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Abstract

This paper presents a top-down strategy to detect features in genomic se-
quences. The strategy’s core is to exploit dictionary-based compression al-
gorithms and analyze the content of the automatically generated dictionary.
We classify the different over-represented words and in the case study we cor-
relate them to experimentally identified or theoretically forecasted biological
features. A large spectrum analysis reveals that the only feature co-located
with the a priori extracted words is the torsional flexibility of DNA, while
non-B DNA configurations are anti-localized and other features are mostly
independent of the extracted words. This analysis unravels complex relation-
ships between the linguistic structures investigated under our approach and
some known biological features.
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1. Introduction

Genomes, and in particular eukaryotic genomes, are far to be homoge-
neous set of sequences, as they host several elements of different structure,
functional role and even origin (e.g. exogenous elements). The development
of strategies to recognize and classify these different kind of sequences is then
a challenge for contemporary bioinformatics. This task can be resembled to
a reverse engineering of an unknown operating system that sizes 3.3 giga-
bytes and host data, routines, re-assembled file fragments, etc., as in the
very bright analogy suggested by Robbins [21].

The first step towards such a reverse engineering, is to get a (evenly rough)
classification of the different elements existing on a genomic sequence: i.e.,
to distinguish between biological features carried by different sub-sequences
(also called segments or words) of the DNA. Experimental methods have
discovered a wide set of qualitatively different elements: coding regions, non-
coding regions, introns, exons, promoters, enhancers, transcription factor
binding sites, etc. Since experimental methods are very slow in adding new
information, computational methods are searched in order to screen the whole
genome searching for these features. Current computational approaches to
discover functionally-associated elements along the genome are commonly
based on a bottom-up philosophy (we could call it also inductive methods):
on the basis of a known set of sequences that belong to a given class, suit-
able algorithms are designed to recognize unknown element. With suitable
algorithm we refer to any approach belonging to approximate searches (e.g.
consensus searches) or to machine learning strategies, as neural networks,
support vector machines and similar.

Such bottom-up approaches are the most widely used and very useful,
they anyhow soffer of a common problem: their efficiency is strictly bound
to the composition of the training set. Since many classes show a very low
common similarity, most of the classifications obtained by means of these
methods are continuosly subject to revision.

From an opposite philosophy there are the so-called top-down methods
(which could also be called deductive methods) where abstract tools are used
to extract features from genomic sequences, without using any experimental
data already known [2] . The importance of such approaches is clear: if we
found an abstract formula able to correctly recognize some functional features

in genomic sequence, this would represent a great advance in understanding
DNA logic.



As of today, top-down approaches have grown slowly and less efficiently,
if compared with bottom-up method, as the main problem is to recognize a
good theoretical criterion to be applied to biological data.

The most important first attempt to do this, is represented by the ap-
plication of general-purpose linguistic approaches on genomic sequences: the
authors of [7] introduced the concept of “meaningful words” as an element of
an organism-specific vocabulary in the DNA language. Since this pioneeristic
work, several other papers have been produced where linguistic approaches
have been applied to understand a wide variety of characteristics in genomes,
from the identification of active genes to the large scale comparison [18], [22],
[10].

In recent times, great importance is tributed to compression algorithms,
as they provide, at the same time, both a linguistic tool to analyze sequence,
and a method to store large sequences saving space. In fact, due to the
exponential growing of biological databanks, a compression method able to
efficently compress and allowing the sequence analysis directly on the com-
pressed data is actively searched [14].

Dictionary-based compression algorithms, like those of the Lempel-Ziv
family have been already used in the past to have an automatic selector of
over-represented words, in order to select repeats along a genomic sequence
[22] [18] [16], or to classify coding/non-coding sequences on the basis of the
compression factor or similar indexes [19].

The analysis we are going to perform is general purpose and it is not
focused on a specific biological feature. This makes it necessary to apply this
kind of investigation on a well known case study, where biological features,
structural characteristics and even phylogenetic relationships have been al-
ready described, being a first-glance genomic wide study almost impossible.
Among the possible choices, we selected the glutamate metabotropic recep-
tors genes 1 and 5 in the Human and in the Mouse. This selection has been
based on multiple criteria: first, even if these sequences are referred to sin-
gle genes, they are very long (~400 Kbp), showing long intronic sequences
and, likely, they host most of the structural/functional characteristics found
in the genome. Moreover, they exist in different subtypes, expressed in dif-
ferent organisms, and expressed not only in the nervous system but also in
many other tissues, then it is possible to infer common features. Last, they
have a great importance in cellular and synaptic activity, plasticity, cell death
and survival, learning and memory, pain perception, and motor activity, and
seem to have a role in the development of many complex pathologies. These



genes are either paralogous or orthologous each other and this allows us to
study the eventual relationship between homology and over-expressed words.

2. Approach

The use of compression algorithms for genome data mining has been pre-
viously explored; in a previous work some of us proved that a discrimination
between coding and non-coding regions in bacteria genomic sequences can
be obtained a priori by studing the information content of a sequence [19].

The work is organised as follows.

A first information analysis exploits a compression on the genes and pro-
vides a dictionary of recurrent words. It is clear that recurrent subsequences
share a symmetry in AT /CG content, which suggests an ad hoc deeper inves-
tigation. Second, we perform a statistical linguistic analysis on the complete
gene sequences. Finally, we show whether and what the relationships are
of the above results with experimentally found or computationally predicted
local biological properties.

3. Materials and Methods

3.1. Metabotropic glutamate receptors 1 and 5

The mGlul and 5 receptors belong to the group I of metabotropic gluta-
mate receptors which represent a family of eight G-protein coupled receptors
distinguished on the basis of sequence diversity, expression profiles and phar-
macology. The gene encoding for the mGlul receptor (locus name: GRM1 in
humans and Grml in other species) has been mapped to chromosome 624
in humans, and chromosome 10, band 10al, in mice, while the gene encoding
for the mGlub receptor (locus name: GRM5 in humans and Grmb in other
species) has been mapped to chromosome 11 in humans and chromosome 7
in mice [28]. Exon/intron boundaries reveals that the human GRM1 spans
about 410 kilobase pairs and consists of 10 exons and 9 introns. Exons vary
from 85 (exon IX) to 3724 bp (exon X) in size, whereas intron sizes range
from 149 to 1.3 kilobase pairs. The 10 different exons generate, by alternative
splicing, more than 6 different splice variants [15]. Different protein isoforms
have been described both in human and murine GRMI, among which the
alpha and beta, of 1199 and 906 amino acids respectively, are the longest
variants and represent the major forms expressed in the central nervous sys-
tem. Comparison of the genomic structures of GRM1 with GRMY5 reveals a
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high degree of similarity in terms of exon/intron arrangement, both in human
and mouse, which strongly suggests that group I mGlu receptors have been
generated by gene duplication from a common ancestor. Analogies and/or
diversities in their genomic sequence organization may reveal some biological
features that the paralogous genes may share.

Concerning transcriptional regulation, functional studies indicate that the
mGlul receptor gene, both in humans and mice, is driven by at least two
alternative promoters located upstream from exons I and II, with the latter
encoding the transcription initiation codon [12]. Functional analyses reveal
the presence of a 57-bp core promoter from the first transcription initiation
site, and two silencing elements, located between exons Ib and Ic, and the
regulatory factor for X-box element found upstream from exon II [12]. Both
silencing elements have a strong suppressive role in non-neuronal cells.

Main functions of mGlul and 5 receptors are in the regulation of neu-
ronal excitability, synaptic plasticity, synapse selection, and neurotransmit-
ter release, which are important for brain development and mechanisms of
learning and neuroprotection. For their functions both mGlul and 5 re-
ceptors have been implicated in the pathophysiology of several neurological
and psychiatric disorders, and represent possible targets for new therapeutic
approaches. For all these reasons, a better comprension of mechanisms reg-
ulating GRM1 and GRMY5 gene structures, activities and expression may be
instrumental for the achievement of these goals.

3.1.1. DNA sequences

Human GRM1 and GRMY5 sequences were from NCBI Build 36.1 and
mouse sequences Grm1 and Grmd from Build 37 (UCSC Genome Bioinfor-
matics [26]). We based our analysis of human and mouse GRM1 genes on the
genomic structures obtained from UCSC data for all reported gene isoforms
(obtained by [12]). The DNA strand that has been analysed is that indicated
by the UCSC browser as coding strand (plus strand). The analysed sequence
includes the 5" 5kb upstream to the first exon, and the 5kb downstream the
end of the last 3" exons. All exons, including 5 and 3" UTR exons, were
taken in consideration to get the final sequence to be analysed.

Some statistical features of the genes are shown in Table 1. Genes GRM1
and GRM5 in Homo sapiens and Grml and Grmd in Mus musculus all
share a low GC content.

This work aims at achieving a better understanding of oligonucleotide
repetitive structures shared by the four genes.



Table 1: The four grm genes under study.

Gene specie Chromosome length GC-content
GRM1  H. sapiens chr 6 412965 bp 37%
GRM5  H. sapiens chr 11 563148 bp 36%

Grm1 M. musculus chr 10 398962 bp 39%
Grmbd M. musculus chr 7 552292 bp 3%

3.2. Algorithm and dictionaries

The proposed method is based on the use of CASToRe, a fast dictionary-
based compression algorithm of the Lempel-Ziv family. We remark that defi-
nitions and indices may be equivalently defined for any reversible compression
algorithm. We shall use CASToRe since it is useful in fast identification of
some repeats.

The algorithm CASToRe selects a dictionary by exact matches and parses
the input sequence ¢ in some variable-length recurrent words. Each new
parsed word is the one that can be made with the longest prefix and the
longest suffix already parsed. The input sequence is parsed in subwords be-
longing to the final dictionary relative to the sequence: Dict(c) = {¢1,..., P}

For instance, the input sequence on alphabet {A,C, G, T}:

o0 =AACACGCACGTCCGAGTCTGTC (1)
has the following final dictionary after parsing:
Dict(o) ={A.A,C.A,C.G,CA.CG, T.C,CG.A,G.TC, T.GTC}

where prefix and suffix are separated by a dot.

The main properties of the algorithm are shown in ref. [4].

We analysed each word in the final dictionary Dict(o) = {¢1,...,d:} by
calculating the word score as follows. Each word ¢; is made of a prefix p,(j)
and a suffix p,(j) both belonging to {¢1,...,¢;-1}.

Then, even if the ¢;’s are pairwise distinct (with the possible exception of
the last one, ¢;), each ¢; occurs occ(j) > 1 times within the sequence o when
used as a prefix or a suffix of a subsequent word (with the possible exception
of ¢¢). For instance, given the sequence o in above example (1), the words in
the dictionary occur differently: occ(A) = 6, occ(CG) = 3, occ(GTC) = 2,
ete.



4. Results and discussion

4.1. Word usage

First steps concern the compression of CASToRe algorithm on the com-
plete gene sequences. The dictionaries resulting from that compression have
been analysed and compared in order to extract common features to be help-
ful as a preliminary filter in the statistical linguistic investigation. We re-
mark that this analysis is completely biologically blind, therefore it highlights
structures whose importance (in recurrence, length, etc) is given by intrinsic
features, typical of the sequence and not derived from external knowledge.

In our genes the most frequent word length is ¢ = 6bp and the words
statistics is meaningful about up to length ¢ = 10 — 11bp: longer words
occur only 2-3 times. It is remarkable that when the algorithm has parsed
coding regions, words are mostly of length 3 and codons.

A crucial remark concerns the structure of words in the dictionaries of
GRMs. The parsed words show some peculiar recurrences in the {A, T} —
{G,C} content. This naturally leads to the linguistic analysis we have per-
formed. From the final dictionary relative to the complete sequences of the
four genes, we extracted some interesting words as the words that have
length ranging from 12 to 36 nt and occur from 5 to 25 times within the
dictionary. Such words are well-known microsatellites (see part of them in
Table 2 for Grm1, but the same happens for the other genes). This sup-
ports the idea that such an analysis may be extremely helpful in mining gene
linguistics. Moreover, all the selected patterns belong to nonexon regions
within the gene and show an evident symmetry between the occurrence of
weak and strong chemical bonds among nucleotides.

Table 2: Part of interesting words selected as the longest and recurrent in the dictionary
gene Grml after CASToRe analysis.

atcctectgactgeageagtgtgaaggtggaggagt cctgactgcageagtgtg
aaggtggaggagtatcctectgactgeageagtgtg aaaatatt
aattgaaaat ccegagaaggaaag
tatcctectgactgeageagtgtg aacacagggcccccaatggagaag

4.2. Quer-represented oligonucleotides
Due to the manifest symmetry of interesting words in AT/GC bonds in
the dictionary of complete genes and since such words belong to nonexon se-
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quences, we built the nucleotide supersequence Nex(g) made of only nonexon
fragments inside each gene g and took under consideration the binary filter-
ing of the nucleotide sequence, based on the Weak/Strong bond: [A,T] =
w, [G,C] =s.

Let us assume the following null hypothesis: the {w, s} nucleotides are
distributed following a Bernoullian distribution of parameter p = f,,, that is
the frequency of symbol w’. Then an oligonucleotide z of length n (n-mer,
in the following) containing exactly k w-bases should appear with probability

) = ()= ©)

Any n-mer whose frequency exceeds that estimated probability by 5 x 1073 is
defined as over-represented. The threshold value is optimized in order to keep
over-represented words both in common among genes and sufficiently long.
Notice that over-represented n-mers may not be the most frequent n-mers,
since being over-represented is related to a comparison with random expec-
tation, not with frequency. The n-mer containing exactly k w-nucleotides
and h = (n — k) s-nucleotides shall be denoted by n(k, h).

We shall extract the over-represented {w, s}-oligonucleotides of length 4
to 24 in Nex sequences and selct only the ones shared by the four genes, then
we shall analyse only the selected 24-mers corresponding onto the 4 bases
alphabet {A,C, G, T} on complete sequences.

4.2.1. Linguistic analysis

From the analysis we exploited on n-mers frequency for n = 4,5,...,24,
we may observe that for n > 7 the over represented m-mers contain the over
represented (m — 1)-mers and also omo-m-mers become frequent.

The over-representation chain is shown in Table 3. At each length n,
we selected only the over-represented n-mers that were in common for the 4
genes.

The over-represented 24-mers under the binary filter {w, s} belong to 6
different classes, which may be roughly distinguished into two categories:
from % to % of w =AT-content and more than % of AT-content.

We remark that some classes also include some words found in the dic-
tionary build by CASToRe (see Table 2, last two rows).

We shall now investigate such 24-mers in the light of the {A,C, G, T}
alphabet.



Table 3: Over-represented n-mers (n = 4,...,24) shared by the 4 genes under binary
filter.

n over—represented n-mers
1 1(2,2)
5 5(2,3)
6 6(3,3)
7 7(3,4)
8 | 8(8,0)
9 | 9(9,0) 9(4,5)
10 | 10(10,0)
11| 11(10,1) 11(5,6)
12| 12(11,1)
13(12,1)
13| 13019 13(6,7)
14(13,1)
M1 1402,2)
24(19,5)
24 2244((196 1152) 24(11,13) 24(20,4)
: 24(21,3)

For each of the 6 above {w,s} classes, we performed the same statis-
tical analysis on the complete gene sequences and on the 4 bases alphabet
{A,C,G,T}. Again, we used a multinomial null hypothesis and the over-
representation is defined with threshold 2.2 x 10™* (that is the order of the
empirical frequecies of 24-mers over the 4-bases alphabet). They are grouped
w.r.t. the (former) {w, s} content and denoted by (na,nc, ng, nr).

The over-represented common 24-mers on {A, C, G, T'} alphabet are given
by two groups: balanced and omoWeak. In table 4 we show the list of
omoWeak and balanced over-represented 24-mers on {A,C, G, T} alphabet
shared by the four genes.

Balanced over-represented 24-mers are 24(11,13), whose ratio AT/GC



Table 4: Over-represented 24-mers on {4, C,G, T} alphabet shared by the 4 genes. The
nucleotide content is shown as na,nc,ng, nr.

balanced

24(11,13) {(3’9’4’8> (4.947) (4,10.3.7)

(8,4,9,3)
omoWeak
(6,4,1,13) 5,3,2,14)
(13,1,4,6) 14,2,3,5)

(
(

24(19,5) 42315)  (623,13)  (52,3,14)
(

(
(5,4,1,14)  (6,3,2,13) 12,1,4,7)

24(20 4) {gf”ll;ii (33.1,15)  (6,2.2,14)
(6,3,1,14)  (7,2,2,13)

24(21,3) (10,1,2,11)

is around % There are only three combinatorial structure of these words:
they are A3CyG 4Ty and its reverse complement AgC,Go T3 and two singletons
A40190G§T7.

OmoWeak over-represented 24-mers are 24(19,5), 24(20,4) and 24(21,3).
Within such three subclasses, several combinatorial structures occur. Notice
that for some of them, also the reverse complement one is over-represented:
in 24(19,5), (6,4,1,13) and (5,3,2,14) and in 24(20,4), (7,3,1,13). For the
others this is not true.

As a first remark, please note that, since the gene sequences are definitely
AT-rich (more than 60%), the results regarding the over-representation of
balanced (GC-rich) 24-mers are anyway surprising.
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We located the above two classes of over-represented acgt-24-mers on the
complete sequence of each gene and investigated some of their features in
comparison with known biological structures.

We are aware of a recent oligonucleotide analysis concerning pyknons [23].
The authors identified recurrent variable-length sequences (most of them is
16nt long) in human and mouse genomes and linked them to properties of
intronic regions. Only a list of human and mouse pyknons is available and no
information is given about occurrences or location of each pyknon. Therefore,
the only way to make a comparison seemed to match each pyknon to our
words. We found that only around 10% of balanced words had a match in
(shorter) pyknons, while the fraction was about 2-4% for omoWeak words.

Anyway, we followed a further step, by observing that the selected words
frequently overlap onto eachother and they result to be clustered in overlap
intervals.

From now on, we shall focus on those collections of consecutive overlap-
ping words (not on individual words) and denote them as -either balanced
or omoWeak- segments.

The extent of segments is on average around 30 nt for every class of
segments, while the longest segments reach 10? nt in the case of omoWeak
and an average of 90 nt for balanced segments.

Some quantitative results are summarized on Table 5. In particular, the
fraction of gene sequence covered by the segments of each class is a conserved
property, expecially for balanced segments.

4.8. Gene organization and conservation

First of all, we located the segments on the gene sequences, w.r.t. introns
and exons, making reference to the genomic sequence available on UCSC.
Exons cover from 0.7% to 1% of the genes.

For what concerns balanced segments, about less than 2.5% of the seg-
ments intersect an exon in human and mouse GRM]I, while about 1.3% in
GRMbJ. Finally, omoweak segments located within exons do not exceed 0.10%
in the four genes.

The vast majority of segments are completely contained in noncoding re-
gions. When analysing what the dispersion is of each class of segments within
each UCSC intronic region, we have that for the four genes the distribution
of segments is almost uniform, according to the relative length of the introns
(see supplementary material, section 1). Longer introns contain most of all
segments. Anyway, a few exceptions are notable. For GRM1, there is a slight

11



ACCEPTED MANUSCRIPT

Track 80
Mouse Jul. 2007

N T T T T AT W

Scale 188 Kol 1
_] chré: | 146450068| 146566668| 146558806 146608006 14sssaaael 146708606 146750660] 146500008|
UCEC Gehes Based on RefSed, UniFrot, GenBank, CCDS and comparatwo Gonomn:s
J UCSC Genes 1 1 + —t i
28 _ flexible regions

flexible regions

J omokeak segments || INNENIENINEN] IIIIIIIII--III-IIIIIIIIII-IIIIII-_II-III--IIII.IIIIIIIII-III- | .
_]m-ﬁex.ble rego LWL W TR LD e wer e weenn II n”' IIIIIIII II||I lI Il_llllllllllllll LU 11 11 RV ML MU A AR
_]lamnced segmer‘ﬂrs L BTN WU CREE DR L TR ] IIIIIIIIIIIIIIIIIIIIIIIII II IIIIIIIIIIIIII QITTRINTT YRR LD R TN T

anﬂMII 1L H‘ 1) HIJHIH

il 11 (|
po ting Ewmmr D
SINE 11 II I 1 Ll ||II [ T III T N IIIII\III\I IIIIII IIIIII P |
LINE ] ICRARAIN U ROl BRI BTN W (| i 1] - | lll ] 1m I
LTR (| [ LT n 11l I I | [ARE N RRII 11 | | I iy
ONA I 1m I | | 1 [ | | | I |
simple | |l | “I 1N FILE 1 | I (| Il |
Low complexity || | |1 1 |1 | L | I R T (W I {0 [} Lig il 1
satellite
RNF |

CTCF

other
Unikhiowr

Figure 1: Ezample of results for GRM1 gene: homology w.r.t. Grml; gene organization;
flexible regions; localization of omoWeak segments; omoWeak segments co-localizing with
torsional flexibility measures; localization of balanced segments; CTCF methylation data;
Z-DNA sequences; repeat classes. The coordinates of single segments and of flexible regions
have been included in BED files and displayed as custom tracks on the UCSC browser.
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Table 5: Classes of over-represented 24-mers on {A,C,G, T} alphabet shared by the 4
genes: words found, segments, and relative sequence fraction covered.

Gene  # balanced words # segments % covered

GRM1 1167 042 3.51%
Grm1 1210 272 3.82%
GRM5 1391 669 3.14%
Grmd 1285 592 2.88%

Gene # omoWeak words # segments % covered

GRM1 6066 1532 11.15%
Grm1 3887 972 7.28%
GRMS5 8050 2149 11.34%
Grmb 7182 1879 10.16%

excess of balanced segments within intron IT w.r.t. intron fraction over the
complete gene (1.10% of segments against relative intron length of 0.33%).
For Grms, its balanced segments are not contained in intron V (about 10* nt
long) and for Grm1 its omoWeak segments are not contained in intron IX
(about 1.4 x 10 nt long). The distribution within the other introns is almost
uniform.

Second, we co-localized segments w.r.t. homologous regions, in order to
investigate how much such segments (which have been selected as the ones
shared by the four GRM genes) are influenced by the homologies among the
genomic sequences under study.

We took under consideration homology level by calculating identity by
means of GenomeVista [13, 5]. Results among paralogous genes are 16%
identity for GRM1/GRM5 and 13% identity for Grm1/Grm& (where re-
sults are read w.r.t. GRM1I) and homology among orthologous genes ranges
from 18% identity for GRM1/Grm1 to 12% identity for GRM5 / Grm5 (where
results are read w.r.t. human genes). An example of the performed analysis
is shown in figure 1.

The fraction of balanced segments localized in homology regions (w.r.t.
all balanced segments) ranges from around 45% for paralogous genes to 12 —
15% for orthologous genes. The fraction of omoWeak segments localized
in homology regions ranges from 50% to 70% (for paralogous genes, more
concentrated in human genes; for orthologous genes, more concentrated in
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GRM1 genes).

We also compared the expected fraction Exp of genomic sequence covered
by the balanced/omoWeak segments localized in homology regions to the
observed value Obs. The value Exp was calculated as Fxp = C' X f, where C'
is the fraction of conserved regions in the reference gene (i.e., the fraction of
GRM1 with homology w.r.t. GRMJ5) and f is the fraction of reference gene
covered by balanced/omoWeak segments (taken from Table 5). The value
Obs is the fraction of reference gene covered by balanced /omoWeak segments
localized within homology regions.

This analysis resulted in an overall coincidence of the two measures (see
figures on Table 6), which supports the idea of the absence of an explicit bias
of the sequence conservation on the segments’ distribution.

Table 6: Expected and observed genomic sequence covered by segments in conserved
regions. Paralogy figures must be read w.r.t. GRM1 genes, orthology figures w.r.t. human
genes.

Homology Exp(bal) Obs(bal) | Exp(omoW) Obs(omoW)
GRM1/GRM5 | 0.56% 1.60% 1.78% 2.63%
Grml1/Grmd 0.50% 1.57% 0.95% 1.81%
GRM1/Grm1 0.63% 0.54% 2.00% 2.59%
GRM5 / Grmb 0.38% 0.30% 1.36% 1.30%

Then, we investigated whether there are any relationships among the
balanced and omoWeak segments and the biological features.

We took under consideration some physical features of the DNA helix
and experimentally found or computationally predicted biological properties
of these inter-exon sequences.

4.4. DNA sequence and chromatin structure

DNA sequence shows different patterns throughout genomes associated
with alternative conformations and diversely able to sustain chemical inter-
actions.

In the following tables, we shall show the results by focusing on the co-
localization of balanced/omoWeak segments with the features listed above.
To this aim, we shall denote (for instance) the balanced segments co-localizing
to some feature (say, Z-DNA configurations) by label ”bal-IN-feature” and

14



the features co-localizing to some balanced segments by label ”feature-IN-
bal”. Therefore, Zdna-IN-bal is the fraction of Z-DNA configurations (for
each gene) co-localizing to balanced segments is w.r.t. total number of con-
figurations, while the fraction of balanced segments co-localizing to Z-DNA
configurations w.r.t. total amount of segments is the fraction bal-IN-Zdna.

4.4.1. Flexibility

The torsional flexibility of DNA helix is a sequence-dependent property
expressed as fluctuations of twist angle; the potential local variations in the
DNA structure may be estimated by analysing the dinucleotide degree values
calculated by algorithm stabflex [29] based on work by Sarai and coll. [1] in
overlapping windows, summed and averaged by the window length (we used
windows 100nt-long and overlapping for 99nt). Flexible regions are known
to mediate DNA-protein binding processes and are suggested to play a role
in specific interactions of DNA metabolism; evidence has been reported on
a relationship with DNA replication origin, DNA repair, DNase I cleavage
and regulatory elements binding. DNA flexibility is involved in chromosome
instability [20].

We selected the flexibility regions as follows. We selected the measures
of deviation of the twist angle which are not lower than a threshold. We
used 8 = mean value + 2 - stand dev which ranges from 12.27 to 12.46 for
the different genes. Finally, we aggregate such windows (when overlapping)
into wider flexible regions to which the results refer. Balanced segments show
negligible matches to regions with high flexibility. Differently, flexible regions
are significantly covered by omoWeak segments (see Table 7), as expected
by their frequent association to AT-rich regions; more than 70% of flexible
regions match some omoWeak segment, with the only exception of Grmi
where this phenomenon is more diluted.

The co-localized flexible-omoWeak regions are distributed along the whole
gene, independently of level of sequence identity.

Since the omoWeak segments co-localizing are around 20%, we investi-
gated whether some specific omoWeak words (w.r.t. table 4) co-localize with
flexible regions. More than 40% of the omoWeak21 words (21(10,1,2,11) only)
match flexible regions (in GRM1, 47%); they represent around the 10% out of
all co-localizing omoWeak words. The other combinatorial structures within
omoWeak19 and omoWeak20 classes are represented for a smaller fraction.

The co-localized flexible-omoWeak regions are distributed along the whole
gene, independently of the level of sequence identity.
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Table 7: Segments co-localizing with flexibility peaks.

Gene * ﬂ?lele flex-IN-bal flex-IN-omoW
regions
GRM1 275 2.2% 72.36%
Grml 206 3.88% 56.80%
GRMb5 327 3.80% 72.48%
Grmd 284 3.88% 71.48%
Gene bal-IN-flex omoW-IN-flex
GRM1 1.11% 21.02%
Grm1 1.57% 18.11%
GRM5 1.35% 18.43%
Grmd 1.86% 18.68%

4.4.2. Non-B DNA conformations

We consider Z-DNA and G-quadruplex structures. Z-DNA patterns,
whose potential is predictable by the algorithm zhunt [30], occur at se-
quences with alternating pyrimidines and purines, -such as (CG:CG)n and
(CA:TG)n- that may wind the double helix into a left-handed zigzag pat-
tern. Therefore, unlike B-form DNA, which possesses one major groove and
one minor groove, Z-DNA has only one deep and narrow groove with 12
bp per helical turn. G-quadruplex DNA is a four-stranded structure con-
sisting of a square co-planar array of four guanines formed by a stretch of
guanine-rich DNA. Each guanine acts as a donor and acceptor of Hoogsteen
hydrogen bonds in a cyclic arrangement involving N-1, N-2, O-6, and N-7.
G-quadruplex conformations have been predicted by quadparser algorithm
[31]. Non-B DNA conformations show non random distributions in genomes
and association with unstable regions.

Resulting data on configurations are poor (with the exception of murine
Z-DNA), therefore also co-localization is weak, especially for Z-DNA confor-
mations. Table 8 do not show figures for bal-IN- and omoW-IN- since the
fraction is negligible.

4.4.3. Histones’ modifications
DNA binding proteins define functional domains and chromatin activity.
A high resolution map for histone modification distribution and CTCF bind-
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Table 8: Segments co-localizing with non-B DNA configurations. We set 0% even when
the fraction is not greater than 1073%.

Gene * Zdna Zdna-IN-bal Zdna-IN-omoW
regions

GRM1 33 0% 3.03%

Grm!1 110 4.54% 2.73%

GRMb5 68 1.47% 10.29%

Grmb 93 2.15% 2.15%

Gene 7" unadr. Gquadr-IN-bal  Gquadr-IN-omoW
regions

GRM1 24 12% 0%

Grm!1 60 13.33% 0%

GRMb5 28 14.29% 0%

Grmb 88 12.5% 1.14%

ing sites is available for human genome, provided by Barski et al. [3] and
Wang et al. [24].

The available data are 21 signals for human histone methylations and 18
for human histone acetylations. Each signal contains a list of peaks coming
from the experimental outputs. The data has been compressed by the authors
with a minor loss in resolution: for instance, if the worst case is 0.0625, the
signals contained only values bigger than 1.

Methylation files range from around 200 to around 10% data per signal,
while acetylation from 200 to 700 data per signal.

We checked whether such peaks intersect balanced or omoWeak segments.

We shall show the average results over the complete data sets provided by
Barski et collaborators. The histone methylation patterns in GRM genes un-
der study are comparable to those reported by Barsky for the transcriptional
regions of active genes; high levels of H3K27mel e H3K36me3 are present and
also, even if more limited, of H3K4mel, H3K4me2, H3K9mel, H2BK5mel e
H4K20mel. The same is true for results concerning acetylation.

A limited co-localization of histone modifications with both balanced and
omoWeak segments is detectable (table 9); it indicates that segments have
an histone-independent pattern.
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Table 9: Segments co-localizing with histone methylation and acetylation data (average
results).

Gene meth-IN-bal meth-IN-omoW
GRM1 28.29% 47.50%
GRMb5 24.71% 51.75%

Gene bal-IN-meth omoW-IN-meth
GRM1 41.26% 31.30%
GRM5 29.19% 22.56%

Gene acet-IN-bal  acet-IN-omoW
GRM1 24.66% 48.25%
GRMS5 25.95% 50.62%

Gene  bal-IN-acet omoW-IN-acet
GRM1 12.80% 11.10%
GRMS5 19.00% 14.06%

4.4.4. CTCF

CTCF is a multi-zinc finger protein in vertebrates that binds the insula-
tors, i.e. DNA elements defining different chromatin domains. Thus it plays
an important role in chromatin remodeling. It can dimerize when it is bound
to different DNA sequences, mediating long-range chromatin looping. It me-
diates interchromosomal association and may direct distant DNA segments
to a common transcription factor. It causes local loss of histone acetylation
and gain of histone methylation. When bound to chromatin, it provides an
anchor point for nucleosomes positioning. Experimental data are taken from
3].

CTCF target sites generally cluster at boundaries of chromatin domains
and are scantily represented inside gene sequences; this occurs even in our
genes, where low signals are present. By considering all of them for the
correlation analysis with balanced and omoWeak words we found multiple
matches (table 10) and a slight excess of CTCF binding sites in omoWeak
(Figure 2). This may be representative of an interaction between them.
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Table 10: Segments co-localizing with CTCF.

Gene CTCF-IN-bal CTCF-IN-omoW
GRM1 39.19% 72.89%
GRM5 33.74% 75.50%

Gene bal-IN-CTCF omoW-IN-CTCF
GRM1 28.60% 29.76%
GRMS5 20.24% 22.21%

4.5. Repeats

We refer to the interspersed repeat databases screened by RepeatMasker
that are based on the repeat databases (Repbase Update) copyrighted by the
Genetic Information Research Institute [27]. We considered repeats classified
on both the DNA strands, since we disregard the relationships with the
transciption activity, focusing our interest only on the genomic features.

Table 11: Segments co-localizing with repeats: cumulative results.

Gene repeats-IN-bal repeats-IN-omoW

GRM1 28.33% 49.40%
Grm1 23.05% 28.14%
GRMS5 25.32% 53.40%
Grmd 24.11% 46.99%

Gene  bal-IN-repeats omoW-IN-repeats

GRM1 48.16% 41.09%
Grm1 41.08% 29.02%
GRMS5 60.54% 45.97%
Grmd 64.87% 37.47%

We compared the segments to the repeats listed in the database and we
show in table 11 the quantitative results taking into account all the repeats
as a whole, w.r.t. balanced/omoWeak segments. For each segment, multiple
matches can be found and wviceversa. The fraction of repeats-IN is around
25%, on average for balanced segments but ranges from around 30% to more
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5 kb} {
146390000 146395000 146400000
flexible regions

omoWeak segments

CTCF binding sites

Figure 2: Example of results for 15kb within GRM1 geme displayed as custom tracks on the
UCSC browser (chr6:146,388,224-146,403,223): flexible regions; localization of omoWeak
segments; CTCF methylation data.

than 50%, on average for omoWeak segments. This means that we select
only a few part of known repeats. Moreover, segments not matching to any
known repeat range from 30% to 70% of the whole collection, more evident
for omoWeak segments.

In supplementary material (section 3) pictures can be found, showing
the composition of the co-localizing RepeatMasker sequences for the GRM
genes for the complete collection of repeat classes: SINE, LINE, LTR, low
complexity, simple repeats and other repeats.

Some comments are due. First, it is a common behaviour that balanced
classes are extremely similar to each other, with the only exception of Grmd.
The dispersion of RepeatMasker classes w.r.t. omoWeak matching segments
seems to follow rather a specie-specific trend than to be a conserved property,
expecially for the different role played by simple repeats in mouse and human
genes.

5. Final remarks

We investigated what a top-down analysis of four genes, linked by ei-
ther paralogy or orthology relationhips, may suggest about their biological
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Table 12: Summing up what the relation is between some properties and
omoWeak/balanced segments. When the relation is co-localization (resp. anti-locali-
zation), we mean that the fraction of feature-IN-omoWeak /bal is definitely greater (resp.
lower) than 50%. The arrow is an additional tool to visualize such relation. When figures
are around 50% we say that the feature and the linguistic class are indifferent to each other,
meaning that there are no suggestions of any existing bias among the two occurrences.

Feature —7  Segments  co-localized indifferent anti-localized
to eachother
Conservation omoWeak vV
Conservation balanced Vv
Flexibility —  omoWeak vV
Flexibility balanced vV
non-B DNA - omoWeak vV
non-B DNA - balanced vV
Histone meth. omoWeak vV
Histone meth. balanced V
Histone acet. omoWeak Vv
Histone acet. balanced V
CTCF —  omoWeak v/
CTCF balanced V
repeats omoWeak V
repeats balanced V
features.

Starting from some combinatorial hints on recurrent words given by a
preliminary compression analysis, we built a collection of DNA segments
almost uniformly located along the genes, that were over-represented with
respect to some biologically blind rule. We found that they are concentrated
on non-exon sequences. We compared the balanced and omoWeak segments
in the {w, s} alphabet, to some physical features of the DNA helix and
experimentally found biological properties of these inter-exon sequences.

The resulting matches show that more than half of the complete collec-
tion of over-represented segments may be related to some already described
biological property. The reverse is challenging: part of the collection shows
(in human genes) meaningful relations with histone methylation and acethy-
lation signals, whose biological interpretation remains vague since the mea-
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surement values for the studied genes are extremely low.

As a general evaluation, we observe that the non negligible relationship
between these segments and several biological properties, very different each
other, along with their statistical significance, suggest that these segments
should have a role in the functional information content of the genome. This
conjecture is strongly supported by the conservation we have found for these
over-expressed words in our comparisons between orthologous and paralogous
genes. Even though the very low similarity in their sequences (less than 20%
in the average case) the conservation of the over-expressed words is very high.

The over-expressed words would play some structural/functional role
which is important and then conserved beyond the plain sequence preser-
vation. The very similar outcome of co-localization analysis for omoWeak
with CTCF signals and flexible regions would suggest a relationship of these
words with some aspects of chromatin structure. Indeed CTCF binding sites
regulate chromatin domains activity [8] whilst flexible regions mediate DNA-
protein binding processes and specific interactions of DNA metabolism [17].
Interestingly, both these sequence-dependent parameters that are not related
to specific sequences, colocalize with words along the whole genes indepen-
dently of sequence identity. These findings may be suggestive of a conserved
long-range structure, with a possible functional role, and of a higher-order
organization. The impossibility of further focusing the words role is probably
due to the present lacking of more detailed biological knowledge.

This paper would represent a suggestion directed to genomists to further
investigate, from an experimental point of view, the possible role of such
segments.

Supplementary material

We provide some additional data about gene organization, co-localization
w.r.t. CpG islands and w.r.t. individual classes of repeats.
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