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ABSTRACT

Recently, increasing interest has been brought to improve image cat-

egorization performances by combining multiple descriptors. How-

ever, very few approaches have been proposed for combining fea-

tures based on complementary aspects, and evaluating the perfor-

mances in realistic databases. In this paper, we tackle the problem

of combining different feature types (edge and color), and evaluate

the performance gain in the very challenging VOC 2009 benchmark.

Our contribution is three-fold. First, we propose new local color de-

scriptors, unifying edge and color feature extraction into the “Bag

Of Word” model. Second, we improve the Spatial Pyramid Match-

ing (SPM) scheme for better incorporating spatial information into

the similarity measurement. Last but not least, we propose a new

combination strategy based on ℓ1 Multiple Kernel Learning (MKL)

that simultaneously learns individual kernel parameters and the ker-

nel combination. Experiments prove the relevance of the proposed

approach, which outperforms baseline combination methods while

being computationally effective.

1. INTRODUCTION

Image categorization consists in predicting, in a given image, the

presence/absence of an example of a pre-defined class. Combin-

ing descriptors for improving categorization performances has ex-

tensively been studied in the last decade. Multiple Kernel Learning

(MKL) is appealing for that purpose, since it offers the possibility

to jointly learn the weighting of the different channels and the clas-

sification function. Some recent MKL studies [1, 2] provide eval-

uations in complex datasets such as VOC challenge [3]. However,

they use redundant descriptors (various SIFT or HoG variants), that

only capture a single image modality (edge). Other approaches [4]

use complementary features, but do not provide evaluations on such

challenging databases.

In this paper, we consider the problem of learning combinations

of complementary descriptors to make the categorization task more

efficient. The proposed approach is schemed in figure 1. There are

three main areas of novelty: extracting complementary informative

descriptors (section 2.1), building an image representation from each

feature (section 2.2), and learning a category-specific combination

between them so that improving categorization performances (sec-

tion 2.3).

2. PROPOSED METHOD

2.1. Unified extraction of local descriptors

In this paper, we propose to represent each image modality by a

“Bag Of Word” model [5]. Regarding image categorization, this

representation proves to reach state of the art performances when

dealing with complex images , and significantly outperforms global

image signatures. In this paper, we propose to apply the “Bag Of

Word” model for all extracted descriptors. We focus here on edge

and color features, but the method naturally extends to other descrip-

tors (e.g. texture).

We choose to extract the different descriptors on a regular grid

over the image (dense sampling point strategy). Around each patch

with its associated scale, a set of descriptors is computed over a local

neighborhood. An offline clustering strategy (k-means) is performed

to compute a visual codebook. In this paper, we use K = 4000
visual words for all descriptors. Each image modality is thus rep-

resented by a histogram of visual words, with incorporated spatial

information (section 2.2). The most successful strategy for comput-

ing the histograms is a ”semi-soft assignment” that assigns for each

descriptor a vote of 1 to its N = 10 closest visual words [6].

2.1.1. Edge descriptors

We used opponentcolorSIFTs (oc-SIFTs) [7] as local edge descrip-

tors, a variant the well known SIFT descriptors [8]. oc-SIFT his-

togram is a concatenation of three 1-D SIFT histograms based on

the channels of the opponent color space O1, O2, O3:
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where R, G, B refers to the standard color space. oc-SIFT leads

thus to a descriptor of dimension 128 × 3 = 384. Due to the SIFT

normalization, oc-SIFTs are invariant to changes in light intensity

(see [7]).

2.1.2. Color descriptors

We choose the Hue Saturation Value (HSV) space for extracting a

local color descriptor, since HSV is known to be perceptually ap-

propriate. Thus, at each grid position with its associated scale, we

compute a color histogram over the region using a quantization of

the HSV space. We quantify H with 8 bins, S with 6 bins, and V with

3 bins. This leads to a descriptor of dimension 8×6×3 = 144. Note

that some recent works [7] propose to extract local color descriptors

and to build visual dictionaries from them. However, all proposed

color descriptors (e.g. RGB histograms) consider the different color

axes independently by concatenating 1-d histograms. We claim that

our representation, a 3d histogram, is a more powerful description

of each patch by its capacity to encode correlations between axes.
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Fig. 1. Approach Overview.

2.2. Channel kernel similarity: adapted SPM scheme

In order to take into account the spatial information for each ex-

tracted image descriptor, we propose to adapt the “Spatial Pyrami-

dal Matching” (SPM) introduced in [9]. The SPM works as follows:

at a specific scale l, the image is divided following a regular grid, and

a histogram of visual words is computed on each resulting region. In

the last PASCAL VOC Challenge [3], the most common scheme of

partitioning the image used three decomposition scales: a histogram

over the entire image (scale 0), a 2×2 grid resulting in 4 histograms

(scale 1), and a 3 × 1 grid resulting in 3 horizontal band histograms

(scale 2). We propose here a decomposition strategy with two scales,

keeping the global histogram at scale 0. At scale 1, however, we use

a decomposition of 3×3 overlapping windows. Each window corre-

sponds to a quarter of the image, with an overlap of half the window

size. For each of the 10 regions r previously defined and for each

descriptor channel c, we defined the similarity kc,r(xi,xj) between

two images xi and xj as the following Gaussian kernel:

kc,r(xi,xj) = e
−γc d

χ2
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Where x
(c,r) denotes the histogram of visual words for x associated

with descriptor c and region r, and dχ2(·, ·) is the χ2 distance. The

similarity Kc(xi,xj), for channel c, between images xi and xj is

thus defined as a weighted linear combination of local similarities

kc,r(xi,xj), as in [9]:

Kc(xi,xj) =

10
X

r=1

wr kc,r(xi,xj) (3)

where wr weights are set proportional to the size of the consid-

ered regions.

2.3. Combining the kernels

Different strategies can be carried out to perform the combination of

different features types.

2.3.1. Baseline early fusion - product kernel

The simplest way of combining Nc channels is to merge the corre-

sponding signatures into a single vector by concatenating the asso-

ciated feature spaces. This approach is called early fusion. In our

SPM context, the early fusion is to be done for each histogram of the

pyramid. The resulting major kernel is the following:
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Kprod(xi,xj) can be further decomposed as follows: Kprod(xi,xj) =
P
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Hence, an early fusion scheme with Gaussian kernels is equiva-

lent to a product of kernels in each pyramid region.

2.3.2. Baseline intermediate fusion - weighted sum kernel

An other way of combining the Nc different channel specific kernels

is to compute a weighted sum over them:

Ksum(xi,xj) =

Nc
X

c=1

βcKc(xi,xj) =

Nc
X

c=1

βc

10
X

r=1

wrkc,r(xi,xj)

(5)

If βc = 1
Nc

∀c, Ksum is a simple averaging kernel Kavg . Other-

wise, βc can be further optimized using a cross-validation procedure.

However, this brute-force strategy rapidly becomes intractable when

Nc increases.

Using the explicit inner product of induced space, we have

kc,r(xi,xj) =< φ(x
(c,r)
i ), φc(x

(c,r)
j ) >. Therefore, Ksum(xi,xj) =

P

r wr

P

c βc < φc(x
(c,r)
i ), φc(x

(c,r)
j ) >. The weighted sum combi-

nation can thus be interpreted as an intermediate fusion of channels,

by the concatenation of the signatures in the induced space.

2.3.3. Learning a non-sparse combination via ℓ1 MKL

The problem of learning a linear combination of different kernels

has recently been formalized as Multiple Kernel Learning [10]. In

this case, the combination weights β and the support vector weights

α are learned together in a joint optimization. The goal is to find the

optimal classification function f defined as follows:

f(x) =
X

i

αiyi

X

m

βmkm(x,xi) − b (6)

Recent works attempting at using MKL on image dataset for

combining different channels [1, 4] use MKL optimization algo-

rithms based on ℓ1 norm to regularize the kernel weights, like Sim-

pleMKL [11]. Since this leads to sparse solutions, most studies re-

port that MKL is often outperformed by simple baseline methods



(product or averaging) when dealing with complementary and infor-

mative kernels [1, 4]. In our case, we do not want to select either the

SIFT or the color channel, but we aim at finding a proper weight-

ing between them. Except [2], very few approaches use ℓ2 MKL

optimization schemes to find a non-sparse combination of comple-

mentary descriptors.

In this paper, we propose a hybrid strategy that does not lead to

ignore informative image modalities during training. Importantly,

our algorithm learns individual kernel parameters (γ in the Gaussian

case) and the kernel combination coefficients (βm) simultaneously.

Other approaches like baseline methods (section 2.3.1) or ℓ2 MKL

use a two-step procedure: optimal γ is first determined by cross-

validation, and combining the kernels is then performed for a fixed

γ. This leads to a sub-optimal parameter estimation with respect to

our global optimization scheme. As we verify experimentally (sec-

tion 3), the proposed algorithm leads to an accurate parameter esti-

mation while being computationally efficient. Thus, for each chan-

nel c, we form a set of M kernels Kc,γ , and use a ℓ1 MKL strategy

to select the relevant γ parameter. The sparse solution output by ℓ1
MKL algorithms is therefore used as an option to cross-validation.

(see [11]). Our adapted MKL problem formulation leads to find the

optimal function of the form:

f(x) =

Ne
X

i=1

αiyi

Nc
X

c=1

γM
X

γ=γ1

βc,γkc,γ(x,xi) − b (7)

where the joint optimization is performed on αi (Ne parameters)

and βc,γ (Nc × M parameters).

3. EXPERIMENTS AND RESULTS

We evaluate the proposed approach on the PASCAL VOC2009 chal-

lenge. This dataset is now accepted as being the most publicly avail-

able difficult benchmark for object image classification, due to mul-

tiple object viewpoints, large scale range, complex background, etc.

3.1. Setup

We used the train subset for training the classifier (about 3500 im-

ages) and the val subset for testing (about 3500 images). We evalu-

ate the categorization performances for the individual edge and color

descriptors, and different combination methods: baseline methods,

(averaging & product), weighted sum kernel, and our adapted MKL

approach. Not that except for MKL, the γ parameters for the in-

dividual kernels are optimized individually on the val subset. Ta-

ble 1 presents the Average Precision (AP) for different combination

strategies, and for the 15 VOC categories where adding color in-

creases performances (for the 5 remaining categories, performances

are similar to the use of the SIFT descriptor alone).

3.2. Evaluation of descriptors and baseline combinations

Regarding individual descriptor performances, the approach only

using oc-SIFT is the run we submitted for the VOC2009 Challenge,

ranked 6 among 20 engaged groups. Thus, oc-SIFT alone not

surprisingly performs far better than the color descriptor (MAP of

47.8% vs 29.5%, column 1 and 2 of table 1). Indeed, in such object

image database, edge is a much more powerful feature than color.

However, we want to stress that a random classifier would achieve

a MAP around 7%: our proposed color descriptor contains thus a

significant amount of information for the categorization task.

Contrarily to recent works [1, 4], we notice that combining edge

and color using baseline methods gives very disappointing results:

MAP of 45.8% & 47.5% for product & averaging, respectively (col-

umn 3 and 4 of table 1). These combination strategies yield thus per-

formances worse than using only oc-SIFT. In [1], redundant edge

descriptors are used whereas complementary features are merged

in [4]. However, in both cases, the different descriptors have com-

parable categorization abilities. Therefore, baseline methods seem

inappropriate for combining complementary descriptors with signif-

icant variations regarding categorization performances.

category SIFT Color Prod Avg BS MKL

bicycle 46.9 25.5 44.7 48.6 50.2 50.2

boat 61.4 39.9 59.7 61.3 64.4 62.9

bottle 17.6 13.7 19.7 18.7 19.7 20.0

bus 71.4 34.3 65.5 67.5 71.4 71.9

car 49.7 29.2 48.0 47.6 50.6 50.3

cat 54.8 34.8 50.9 54.4 56.1 56.4

chair 43.3 28.1 42.9 42.8 44.9 44.9

dining-table 35.9 21.4 33.6 32.8 37.5 36.4

motorbike 46.3 30.8 47.9 51.6 52.0 51.9

person 82.0 68.6 80.0 81.3 82.4 82.4

potted-plant 23.0 21.7 27.8 30.6 31.5 31.2

sheep 33.0 11.1 27.5 29.7 35.0 33.0

sofa 32.6 12.6 26.8 28.3 34.1 34.1

train 68.2 41.1 63.5 66.1 68.4 68.6

tv-monitor 51.6 29.5 48.1 50.8 52.6 52.3

MAP 47.8 29.5 45.8 47.5 50.1 49.8

Table 1. VOC 2009: (M)AP for different combination strategies.

3.3. Evaluation of learning-based combination strategies

The performances of the weighted sum kernel (equation 5) depend

on the weights βi between color and edge kernels. Column 5 of

table 1 presents results of the best weighting, learned by cross-

validation, that we denote BS (”Best Sum”). BS almost always

performed better than the best performing kernel (oc-SIFT): the

mean gain is about 2.3% (MAP from 47.8% to 50.1%). This con-

firms the soundness of combining edge and colors descriptors using

a weighted sum kernel. Indeed, although color descriptor perfor-

mance is limited, this proves that a category-specific weighting with

the edge descriptor can significantly improve performances. On

the category potted-plant, the gain reaches more than 8% of MAP,

which corresponds to more than 30% improvement. Let alone for

the categories bicycle, boat, bottle, cat, dinning-table, motorbike,

potted-plant and sofa, the mean gain is about 4% of MAP.

The main drawback of the weighted sum kernel is its computa-

tional cost. Indeed, it requires to first determine γ for each channel,

and then the weights β of the combination. This brute-force strategy

is feasible for few channel kernels (here Nc = 2), but rapidly be-

comes intractable when Nc increases. Our adapted MKL approach

(section 2.3.3) offers an elegant alternative to this problem by jointly

learning γ and β. We use 5 kernels with variable γ for each chan-

nel, leading to a 10 kernel weighted sum. The learning is performed

using the SimpleMKL algorithm [11], and is very fast: in our ex-

periments, the gradient based optimization always converges very

quickly, and learning for a category can be performed in a few min-

utes. Categorization performances using MKL are shown in the

last column of table 1. As we can see, MKL gives results simi-

lar to BS kernel, leading to a MAP of 49.8%. Therefore, Contrar-

ily to [1, 4], we notice that MKL significantly outperforms baseline

methods (product and averaging). This is because the ℓ1 algorithm
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Fig. 2. Analysis of the weighting regarding performances of the weighted sum kernel. Each curve represent Average Precision for each

category, versus the weight βcol of the color kernel. βcol = 0 corresponds to using oc-SIFT only, whereas βcol = 1 corresponds to using

color only. The mark denotes AP for the proposed MKL approach, with respect to the sum of weights corresponding to the color kernels.

directly used in [1, 4] with complementary kernels leads to a spare

solution that discard informative channels from the combination. At

the opposite, our approach keeps all informative image modalities

for performing the combination.

Figure 2 shows the influence of the weights for the sum combina-

tion. Let us denote βcol the weight of the color kernel, and (1−βcol)
the weight of the SIFT kernel. The MAP is shown against βcol, nor-

malized to the value obtained for βcol = 0, for each category. As we

can see, the optimal combination is dependent on the category, but

always resides in low βcol values, except for potted-plant, for which

the color descriptors were almost as good as the SIFT descriptors.

We also draw a mark corresponding to the MAP of the MKL method

against the weights obtained by the color kernels after the optimiza-

tion. We can notice that MKL selects a βcol parameters close to the

optimal value determined by BS. Note that regarding β learning,

BS represents an ”ideal” kernel since the parameters are determined

by maximizing AP on the val subset. In that sense, the performances

for BS (and identically for other individual descriptor kernels and

baseline combination methods regarding γ) are over-estimated with

respect to MKL. Therefore, the fact that MKL reaches performances

close to BS illustrates the effectiveness of the conjoint learning of β

and γ parameters, that is better-founded than the two-step optimiza-

tion used with the other approaches. For four categories (see table 1),

MKL outperforms BS, proving the efficiency of the joint learning.

4. CONCLUSION

In this paper, we propose an efficient strategy for combining com-

plementary features using the kernel framework. The kernel combi-

nation is based on an adaptation of a ℓ1 MKL algorithm that do not

lead to ignore any informative image modality during learning. We

evaluate the proposed learning-based approach on the challenging

VOC’09 dataset, and show that it significantly outperforms baseline

combination methods. Moreover, our algorithm is computationally

effective, and provides a promising alternative to cross-validation by

its capacity to simultaneously learn individual kernel parameters and

the kernel combination.
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