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Abstract

We present some studies on the mechanisms of pathogenesis based on ex-

perimental work and on its interpretation through a mathematical model.

Using a collection of clinical strains of the opportunistic human pathogen

Pseudomonas aeruginosa, we performed co-culture experiments with Dic-

tyostelium amoebae, to investigate the two organisms’ interaction, charac-

terized by a cross action between amoeba, feeding on bacteria, and bacteria

exerting their pathogenic action against amoeba. In order to classify bacte-

ria virulence, independently of this cross interaction, we have also performed

killing experiments of bacteria against the nematode C. elegans.
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A mathematical model was developed to infer how the populations of the

amoeba-bacteria system evolve according to a number of parameters, taking

into account the specific features underlying the interaction. The model

does not fall within the class of traditional prey-predator models because

not only does an amoeba feed on bacteria, but it is in turn attacked by

them; thus the model must include a feedback term modeling this further

interaction aspect. The model shows existence of multiple steady states and

the resulting behavior of the solutions, showing bi-stability of the system,

gives a qualitative explanation of the co-culture experiments.

Keywords:

Host-pathogen dynamics, Amoeba-bacteria interaction, Population models,

Bi-stability

1. Introduction

Virulence is a complex and often multi-factorial phenotypic trait that

quantifies the degree of pathogenicity of an organism, by establishing its

ability to mount an infection and to cause a disease. Genetic determinants

of bacterial virulence are potential drug targets, and represent an alternative

to the generic cellular and molecular mechanisms targeted by most antibiotics

used to date for the control of infections in humans and animals. Model host

organisms are used to identify and study the function of virulence factors

in human pathogenic bacteria. Mammalian hosts are preferentially used for

this purpose, because they are thought to mimic the situation occurring in an

infected human patient. However, a number of non-mammalian organisms,

such as the amoeba Dictyostelium discoideum, the nematode Caenorhabditis
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elegans, the insect Drosophila melanogaster and the fish Danio rerio have

been recently used as alternative hosts, with the advantage of avoiding ethical

problems and allowing us to assess bacterial virulence in an easier way than

by using mammalian hosts.

Dictyostelium amoebae are soil microorganisms that feed on bacteria and

have been utilized to assess the virulence of many different bacterial gen-

era, including Klebsiella (Benghezal et al., 2006), Aeromonas (Froquet et

al., 2007) or Pseudomonas (Cosson et al., 2002; Pukatzki et al., 2002). In

this model system, pathogenic bacteria defend against predation by Dic-

tyostelium, activating virulence pathways that impede amoeba cells to grow

and to form phagocytic plaques. The system has been almost exclusively

used to assess the role of specific genes in virulence, by comparing the viru-

lence phenotype of mutants versus wild-type strains. To our knowledge, the

Dictyostelium model has not been applied to date to determine the natural

virulence range of pathogenic bacteria obtained from clinical samples.

Mathematical models concerning bacterial growth have been recently de-

veloped within different contexts motivated by nosocomial infections, though,

to our knowledge, no specific model has been considered for describing the

particular amoeba-bacteria interaction such as described above. In par-

ticular, some work has been devoted to modeling the interaction between

pathogens and cells of the immune system (Nowak et al., 2000) or between

bacteria and phagocytes, including antibiotic resistance (Austin et al., 1998;

Boldin et al., 2007; D’Agata et al., 2007, 2008; Imran et al., 2007; Webb et

al., 2005).

In this study, we have investigated the dynamics of virulence both per-
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forming experimental measures and building a mathematical model for in-

terpreting the results. We have used a collection of clinical strains of the op-

portunistic human pathogen Pseudomonas aeruginosa to perform co-culture

experiments with Dictyostelium. The interaction between the two organisms

is characterized by a cross action between amoeba, feeding on bacteria, and

bacteria exerting their pathogenic action against amoeba. In order to clas-

sify bacteria virulence, independently of this cross interaction, we have also

performed killing experiments of bacteria against the nematode C. elegans.

A mathematical model was developed to describe the growth of the

amoeba-bacteria system, taking into account the specific features underlying

the interaction. We discuss the behavior of the model with respect to a ba-

sic parameter representing the virulence of the bacterium. The theoretical

results are compared with the experimental ones. The model does not fall

within the class of traditional prey-predator models because not only does

an amoeba feed on bacteria, but it is in turn attacked by bacteria that kill its

cells, so that the model must include a feedback term modeling this further

aspect of the interaction. The resulting model shows existence of multiple

steady states and bi-stability that seems to be responsible for the observed

behavior.

2. Virulence assays

The focus of this study is the investigation of the mechanisms under-

lying the interaction of different virulent strains of P. aeruginosa with D.

discoideum NC4; nevertheless a first set of experiments with C. elegans N2

as a target of the pathogenic process has been performed, in order to get
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a measure of the pathogenic action of P. aeruginosa independently of the

predation exerted by D. discoideum. In fact in our context the nematode

C. elegans N2 can be considered completely passive because during the time

of the culture it does not feed on P. aeruginosa; thus the killing percentage

that we obtain in the culture can be assumed as a measure of virulence, al-

lowing us to order the different strains of P. aeruginosa according to their

pathogenic strength.

2.1. Strains and growth media

A set of 27 P. aeruginosa clinical strains, isolated from patients suffering

from urinary tract infections, wound ulcer and respiratory tract infections,

were used in the experiments. Pseudomonas aeruginosa strains were obtained

from the microbiology departments at S. Chiara Hospital of Trento (Italy)

and at the University Hospital of Verona (Italy). Growth media were LB for

P. aeruginosa culture and maintenance, SM broth for D. discoideum NC4

using Klebsiella aerogenes as a food source, and NGM agar for C. elegans

using E. coli OP50 as a food source.

2.2. Virulence assays with C. elegans N2

Virulence of different strains of P. aeruginosa was measured indepen-

dently of its interaction with D. discoideum by performing killing assays

with C. elegans.

Table 1

The C. elegans fast killing assays (Tan et al., 1999) were performed with

P. aeruginosa cells harvested during exponential phase, re-suspended into PG
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broth at a final O.D600 of 1 and spotted on PG-agar plates in a final volume

of 200μl on Peptone Glucose agar plates containing sorbitol at 0.15 M. The

plates were initially incubated at room temperature for 18 hours. The adult

nematodes (on average 60 -70 individuals) were grown on E. coli OP50 on

NGM plates, picked and placed on the P. aeruginosa spots. As a control, one

plate was seeded with the non-pathogenic E.coli strain DH5−α. The plates

were subsequently incubated at 22◦C for 4 hours. The viability/mortality

of C. elegans was observed under an optical microscope at 10X magnitude.

Non-motile individuals were considered as dead, and the killing percentage

was calculated as the ratio between dead and total C. elegans individuals.

Clinical isolates of P. aeruginosa showed a wide range of virulence against

C. elegans.

The percentage of killing ranged from 6.6% to 100% (Table 1). No mor-

tality of C. elegans was observed using the non-pathogenic strain E. coli

DH5 − α as a control. Among the 27 P. aeruginosa specimens tested, 15

were highly virulent (80-100% C. elegans killing), 7 strains were moderately

virulent (50-80% killing) and 5 were weakly virulent or non-virulent (less

than 50% killing).

2.3. Virulence assays with D. discoideum NC4

Measurements of D. discoideum growth on a lawn of P. aeruginosa were

performed. Note that D. discoideum actually feeds only on P. aeruginosa.

Table 2

Pseudomonas aeruginosa cells were harvested during exponential phase,

resuspended into SM broth at a final O.D600 of 1, diluted into 5 ml of SM
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broth and spread on SM agar plates. A total of 9 suspensions of D. dis-

coideum cells in 5 − μl droplets corresponding to three-fold serial dilutions

of the initial culture containing 4.0x106 cells/ml were then spotted on lawns

of each P. aeruginosa strain. The most concentrated droplets therefore con-

tained about 20.000 cells, whereas the most diluted ones contained less than

10 cells. The number of D. discoideum cells in each dilution was controlled

using an automated cell counter (Countess, Invitrogen). Serial dilutions were

performed in infection medium containing HL5 and 1x Soerensen buffer mix

in 1:1 ratio [50 x Soerensen buffer, K2HPO4 (99.86 g), Na2HPO4 (17.8 g),

add H2O 1000 ml]. The plates were incubated for 6 days at 19◦C to visualize

the growth of D. discoideum.

Three patterns of Dictyostelium growth in the presence of P. aeruginosa

could be easily recognized: inability to form phagocytic plaques on the bacte-

rial lawn (pattern 0, Table 2), formation of phagocytic plaques without radial

dissemination of cells (pattern 1), and formation of phagocytic plaques with

radial dissemination of cells leading to the formation of an annular, trans-

parent zone around the region were Dictyostelium cells were spotted (pattern

2). Only the most concentrated droplets containing 2 ·104 or 7 ·103 cells were
able to form phagocytic plaques on the most virulent P. aeruginosa isolates

(growth pattern 1, Table 2), whereas the presence of a transparent annular

zone (growth pattern 2) was observed only in the less virulent P. aeruginosa

isolates, therefore confirming the reliability and coherence of results obtained

from both virulence assays. Dictyostelium cells were also spotted on a lawn

of the non-pathogenic strain E. coli DH5− α as a control. As expected, the

amoeba was able to form phagocytic plaques on DH5−α, even at the lowest
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cell concentrations and showed the formation of the annular zone (indicating

radial dissemination) when 250 cells or more were spotted.

3. A mathematical model

The experimental results reported in Table 2 possibly reveal a complex

dynamics underlying the interaction between amoeba and bacteria. In fact

the occurrence of survival and extinction depending on virulence and on the

initial concentration of amoeba suggests the existence of different states with

roles changing as virulence changes.

The process we have to model, in order to describe the interaction amoeba-

bacteria, does not fall within the traditional interactions between different

species because, in our case, the amoeba is at the same time a predator

(since it feeds on bacteria) and a victim (since bacteria belonging to a viru-

lent strain are able to kill amoeba cells by their pathogenic action). Having

in mind this main aspect, our model is based on the following description:

• in the absence of the amoeba, bacteria follow logistic growth, with

intrinsic growth rate r and carrying capacity K;

• in the absence of bacteria, the amoeboid population undergoes an ex-

ponential decay with death rate m; in fact we suppose that bacteria

are their unique source of food;

• amoeba cells feed on bacteria through a mass-action like mechanism

with attack rate a;

• amoeba growth occurs at a rate proportional to the uptake of bacteria,

with proportionality constant d;
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• bacteria attack and kill amoeba cells with a functional response of

Holling type with handling time T and attack rate b.

All the previous statements have a precise interpretation from the mod-

eling point of view. Denoting respectively by u(t) and v(t) the number of

bacteria and the number of amoeba cells, our model can be written as follows:

⎧⎪⎪⎨
⎪⎪⎩

u′(t) = r

(
1− u(t)

K

)
u(t)− au(t)v(t),

v′(t) = −mv(t) + du(t)v(t)− bu(t)v(t)

1 + bTv(t)
.

(1)

By introducing the following non–dimensional variables

t̃ = rt , ũ =
u

K
, ṽ =

a

r
v

and dropping all superscripts for simplicity, system (1) becomes

⎧⎪⎨
⎪⎩

u′(t) = (1− u(t))u(t)− u(t)v(t), u(0) = u0,

v′(t) = −μv(t) + δu(t)v(t)− γ
u(t)v(t)

1 + τv(t)
, v(0) = v0,

(2)

where

μ =
m

r
, δ =

dK

r
, γ =

bK

r
, τ =

bTr

a

and u0 and v0 are the initial conditions.

This rescaling has reduced the number of parameters to four and we

shall discuss the model dynamics with respect to γ representing the bacterial

virulence. All other parameters will be considered as fixed. In particular,

since our experimental framework suggests that amoeba life-time is very large

if compared with the time scale of the interactions, we will assume

μ� 1. (3)
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Moreover since we have classified virulence on the basis of killing percentage

in the first four hours (see Table 1), while the amoeba growth process is

measured for 6 days, we will assume

τ � 1 (4)

to mean that the pathogenic process is rather fast.

A first analysis to determine the dynamics of the model concerns existence

of steady states.

3.1. Steady states

Here we look for steady states of system (2), namely we look for non-

negative solutions of the system

⎧⎪⎨
⎪⎩

(1− u− v)u = 0,(
−μ+ δu− γ

u

1 + τv

)
v = 0.

(5)

It is immediately seen that there are always the trivial steady state O ≡
(0, 0) and the bacteria–only state B ≡ (1, 0). However, the existence of

coexistence steady states, for which amoeba and bacteria densities are both

strictly positive, is not so straightforward and we need to analyze the system

⎧⎨
⎩

1− u− v = 0,

−μ+ δu− γ
u

1 + τv
= 0,

(6)

or, equivalently, the intersection of the curves

v = φ1(u) = 1− u,

v = φ2(u) =
(γ − δ)u+ μ

τ(δu− μ)
=

1

τ

(
γu

δu− μ
− 1

)
.

(7)

10



Actually, we look for meaningful intersections of φ1(u) and φ2(u), i.e.

such that

0 < u∗ < 1, 0 < v∗ < 1. (8)

Thus, noticing that

φ2(u) < 0 for 0 < u <
μ

δ
,

φ2(u) >
γ − δ

τδ
for u >

μ

δ
,

we conclude that

No coexistence equilibrium exists if at least one of the following

conditions is satisfied

μ > δ (9)

γ > δ(1 + τ) (10)

However we note that we can exclude case (9) because condition (3) allows

to restrict to the case

μ� δτ

1 + τ
< δ (11)

and, in view of (10), we will investigate existence of equilibria against dif-

ferent values of the parameter γ ∈ [0, δ(1 + τ)]. To this aim we transform

system (6), by substitution, into

⎧⎨
⎩

i) 1− u− v = 0,

ii) τδu2 + [γ − δ(1 + τ)− μτ ] u+ μ(1 + τ) = 0,
(12)

and solve equation (12, ii) to get

u±(γ) =
[δ(1 + τ)− γ + μτ ]±√

Δ(γ)

2δτ
, (13)
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where

Δ(γ) = [δ(1 + τ)− γ + μτ ]2 − 4τδμ(1 + τ).

We have indicated dependence on γ and we actually note that the discrimi-

nant Δ(γ) is a decreasing function of γ, on the interval [0, δ(1+τ)], vanishing

at the point

γ+ =
(√

δ(1 + τ)−√μτ
)2

< δ(1 + τ). (14)

Figure 1

As a consequence, (13) provides two branches u±(γ) of real positive solu-

tions of (12, ii) for γ ∈ [0, γ+], glued at γ+ where

u−(γ
+) = u+(γ

+) =

√
μ(1 + τ)

δτ
< 1. (15)

Moreover, u+(γ) is decreasing with γ and

u+(0) = 1 +
1

τ
> 1, u+(γ

∗) = 1,

where

γ∗ = δ − μ < γ+, (16)

so that u+(γ) satisfies (8) only for γ in the interval [γ∗, γ+]. Concerning the

other branch u−(γ), we have that, since

u−(γ)u+(γ) = μ(1 + τ),

then u−(γ) is increasing and (see (15))

0 < u−(γ) < u−(γ
+) < 1.
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Thus u−(γ) satisfies (8) for γ ∈ [0, γ+]. Finally, taking v±(γ) = 1−u∓(γ), we

have solutions of system (12) for γ ∈ [0, γ+]. We note (see (12)) that v±(γ)

are the two solutions of

δτv∗2 + [δ − γ − τγ∗] v∗ + γ − γ∗ = 0 (17)

and that for γ < γ∗ only v+(γ) is positive.

In Figure 1 and Figure 2 we respectively show the bifurcation graphs of

u±(γ) and v±(γ), with γ as a bifurcation parameter.

Figure 2

Next we discuss stability of the equilibria.

3.2. Stability

First of all we consider the trivial steady stateO ≡ (0, 0) and the bacteria–

only state B ≡ (1, 0). The respective Jacobian matrices for these states are

J(O) =

⎛
⎝ 1 0

0 −μ

⎞
⎠ , J(B) =

⎛
⎝ −1 −1

0 γ∗ − γ

⎞
⎠ .

Consequently we have that

The trivial state O is always unstable, while B is stable if γ > γ∗

and unstable otherwise.

For analyzing the coexistence steady states we have to consider the Ja-

cobian matrix

J(E∗) =

⎛
⎜⎝ −u∗ −u∗(

δ − γ

1 + τv∗

)
v∗

γτu∗v∗

(1 + τv∗)2

⎞
⎟⎠ , (18)
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and analyze the sign of trace and determinant of J(E∗) versus γ, along the

different branches shown in Figure 2. Actually, we have

trJ(E∗) =
u∗

(1 + τv∗)2
(
τ 2v∗2 + τ(2− γ)v∗ + 1

)

det J(E∗) =
u∗v∗

(1 + Tv∗)2
(
δτ 2v∗2 + 2δτv∗ + δ − γ − γτ

)

and, considering first the upper branch v+(γ) = 1 − u−(γ), for γ ∈ [0, γ+],

we are led to analyze the sign of

T+(γ) = τ 2v2+(γ) + τ(2 − γ)v+(γ) + 1 =

= τ 2 (v+(γ)− t+(γ)) (v+(γ)− t−(γ)) ,
(19)

and

D+(γ) = δτ 2v2+(γ) + 2δτv+(γ) + δ − γ − γτ =

= δτ 2 (v+(γ)− d+(γ)) (v+(γ)− d−(γ)) ,
(20)

where

t±(γ) =
γ − 2±√

γ(γ − 4)

2τ
,

d±(γ) =
−δ ±

√
δγ(1 + τ)

δτ
,

looking for positive T+(γ) and D+(γ) in order to have stability.

First we prove that

D+(γ) is positive for γ ∈ [0, γ+). (21)

In fact, first of all, for γ ≤ δ

1 + τ
, d±(γ) are both non-positive so that

D+(γ) = δτ 2 (v+(γ) + |d+(γ)|) (v+(γ) + |d−(γ)|) > 0.

To check the case γ >
δ

1 + τ
, we note that, since v−(γ) = 1 − u+(γ) and

v+(γ) = 1 − u−(γ) are the roots of equation (17), then the quadratic poly-

nomial

P (z) = δτz2 + [δ − γ − τγ∗] z + γ − γ∗
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can be written as

P (z) = δτ (z − v−(γ)) (z − v+(γ)) ,

so that, for z > 0,

P (z) < 0 if and only if v−(γ) < z < v+(γ).

Then, after some algebra and using (14), we get

τδP (d+(γ))

= 2δτ(1 + τ)− (δ + γ + τγ∗)
√

δγ(1 + τ)

=
[
2
√
δγ(1 + τ)− γ − δ(1 + τ) + τμ

]√
δγ(1 + τ)

=

[
τμ−

(√
δ(1 + τ)−√γ

)2
]√

δγ(1 + τ)

<

[
τμ−

(√
δ(1 + τ)−

√
γ+

)2
]√

δγ(1 + τ) = 0,

so that

v−(γ) < d+(γ) < v+(γ)

and by (20), since d−(γ) < 0, we have (21).

Now we consider T+(γ) and prove

T+(γ) is positive for γ ∈ [0, γ+). (22)

First we note that, for γ < 4, t±(γ) are complex conjugate so that

4T+(γ) = (2τv+(γ) + 2− γ)2 + (4− γ)γ > 0.

Thus, (22) is true if γ+ ≤ 4, while if γ+ > 4 we are left with the case

4 ≤ γ < γ+. To analyze this case, using

τ 2t2±(γ) + τ(2− γ) t±(γ) + 1 = 0,
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we compute

P (t±(γ)) = [(δ − 1)γ − δ − τγ∗] t±(γ) + γ − γ∗ − δ

τ
. (23)

Then, since τ < 1 (see (4)) and noticing that γ+ ≥ 4 implies δ > 2, we have

P (t±(4)) = 2μ+
2

τ
(δ − 2)(1− τ) > 0. (24)

Now, it is easy to check that, for γ > 4, the functions t+(γ) and γt−(γ) are

increasing with γ, while the function t−(γ) is decreasing. Moreover, since

δ > 2, γ > 4 and τ < 1, we have

(δ − 1)γ − δ − τγ∗ > (2δ − 4) + δ(1− τ) + τμ > 0,

that, used in (23) implies that P (t±(γ)) is increasing and, due to (24), it is

positive for 4 ≤ γ < γ+. As a consequence, either

t−(γ) < t+(γ) < v−(γ) < v+(γ),

or

v+(γ) < t−(γ) < t+(γ)

In both cases T+(γ) > 0 and (22) is true.

Now we consider the lower branch of Figure 2, v−(γ) = 1−u+(γ), existing

only for γ ∈ [γ∗, γ+].

As before we analyze the sign of

D−(γ) = δτ 2v2−(γ) + 2δτv−(γ) + δ − γ − γτ =

= δτ 2 (v−(γ)− d+(γ)) (v−(γ)− d−(γ)) , (25)

with

d±(γ) =
−δ ±√

δγ(1 + τ)

δτ
.
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Notice that D−(γ) is meaningful only for γ ∈ [γ∗, γ+]. We state that

D−(γ) is negative for γ ∈ [γ∗, γ+) (26)

(that is, the steady state associated to v−(γ) is always unstable). Now,

proceeding as in the previous case of the upper branch, for γ ≤ δ

1 + τ
, d±(γ)

are both non-positive, and D−(γ) would be positive; but due to (11) we get

that γ∗ � δ

1 + τ
, so this is never the case.

Thus we are left with γ >
δ

1 + τ
. In this case d−(γ) < 0 and d+(γ) > 0 and,

since we have already shown that v−(γ) < d+(γ) < v+(γ), it follows that

D−(γ) < 0.

The previous results can be summarized in the following statement on

the coexistence state

The coexistence state

(u−(γ), v+(γ)), γ ∈ [0, γ+],

is stable, while the state

(u+(γ), v−(γ)), γ ∈ [γ∗, γ+],

is unstable.

4. Comparing experiments and model behavior

The previous analysis of the model reveals that the so called bi-stable

behavior, for a certain range of the parameter representing virulence, is a

characteristic feature of the amoeba-bacteria interaction. A qualitative com-

parison of the model with the experimental results shows that the behavior

is actually confirmed by data.
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Figure 3

To discuss this point we represent the data of Tables 1 and 2 in a more

significant way introducing the variable

m = − ln (1− k) (27)

where k is the killing percentage of a strain as determined in Table 1. m is

actually proportional to the mortality induced by the pathogenic strain and

is then proportional to the parameter γ introduced in the model. In Figure

3 we represent the outcome of the culture at different values of m and of

the initial number v0 of amoeba cells. Namely, we label each point (m, v0),

available from Table 2, by an index 0, 1, 2, with the following meaning

0 = amoeba extinction ,

1 = amoeba survival at a low density ,

2 = amoeba survival at a high density .

(28)

This new representation can be compared with the bifurcation graph of Fig-

ure 2 and the results on stability stated in Section 3.2. In fact from this

Figure 3 we see that

• for a first range of m, namely values up to m = 2, amoeba can survive

starting with any initial number of cells; in fact, in Figure 3, all the

points in the vertical strip for m ∈ (0, 2) are labeled by 1 and 2 (but in

a few isolated cases corresponding to very low values of v0, for which

we actually observe extinction); this situation corresponds to the upper

branch of the bifurcation graph of Figure 2 for γ ranging in the interval
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[0, γ∗], where the model predicts survival for any initial v0, since any

solution is attracted by the coexistence state;

• in the interval ranging from m = 2 to m = 4, amoeba can survive only

if the initial group of cells is large enough; in fact, most of the points

corresponding to low values of v0 are labeled with the index 0 and the

values of v0 necessary to gain survival is higher with higher values of

m; this range corresponds to the interval [γ∗, γ+] in the graph of Figure

2, where the lower branch v−(γ) is unstable and works as a separatrix.

In fact, low values of v0 lead to extinction, since they belong to the

basin of attraction of the state B ≡ (1, 0) (corresponding to amoeba

extinction), while higher values produce solutions that are attracted by

the upper branch v+ corresponding to amoeba survival;

• for values greater than m = 4 amoeba does not survive whatever be the

initial number of cells; this situation corresponds to values of γ greater

than γ+, for which only the state B ≡ (1, 0) exists and is attractive.

The correspondence described in the present work is somewhat qualita-

tive and could be better defined if the initial and final number of amoeba

cells could be counted with more accuracy. This study still provides a first

insight into the mathematical laws underlying the behavior of this complex

biological system made of prey-predator and host-pathogen relationships.

The model and its bi-stability confirmed the importance of assessing the cor-

rect experimental parameters (mainly the initial number or concentration of

amoeba cells) for an adequate application of the virulence assay for bacterial

species or strains of unknown aggressiveness. Future work will focus on the
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assessment of growth properties of bacteria and amoeba separately, including

spatial patterns.
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Figures Captions

• Caption for Figure 1

Bifurcation graph concerning existence of steady states. The compo-

nent u(γ) corresponding to bacteria is represented as a function of γ.

Both branches u+(γ) and u−(γ), given in (13) are shown. γ∗ and γ+

are respectively given in (16) and (14).

• Caption for Figure 2

Bifurcation graph concerning existence of steady states. The compo-

nent v(γ) = 1−u(γ) corresponding to the amoeba is represented versus

γ. Both branches v+(γ) = 1−u−(γ) and v−(γ) = 1−u+(γ) are shown.

γ∗ and γ+ are respectively given in (16) and (14).

• Caption for Figure 3

Results from co-cultures ofDictyostelium amoebae with different strains

of Pseudomonas aeruginosa. Different outcomes are represented ac-

cording to (28) for different points (m, v0) where m is defined in (27)

and v0 is the initial number of amoeba cells. After m = 5 the scale unit

has been reduced.
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strain % killing

Hpu45 100,00

N-10 98,99

N-54 98,83

N5 96,77

N1 95,30

Hpu49 95,30

N-89 94,15

N101 94,00

N47 93,30

Hpu26 92,50

N-3 90,65

N60 89,50

N-36 89,20

N-81 85,76

Hpu75 84,84

Hpu105 79,94

Hpu47 78,00

N-85 76,00

Hpu92 70,6

N106 68,61

Hpu28A 61,30

N-30 52,64

N-11 45,47

N29 29,00

Hpu28 27,60

Hpu56 26,96

N-116 6,66

DH5-α 0,00

Table 1: C. elegans killing assays: different strains of P. aeruginosa tested agains C.

elegans. The killing percentage is measured after 4 hours.
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i.n.c. < 10 30 80 250 750 2200 6700 20000

strain

Hpu45 0 0 0 0 0 0 0 0

N-10 0 0 0 0 0 1 1 1

N-54 0 0 0 0 1 1 1 1

N5 0 0 0 0 1 1 1 1

N1 0 0 0 0 0 1 1 1

Hpu49 0 0 0 0 0 0 1 1

N-89 0 0 0 0 0 0 1 1

N101 0 0 0 1 1 1 1 1

N47 0 0 0 0 0 0 0 1

Hpu26 0 0 1 1 1 1 1 1

N-3 0 0 0 0 0 0 0 1

N60 0 0 0 0 0 1 1 1

N-36 1 1 1 1 1 1 1 1

N-81 1 1 1 1 1 1 1 1

Hpu75 1 1 1 1 1 1 2 2

Hpu105 1 1 1 1 2 2 2 2

Hpu47 1 1 1 1 1 1 1 1

N-85 1 1 1 1 2 2 2 2

Hpu92 1 1 1 1 1 2 2 2

N106 1 1 1 1 1 2 2 2

Hpu28A 1 1 1 1 1 1 2 2

N-30 0 0 0 1 2 2 2 2

N-11 0 0 0 1 1 2 2 2

N29 0 0 1 1 1 2 2 2

Hpu28 1 1 1 1 1 2 2 2

Hpu56 1 1 1 1 1 2 2 2

N-116 0 0 1 1 1 2 2 2

DH5 1 1 1 2 2 2 2 2

Table 1: Results of co-cultures of D. discoideum with different strains of Pseudomonas

aeruginosa and different initial number of cells (i.n.c.), ranging from < 10 to 20000. Ex-

tinction of D. discoideum is indicated by 0, moderate growth by 1, full growth by 2.
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