février 2017 - 15:19:05
Document(s) archivé(s) le : vendredi 11 mai 2012 - 16:02:36

Fichiers

extended-best-basis-preprint.p...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Fabrice Rossi, Yves Lechevallier. Constrained variable clustering and the best basis problem in functional data analysis. Bernard Fichet, Domenico Piccolo, Rosanna Verde and Maurizio Vichi. Classification and Multivariate Analysis for Complex Data Structures, Springer Berlin Heidelberg, pp.435-444, 2011, Studies in Classification, Data Analysis, and Knowledge Organization, <10.1007/978-3-642-13312-1_46>. <hal-00656675>

Partager

Métriques

Consultations de
la notice

318

Téléchargements du document

173