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Optimal trajectory for a microrobot navigating in blood vessels

Laurent Arcese, Ali Cherry, Matthieu Fruchard, Antoine Ferreira

Abstract— The chemotherapy magnetically controlled under
Magnetic Resonance Imaging (MRI) is currently one of the
active areas of cancer research. This paper proposes a precise
model of a therapeutic microrobot magnetically steered in blood
vessels. This modeling approach takes into account the non-
newtonian behavior of blood, as well as wall effect on the blood’s
profile and robot-to-wall interaction forces. A backstepping
approach law is used to ensure a null error between the real
trajectory and an optimal reference trajectory deduced from
the highly nonlinear model. The strengths and limitations of
the overall study are evaluated by simulations.

I. INTRODUCTION

Cancer is a class of diseases in which a group of cells
display uncontrolled growth, invasion, and sometimes
metastasis. Since complete eradication of cancer cells is
imperative, total excision is the best treatment. However,
depending on the tumor location and the damage caused
to surrounding tissues, surgery is not always possible. In
these conditions, chemo or radiotherapy becomes necessary.
The drawback of these treatments is that they do not
differentiate between healthy and diseased cells. Therefore,
the development of techniques that could selectively deliver
drug molecules to the diseased site, and among them
the chemotherapy magnetically controlled under MRI, is
currently a promising area of cancer research [9]. Such
precision targeting via therapeutic devices will reduce
treatment side effects, resulting in better patient compliance.

This novel technique relies on generating thrust on a
magnetic device, containing therapeutical solution, using the
magnetic force related to the gradients of the MRI magnetic
field. Not only does MRI device provide propelling energy,
but accurate observation capability, thanks to control and
imaging multiplexing approach [11].

Because the tiniest capillaries are in the 5-6 micron range,
the robot should be in the range of 10-100 nanometers [2]
to avoid embolization and to drive the drugs as close as
possible to the tumor. Analysis on the force capabilities
of clinical MRI systems shows that it is impossible to
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steer nanoscale robots in arteries. An optimal ratio between
robot’s and vessel’s radii, evocated in [9], should be
respected. A way to overcome the MRI limitations is to
make the radius of the robot decrease as it goes in smaller
vasculature. This can be done if the robot is a polymer binded
aggregate of magnetic particles, loosing substance with time.

This paper proposes a precise model of a robot in blood
vessels including wall effects (parabolic profile of blood
flow, pulsatile vessel walls), wall interactions (Van der Waals,
electrostatic and contact forces) and non-Newtonian behavior
of blood (Section II). This model points out the importance of
wall interactions, often neglected, in the determination of an
optimal trajectory (Section III) which minimize significantly
the control efforts. A backstepping control approach [8] [6]
is used to ensure a stabilization along any desired trajectory.
The performance and the stability of the closed loop system
with respect to noise measurement and parameters variations
are illustrated by simulations (Section IV). Finally, we sum
up results and discuss prospects (Section V).

II. MODELING

The purpose of this section is to present a 2D highly
nonlinear model for a polymer binded aggregate of ferro-
magnetic (NdFeB) particles immersed in blood vessel. The
model encompasses the different forces that affect the robot’s
motion as well as its interaction with the vessel wall. The
translational of the robot is expressed by:

mdv⃗
dt = F⃗m + F⃗d + W⃗a + F⃗c + F⃗vdw + F⃗elec (1)

where v⃗ is the translational velocity of the robot and m
its mass. F⃗m, F⃗d, W⃗a, F⃗c, F⃗vdw and F⃗elec respectively
denote the magnetic force produced by the MRI gradient
coils, blood hydrodynamic drag force, apparent weight,
the robot-to-wall contact force, the Van der Waals and the
electrostatic force.

In the rest of this paper, we assume that the orientation
of the robot does not change due to the magnetic torque
which tends to align the magnetization of the robot along
the external field. We also assume that the robot is large
enough to neglect the effect of Brownian motion.

A. Magnetic force

The gradient coils of the MRI system provide magnetic
gradients which produce a magnetic force Fm on the robot:

F⃗m = τmµ0V (M⃗.∇)H⃗ (2)



where V is the robot’s total volume, τm = Vm

V with Vm

the ferromagnetic volume, M⃗ is the magnetization of the
material, µ0 is the permeability of free space, H⃗ is the
external magnetic field, and ∇ is the gradient operator.

B. Hydrodynamic drag force

The hydrodynamic drag force F⃗d exerting on a spherical
body is expressed as:

F⃗d = −1

2
ρf

[
∥(v⃗ − v⃗f )∥

β

]2
ACd

(v⃗ − v⃗f )

∥(v⃗ − v⃗f )∥
(3)

where v⃗ − v⃗f denotes the relative velocity of the robot with
respect to the fluid, A is the frontal area of the core and ρf
is the density of the fluid.

For endovascular applications, influence of the vessel walls
on the velocity of the robot has to be taken into account. In
general, this wall effect is expressed as [7]:

β =
1 +

(
λ
λ0

)α0

1− λα0

with ratio λ = 2r/D and D denoting the vessel diameter
(in meter). Parameters α0 and λ0 are functions of Reynolds
number, but are commonly set to 1.5 and 0.29, respectively.
The drag coefficient Cd, which is a function of the Reynolds
number, is given by [13]:

Cd =
24

Re
+

6

1 +
√
Re

+ 0.4

with Re denoting the Reynolds number:

Re =
2rρf |v⃗ − v⃗f |

βη

In the case of blood, which exhibits a non-newtonian
behavior, the fluid’s viscosity η is a function of vessel
diameter d (in micron) and hematocrit rate hd according to
the following empirical relations [10]:

η =
ηplasmad

2

(d− 1.1)2

[
1 +

(η0.45 − 1)d2

(d− 1.1)2
(1− hd)

c − 1

(1− 0.45)c − 1

]
with parameters ηplasma and η0.45 denoting respectively the
plasma’s viscosity and the relative apparent blood viscosity
for a fixed discharge hematocrit of 0.45, given by:

η0.45 = 6 e−0.085d + 3.2− 2.44 e−0.06d0.645

The shape of the viscosity dependance on hematocrit is:

c =
1011

d12
− (0.8 + e−0.075d)

(
d12

d12 + 1011

)
Wall effects on the fluid in a vessel traditionally result in

a parabolic profile of blood flow (see Figure 1). Besides, to
fully take into account pulsatile flow caused by heart pump-
ing in arteries, one has to consider a periodic deformation of
the vessel’s diameter D(t) synchronized with the pulsative
blood velocity vf (t).
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Fig. 1. Scheme of a blood vessel with minor bifurcations

Fig. 2. Model of contact forces: robot-to-wall

C. Apparent weight

In addition to the magnetic and hydrodynamic forces,
apparent weight (combined action of weight and buoyancy)
is acting on the spherical robot:

W⃗a = V (ρ− ρf )g⃗ (4)

where ρ = τmρm + (1 − τm)ρpoly with ρm and ρpoly the
magnetic material’s and polymer’s densities.

D. Contact force

The normal and tangential interactions between the robot
and the wall are assumed to be expressed by a Voigt model
(see figure 2), where the spring constant K and the decay
coefficient of dashpot b are functions of Young’s modulus E
and Poisson’s ratio σ [12].

The normal component of the contact force F⃗cn acting on
the robot is given by:

F⃗cn = (Knδ
3/2 + bnδ̇)n⃗ (5)

where δ is the elastic deformation of the wall at the contact
point and n⃗ is the normal unit vector pointing from the robot
to the contact surface.



The tangential component of the contact force takes part
when the robot is rotating or in case of oblique collision with
the wall:

F⃗ct = (Ktζ + btζ̇ )⃗t (6)

where ζ is the displacement in the tangential direction and
t⃗ is the tangential unit vector.

E. Van der Waals and electrostatic forces

When the robot and the wall are not in contact, they
interact each other through Van der Waals and electrostatic
forces. The Van der Waals potential between the robot and
the wall is given by [5]:

V⃗vdw = −Ah

6

(
1

h
+

1

2 + h
+ ln

h

2 + h

)
n⃗ (7)

where Ah is the Hamaker constant and h is the distance
between the robot and the wall. Then, the Van der Waals
interaction force is given by differenciating (7):

F⃗vdw = −∇V⃗vdw (8)

The electrostatic force between the robot and the wall
considered as an uncharged surface is given by [3]:

F⃗elec =
q2

4πϵϵ0(r + h)2
n⃗ (9)

with q the robot charge, ϵ the dielectric density of the
medium in which the interaction occurs and ϵ0 the vacuum
permittivity. [4] gives the expression of the maximum allow-
able charge for a spherical body of radius r:

q(µC) = S ×Q = 4πr2 × 30(100r)−0.3

III. OPTIMAL TRAJECTORY AND CONTROL APPROACH

Previous forces balance gives us sufficient informations
to plan an optimal trajectory. At least two positions A and
B, shown on the Figure 1, should be taken into account.
In the first one, the robot is in a vertical vessel and the
magnetic force F⃗m should counter both contributions of the
robot’s apparent weight W⃗a and the drag force F⃗d when
blood is flowing back (Curve A of Figure 3). The drag force
decreases when the robot approaches the wall due to the
parabolic profile of velocity. Thus the reference trajectory
should be near the wall.

In the second case, the robot is in a horizontal vessel
and the magnetic force should counter contributions of the
robot’s apparent weight, electrostatic and Van der Waals
forces, F⃗elec and F⃗vdw (Curve B of Figure 3). This case
shows that near the wall, F⃗elec and F⃗vdw, which point to
the wall, are dominant and the magnetic force is no more
sufficient to counter it. Nevertheless there is an optimal
position where the sum of the two forces compensates
perfectly the robot’s weight. Moreover, the curve A shows
that at this point, the magnetic force exceeds the drag force.

From these observations, we define an optimal path as
an arc passing through the point C. A backstepping control
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Fig. 3. Forces balances in vertical (A) and horizontal (B) artery

approach have been developed in order to ensure a null error
between real and desired trajectory. The reader may refer to
[1] for details on the control approach.

IV. SIMULATIONS

Simulations are performed by taking into account the
limitations of a clinical MRI system. The pulsative blood’s
velocity is modeled by an affine combination of a time-
varying periodic flow with a spatial parabolic shape. So
as to simplify the analytical expression, but with no loss
of generality, we only consider the first terms in the time-
varying Fourier series of the physiological pulse. In the case
of an artery, such an approximation leads to:

vf (t) = 0.025(1 + 1.15 sin 2πt)×

[
1−

(
D/2− h

r

)2
]

Our studies assume the presence of minor bifurcations
(see Figure 1). The developed controller must be sufficiently
robust to compensate this effect which could be considered
as a disturbance. Major bifurcations will require a further
study of velocity’s field profile.

In the following, the performances and stability of the
controller with respect to noise measurement, parameters
variations and uncertainties are illustrated by a simulation,
whose parameters are given in Table I. The simulation
is performed by assuming that the blood’s viscosity and
permittivity are affected by uncertainties of 100% of their
nominal values and the vessel’s diameter by uncertainties
of 10%. Besides, a white gaussian noise about 10% of the
measured signal is applied on the position measurement.

This simulation shows that after a transient phase (see
figure 4), the position tracking performance is robust enough
to model’s error, but proved quite sensitive to output noise,
though remains stable. Despite these uncertainties and distur-
bances, Figure 5 shows that the control inputs do not reach



Fig. 4. XZ trajectory : reference trajectory (red dotted) and real trajectory
(blue solid line)
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Fig. 5. Control input : magnetic field gradients on i⃗-axis (dotted) and on
k⃗-axis (solid line)

saturation. This is due to the choice of an optimal reference
trajectory deduced from the analysis of Section III.

V. CONCLUSION

In this paper, we have developed a highly nonlinear
model for a MRI guided microrobot in blood vessels with
minor bifurcations. This model takes into account the non-
newtonian behavior of blood, as well as wall effects and
interactions. It makes it possible to hence deduce an optimal
trajectory. A backstepping approach have been used to follow
desired trajectory. Parameters uncertainties and noise effects
have been illustrated by simulation. It appears that the
system is robust to uncertain physiological parameters, but

TABLE I
SIMULATIONS DATA

Plasma’s viscosity ηplasma 5× 10−3 [Pa.s]
Blood’s density ρf 1060 [kg.m−3]
Robot’s density ρm 8000 [kg.m−3]
Robot’s radius r 300 [µm]

Vessel’s diameter D 3 [mm]
Polymer’s density ρpoly 1500 [kg.m−3]

Ferromagnetic ratio τm 0.8
Magnetization M 1.95× 106 [A.m−1]

Hematocrit hd 0.45
Robot’s Young’s modulus Ep 109 [Pa]
Wall’s Young’s modulus Ew 0.75× 106 [Pa]
Robot’s Poisson’s ratio σp 0.27
Wall’s Poisson’s ratio σw 0.30

Hamaker constant Ah 4× 10−19 [J ]
Blood’s dielectric density ε 77 [C2.N−1.m−2]

Inputs saturations ui,max 45 [mT.m−1]

proved quite sensitive to output noise, though remains stable.
Actually, we are working on the estimation of the blood’s
velocity and frequency, assumed to be known in the present
simulation. The modeling of the impact of major bifurcations
on the blood’s velocity profile is also underway.
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