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Abstract 6 

The THM behavior of compacted GMZ bentonite has been investigated using a 7 

suction-temperature controlled isotropic cell. The results obtained were compared with the 8 

existing results on other reference bentonites (MX80, FEBEX, FoCa, and Kunigel-V1). It has 9 

been observed that the coefficient of thermal expansion of the compacted GMZ bentonite is 2 10 

x 10-4°C-1, similar to the values of compacted MX80 and FEBEX bentonites. The heating tests 11 

of the GMZ bentonite also show that the suction is an important parameter that governs the 12 

thermal volumetric behavior of unsaturated soils. Unlike temperature, suction has a 13 

significant effect on the compressibility parameters. Examination of the mineralogy of various 14 

bentonites showed that a good correlation can be generally established between the 15 

montmorillonite content and the cations exchange capacity (CEC) or the specific surface area 16 

(S). Nevertheless, both the basic geotechnical properties and the swelling potential seem to 17 

depend not only on the montmorillonite content but also on other factors such as the nature of 18 

base exchangeable cations. The quartz content of the GMZ bentonite is relatively high 19 

(11.7%). This could explain its relatively large values of thermal conductivity.  20 
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Introduction 34 

 35 

 36 

Considering the key role played by the engineered barrier systems (EBS) in deep radioactive 37 

waste disposals, notably related to i) isolation functions, ii) containment functions, and iii) 38 

retrievability, compacted bentonites are often considered the best candidates for engineered 39 

barrier materials. As an assessment of the EBS performance under complex 40 

thermo-hydro-mechanical (THM) loadings is crucial in demonstrating the long-term safety of 41 
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disposal systems, large investigations are generally needed for a selected bentonite. The 1 

experiments in these investigations must cover various scales, from small-scale elementary 2 

laboratory tests through to mid-scale to large-scale tests in underground research facilities. 3 

Various reference bentonites have been studied in various countries for this purpose: 4 

Kunigel-V1 is used as the reference material for all the clay-based components in the 5 

repository concepts in Japan (Sugita et al., 2007); MX80 was used in the Swedish prototype 6 

repository project (Johannesson et al., 2007); the FoCa clay from the Paris Basin and the 7 

Serrata clay from Spain (which is equally known as the FEBEX bentonite (Lloret and Villar, 8 

2007) were considered in the RESEAL project performed in Belgium (Van Geet et al., 2007).  9 

The preliminary long-term plan for the implementation of China’s high-level radioactive 10 

waste repository (Wang et al., 2006) suggests that a high-level radioactive waste repository 11 

will be built in the middle of the 21st Century. In the Chinese concept of geological disposal, 12 

bentonite has been selected as the buffer/backfill material. The Gaomiaozi (GMZ) 13 

Na-bentonite taken from a large-scale deposit located in the North Chinese Inner Mongolia 14 

Autonomous Region (300 km northwest of Beijing) has been chosen for this purpose. After 15 

Wen (2006), preliminary research conducted on the swelling, mechanical, hydraulic, and 16 

thermal properties have shown that the GMZ bentonite is a good buffer/backfill material. 17 

Indeed, as reported by Wen (2006), it has relatively high thermal conductivity (K = 18 

1.51 W/mK at a dry density of 1.6 Mg/m3 and a water content of 26.7%), quite low water 19 

permeability (at saturated state, k = 1.94 x 10-13 m/s at a dry density of 1.6 Mg/m3 and a 20 

temperature of 25 °C), a relatively high unconfined compression strength (1.74 MPa at a dry 21 

density of 1.6 Mg/m3 and a water content of 23.6%), and quite a high swelling pressure 22 

(3.17 MPa at a dry density of 1.6 Mg/m3). Chen et al. (2006) completed the experimental 23 

investigation by determining the water retention curves of the GMZ bentonite and showed its 24 

high retention capacity which is necessary for ensuring the containment function of the EBS.  25 

 Though sufficient preliminary experimental data have been obtained, allowing the 26 

candidature of the GMZ bentonite to be retained, there is still a great need of experimental 27 

data needed in terms of THM coupling behavior in order to confirm this candidature. In this 28 

regard, there have been some results allowing a relevant analysis. In one study, Ye et al. (2009) 29 

determined the unsaturated hydraulic conductivity of the GMZ bentonite under constant 30 

volume conditions and they observed a strong coupling between water flux and mechanical 31 

confining: the hydraulic conductivity determined was found first to decrease and then increase 32 

with decreasing suction. The decrease can be attributed to the large pore clogging due to soft 33 

gel creation by the exfoliation process. This coupling phenomenon was also observed on a 34 

mixture of the Kunigel-V1/Hostun sand (Cui et al. 2008). In the present work, a 35 

complementary study was performed to further investigate the coupled thermo-mechanical 36 

behavior of the GMZ bentonite. The suction-temperature controlled isotropic cell developed 37 

by Tang et al. (2007) was used for this purpose. The results obtained cover the swelling upon 38 

wetting, the volumetric changes upon heating, and the compressibility at controlled suction 39 

and temperature. Furthermore, the properties found for GMZ bentonite in this investigation 40 

were compared with those of other reference bentonites available in the literature.   41 

 42 
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Materials and methods 1 

Materials 2 

Table 1 presents the mineralogical properties of the GMZ bentonite, as well as other reference 3 

bentonites: the Kunigel-V1, FoCa, MX80 and FEBEX. These bentonites contain mainly 4 

montmorillonite, which is an essential mineral to ensure sealing properties. Beside the 5 

montmorillonite, there is quartz, which is also an important mineral for its particular influence 6 

on thermal conductivity (Tang et al., 2008b). Note that a high thermal conductivity of the 7 

engineered barrier allows the heat to dissipate quickly from the canisters, consequently 8 

reducing the maximum temperature in the EBS. This is one of the reasons why sand/bentonite 9 

mixtures are equally studied as buffer material in the repository concepts of Canada (Martino 10 

et al., 2007) and Japan (Sugita et al., 2007). 11 

The physical properties of GMZ bentonite are presented in Table 2. Compared to other 12 

bentonites, GMZ bentonite has high montmorillonite content, which gives it a high Cations 13 

Exchange Capacity (CEC = 77.30 meq/100g), a large plasticity index (Ip = 275), and a large 14 

specific surface area (S = 570 m2/g). Note also that the main base cations are Na and Ca. 15 

 16 

Methods 17 

As mentioned previously, the present work aims at investigating the thermo-mechanical 18 

behavior of the GMZ bentonite. For the samples preparation, soil powder with an initial water 19 

content of 12.2% was firstly compacted in an isotropic cell under a static pressure of 30 MPa. 20 

The dry density after compaction was about 1.70 Mg/m3. The compacted sample was then cut 21 

and machined to obtain smaller samples of size 80 mm diameter and 10 mm high. All the 22 

samples were then put in a sealed box with a relative humidity controlled by a saturated 23 

solution of K2CO3 for about one week (see technical details in Delage et al., 1998). That 24 

permitted an initial suction of 110 MPa to be imposed on the samples. The soil volume 25 

changes during this suction initialization have been found to be negligible. That is in 26 

agreement with the water retention curve obtained by Chen et al. (2006), showing a suction of 27 

about 110 MPa at a water content of about 12% for a sample compacted to a dry density of 28 

1.70 Mg/m3. 29 

The isotropic cell developed by Tang et al. (2007), which enables the study of mechanical 30 

properties of compacted expansive soils using simultaneous control of suction and 31 

temperature, was used in the present work. The basic scheme of the cell is presented in Fig. 1. 32 

The soil specimen (80 mm in diameter and 10 mm high) was sandwiched between two dry 33 

porous stones, both of which were embedded in metallic plates. Small holes (2 mm diameter) 34 

were drilled in the lower plate, allowing the moisture exchange between the soil specimen and 35 

chamber below the lower plate. A glass cup containing an over-saturated saline solution was 36 

placed in the chamber to control the soil suction. A neoprene membrane (1.2 mm thick) 37 

covered the soil specimen and the two metallic plates, avoiding any exchange between the 38 

confining water in the cell and the soil pore water. A thermocouple installed inside the cell 39 

was used to monitor the cell temperature, which was considered equal to the temperature of 40 

the soil specimen during the test. The cell was immersed in a temperature-controlled bath 41 

within a temperature fluctuation of ± 0.1 °C. A volume/pressure controller was used to apply 42 

the confining pressure in the cell. This volume/pressure controller was also used to monitor 43 
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the volume change of the soil specimen through the volume change of the confining water in 1 

the cell. During the test, volume and pressure readings of the volume/pressure controller as 2 

well as the cell temperature were recorded by a computer.  3 

Following the tests carried out by Tang et al. (2008a) on compacted MX80 bentonite, 4 

thermal loadings were applied over a short duration of less than 24 h, and the soil suction was 5 

assumed to remain unchanged within this short time. The soil suction was then equal to the 6 

total suction imposed by the saturated salt solution. Tang and Cui (2005) measured the 7 

suctions generated by saturated salt solutions at different temperatures, and these results were 8 

applied in this investigation to determine the imposed suction at a given temperature. The 9 

saturated salt solution, which filled the glass cup of the cell, was chosen according to the 10 

desired values of suction and temperature during the test. Three suctions were considered: 9 11 

MPa (KNO3 at 25 °C and K2SO4 at 60 °C); 39 MPa (NaCl at 25 °C and 60 °C); and 110MPa 12 

(K2CO3 at 25 °C, MgNO3 at 60 °C).  13 

For tests at suctions lower than the initial suction of 110 MPa, the total suction was 14 

initially imposed outside the cell by putting the samples in a sealed box containing saturated 15 

KNO3 solution (9 MPa suction) or NaCl solution (39 MPa suction). The soil sample volume 16 

change due to this suction decrease was monitored using a precision caliper. The mass of the 17 

soil sample was determined every 3 days until it reached a stable value. The sample was 18 

installed inside the isotropic cell only after this suction equilibrium process. Prior to the test, 19 

the dimensions of the sample were adjusted to fit the required size (80 mm in diameter and 10 20 

mm high). 21 

A total of six tests were performed (T1 to T6) and their stress paths are presented in Table 22 

3 and Fig. 2, in a space of total suction (s), pressure (p) and temperature (T). During a 23 

mechanical compression test the cell pressure was increased in steps from 0.1 to 0.2, 0.5, 1, 2, 24 

5, 10, 20 and 50 MPa. The volume change of water in the volume/pressure controller was 25 

recorded for each step. Calibration tests at various temperatures and pressures were performed 26 

with a metallic specimen that had the same dimensions as the soil specimen. An example of 27 

the determination of soil volume change for a loading step from 1 to 2 MPa (test T1) is shown 28 

in Fig. 3. The deformation of the metallic specimen was assumed to be negligible within this 29 

range of pressure (lower than 50 MPa) and the water volume change recorded during the 30 

calibration corresponds mainly to the deformation of the cell and the tubing. The volume 31 

change of the soil sample was then deduced from the difference between the calibration curve 32 

and the curve from test, as depicted in Fig. 3. This volume change was used to calculate the 33 

volumetric strain of the soil sample upon mechanical loading. 34 

Fig. 4 shows the determination of the soil volume change during heating from 25 °C to 35 

60 °C under a constant pressure of 0.1 MPa (test T4). Upon heating, the water in the cell 36 

expanded and moved into the volume/pressure controller. According to Romero et al. (2005), 37 

the thermal expansion coefficient of compacted expansive soil is approximately 10-4 °C-1, 38 

much higher than the metal specimen (10-6 °C-1) used for the calibration. Thus, it can be 39 

reasonably assumed that the thermal expansion of the metal was negligible in comparison 40 

with that of the soil. The soil volume change during heating can be then determined from the 41 

difference between two curves obtained during the calibration and the test (Fig. 4a). In the 42 

case of test T4 while heating from 25 to 60 °C, the soil volume increased by 310 mm3 (Fig. 43 

4b), which corresponds to a volumetric strain εv of -0.622%. 44 
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 1 

Experimental results 2 

Soil volume change during the initial humidification 3 

Fig. 5 shows a typical result of volumetric strain of the soil specimens due to wetting from the 4 

initial suction (110 MPa) to 39 and 9 MPa, as well as axial and radial strains. It can be seen 5 

that the radial strain is almost equal to the axial strain, showing isotropic behavior in the soil 6 

specimen. This observation is consistent with the procedure of compaction under isotropic 7 

pressure adopted for the specimen preparation. A similar observation was also made by Tang 8 

et al. (2008a). Furthermore, it can be noticed that the total volume of the soil specimen is 9 

increased by 32.9% when the suction is decreased to 9 MPa from 110 MPa.  10 

 11 

Volume change under thermal loading 12 

As shown in Fig. 2, the initial state was defined by zero pressure, 25 °C temperature and 13 

110 MPa suction. For test T4, the soil specimen in its initial state was confined to a pressure p 14 

= 0.1 MPa, and heated to a temperature T = 60 °C under p = 0.1 MPa. For test T5, a decrease 15 

of suction from 110 to 39 MPa at T = 25 °C was first undertaken during the initial wetting 16 

before the application of the confining pressure p = 0.1 MPa; heating to T = 60 °C then 17 

followed. For test T6, the soil specimen was wetted to a suction of 9 MPa and then loaded to p 18 

= 0.1 MPa and heated to T = 60 °C.  19 

Fig. 6 shows the results for the thermal volume change under p = 0.1 MPa. The results 20 

from tests T4 (110 MPa) and T5 (39 MPa) show that heating induces expansion and the 21 

coefficients of thermal expansion is α = 2×10-4 °C-1. On the contrary, the result from test T6 (9 22 

MPa) shows a volume decrease upon heating.  23 

 24 

Volume change under mechanical loading 25 

As shown in Fig. 2, the mechanical loadings in tests T1-T5 were performed at constant 26 

suction and temperature. Two temperatures (25 and 60 °C) and three suctions (110, 39 and 27 

9 MPa) were applied. The results (the void ratio e against the logarithm of pressure logp) for 28 

all these tests are presented in Fig. 7. The compressibility parameters, such as the yield 29 

pressure p0, defined as the pressure at the intersection between the two quasi-linear segments, 30 

the elastic compressibility parameter, κ, which is related to the slope of small changes in the 31 

void ratio, and the plastic compressibility parameter, λ(s) , which is related to the slope of 32 

large changes in void ratio, can be determined from these curves. It is to be noted that the 33 

notations defined by Alonso et al. (1990) are adopted here for the compressibility parameters.  34 

From Fig. 7a it can be observed that temperature increase from 25 °C to 60 °C raises the 35 

void ratio from 0.508 to 0.518 at a pressure of 0.1 MPa and constant suction of 110 MPa. 36 

Furthermore, there is no increase in the void ratio due to the temperature change after a 37 

pressure of 11 MPa. This indicates thermal expansion due to heating at low pressure which is 38 

consistent with the results shown in Fig. 6. The effect of heating on volume change is much 39 

smaller than the volume change under subsequent mechanical loading. This phenomenon can 40 

be observed again at constant suction of 39 MPa, as depicted in Fig. 7b. Heating from 25 °C 41 

to 60 °C slightly increased the void ratio e from 0.754 to 0.768. Again, the volume change due 42 
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to heating is small compared to that due to subsequent mechanical loading. When comparing 1 

the compression curves of T2 (25 °C) and T5 (60 °C), it is observed that the difference is not 2 

significant. Moreover, the shape of the compression curve is similar to that obtained for T1 3 

and T4. At 9 MPa suction, only one loading test was performed (T3); a technical problem 4 

occurred during test T6. The compression curve for test T3 is presented in Fig. 7c.  5 

Though the temperature effects on λ(s) and κ are found to be negligible, this is not the 6 

case for the suction effect. Indeed, Fig. 8 shows that λ(s) and κ increase significantly when the 7 

suction is decreased. When the suction is decreased from 110 to 9 MPa, κ increases from 8 

0.023 to 0.036 and λ(s) increases from 0.120 to 0.165. Fig. 9 shows the yield pressures p0 9 

determined from Fig. 7 at various suctions and temperatures. It can be seen that p0 decreases 10 

from 21 MPa at the initial suction s = 110 MPa to 10 MPa at s = 39 MPa and 2 MPa at s = 9 11 

MPa for the tests at 25 °C. As far as the temperature effect is concerned, at s = 110 MPa, 12 

heating from T= 25 °C to 60 °C decreases p0 from 21 to 16 MPa. At s = 39 MPa heating 13 

decreases p0 from 10 to 7.3 MPa. 14 

 15 

Discussions 16 

In this section the thermo-mechanical behavior of the GMZ bentonite identified will be 17 

discussed by comparing it with that of other reference bentonites (listed in Table 1) which 18 

have been studied worldwide. 19 

 20 

Mineralogical properties 21 

Table 1 shows that the montmorillonite content of the GMZ bentonite is lower than that of the 22 

MX80 bentonite and the FEBEX bentonite but it is higher than that of the Kunigel-V1 23 

bentonite. The FoCa bentonite contains 80% of interstratified smectite/kaolinite. The quartz 24 

content of the Kunigel-V1 and the GMZ bentonites is relatively high: 29-38% and 11.7% 25 

respectively (smaller than 6% for the others). Good correlations can be established between 26 

the montmorillonite content and the CEC values (Fig. 10a). Indeed, the higher the 27 

montmorillonite content, the larger the CEC; the FEBEX bentonite with the highest 28 

montmorillonite content has the largest values of CEC. The FoCa clay with an 80% 29 

interstratified smectite/kaolinite content is not considered in these correlations. As far as the 30 

other properties are concerned (Table 2), it seems that the specific surface area (S), liquid 31 

limit (wL) and the plasticity index (Ip) are not directly related to the montmorillonite content 32 

(Fig. 10b,c,d). For instance, the FEBEX bentonite with the highest montmorillonite content 33 

has the smallest values of wL and Ip while the MX80 bentonite (79% montmorillonite) has the 34 

highest values of wL and Ip. This shows that the montmorillonite content is not the only factor 35 

which influences the basic geotechnical properties; other factors, such as the nature of the 36 

base cations exchange (see Table 2), must play an important role also. 37 

 38 

Thermal conductivity 39 

Tang et al. (2008b) studied the thermal conductivity of the compacted MX80, FEBEX and 40 

Kunigel bentonites. Tests on the compacted specimens having various dry densities (ranging 41 

from 1.45 to 1.85 Mg/m3) and water contents show that the thermal conductivity of bentonites 42 
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is strongly dependent on these two parameters: at the same water content, the higher the density 1 

the higher the thermal conductivity, and at the same dry density, the higher the water content, 2 

the higher the thermal conductivity. After testing various models for predicting the thermal 3 

conductivity, Tang et al. (2008b) found that a unique relationship can be established between 4 

the thermal conductivity K and the air-pore volume fraction Va/V for all these soils, as follows: 5 

       satKK += /V)(Vaα        (1)    6 

where α is the slope of K – Va/V plot; Ksat is the thermal conductivity at saturated state which 7 

corresponds to the intersection of K – Va/V plot with the K axis. 8 

 Fig. 11 shows the K – Va/V plot for the compacted GMZ bentonite that was drawn using 9 

data reported by Wen (2006). It can be seen that there is also a good linear relationship for this 10 

bentonite. From Fig. 11 the parameters of Eq. [1] deduced are as follows: 11 

81.2−=α  W/mK and 57.1=satK W/mK 12 

 These values are slightly larger than those for other bentonites: FEBEX ( 29.2−=α  W/mK 13 

and 30.1=satK W/mK), MX80 (α  = -1.79 W/mK and satK = 1.1 W/mK), Kunigel V1 14 

( 36.2−=α  W/mK and 39.1=satK W/mK). Even though relatively larger values of the 15 

thermal conductivity at saturated state (Ksat) for the GMZ and Kunigel-V1 bentonites can be 16 

related to their higher quartz contents (see Table 1), it appears that the difference is too small to 17 

allow establishing a relevant correlation. Further study is needed to clarify this phenomenon by 18 

working on the different bentonites but using the same test protocol and measurement 19 

technique. 20 

 21 

Swelling behavior 22 

Fig. 5 shows that for the GMZ bentonite compacted at 1.70 Mg/m3 of dry density (initial 23 

suction of 110 MPa), wetting to suction at 9 MPa induced a swelling volumetric strain of 24 

32.9%. The volumetric swelling strain of GMZ is plotted together with that of other soils in 25 

Fig. 12. A higher value of 50% was obtained by Tang et al. (2008a) when wetting from a 26 

suction of 110 MPa to 9 MPa the MX80 bentonite compacted at 1.78 Mg/m3 of dry density. 27 

Delage et al. (1998) showed that wetting the compacted FoCa clay (1.85 Mg/m3 of dry density, 28 

initial suction of 110 MPa) to a suction of 9 MPa induced a volumetric strain of 17%. After 29 

ENRESA (2000), wetting the FEBEX bentonite (initially compacted at 1.67 Mg/m3 of dry 30 

density) from a suction of 110 MPa to a suction of 9 MPa induced a volumetric strain of 19%. 31 

Kanno and Wakamatsu (1993) studied the volume change behavior of the compacted Kunigel 32 

V1 (initially compacted at 1.82 Mg/m3 of dry density) and obtained a volumetric strain of 33 

13% when wetting from 110 to 9 MPa suction. The comparison shows that the swelling 34 

potential of the GMZ and the MX80 is higher than that of FoCa, Kunigel-V1 and FEBEX. 35 

This is due to their montmorillonite contents (a higher montmorillonite content gives rise to a 36 

higher swelling potential, see Marcial et al. 2002) and the nature of exchangeable basic 37 

cations (Na-based bentonites show higher swelling potential than Ca-based bentonites, see 38 

Marcial et al. 2002). 39 

 40 
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Thermal-mechanical volume changes 1 

The coefficient of thermal expansion of the compacted GMZ bentonite deduced from Fig. 6 is 2 

2×10-4°C-1 (mean value determined from the thermal expansion curve of tests T4 and T5). 3 

Similar values were obtained for the compacted MX80 bentonite (Tang et al., 2008a) and the 4 

compacted FEBEX bentonite (Romero et al., 2005). As far as the nature of the volume 5 

changes upon heating is concerned, Tang et al. (2008a) observed that heating the compacted 6 

MX80 bentonite under 0.1 MPa pressure gave rise to thermal expansion at high suctions (39 7 

and 110 MPa) and to thermal contraction at a lower suction (9 MPa). The same phenomenon 8 

was observed in the present work on the GMZ bentonite. This behavior was explained using 9 

an elasto-plastic constitutive model proposer by Tang & Cui (2009). The thermal expansion 10 

corresponds to an elastic behavior when the heating path remains in the elastic zone while the 11 

thermal contraction corresponds to a plastic behavior when the heating path under constant 12 

stress and suction touch the yield surface.   13 

The compression curves obtained at controlled suction and temperature (Fig. 7) show an 14 

elasto-plastic behavior with a clear change in slope. That allowed the determination of the 15 

compressibility parameters: κ, λ(s) and p0. Similar observations were made by Tang et al. 16 

(2008a) on the MX80 bentonite and by Lloret et al. ( 2004) on the FEBEX bentonite. The 17 

plastic behavior in compacted soil is usually associated with the collapse of macro-pores that 18 

can be evidenced by MIP (Mercury Intrusion Porosimetry) test as in the works of Lloret et al. 19 

(2003), Tang & Cui (2009), and Tang et al. (2011). However, Cui et al. (2002) performed 20 

suction-controlled isotropic compression tests on the highly compacted FoCa clay (compacted 21 

initially at 1.85 Mg/m3 of dry density) and observed a reversible volume change behavior in a 22 

range of pressures up to 60 MPa. The authors explained this by the absence of collapsible 23 

macro-pores in this material. That mean the volume change behavior of compacted clays can 24 

be strongly dependent on the dry density; the higher the dry density (or the lower the volume 25 

of macro-pores) the higher the yield stress. Note that the initial dry densities of bentonite in 26 

other studies are lower than in Cui et al. (2000): 1.70 Mg/m3 for FEBEX bentonite in Lloret et 27 

al. (2003); 1.78 Mg/m3 for MX80 bentonite in Tang & Cui (2009). In the study of Tang et al. 28 

(2011), even at a high dry density of 2.00 Mg/m3, the volume of macro-pores measured by 29 

MIP tests is still high. It shows that isotropically compacting GMZ bentonite at 30 MPa 30 

pressure (to a dry density of 1.70 Mg/m3) can not avoid macro-pores. Further study is 31 

necessary to clarify this point.  32 

The effects of suction and temperature on κ and λ(s) of GMZ bentonite are similar to that 33 

of MX80: κ and λ(s) increase with the decrease of suction but are independent of the 34 

temperature changes (between 25 and 60 °C). Lloret et al. (2004), however, observed that 35 

both the increase of temperature and the decrease of suction induced an increase of λ(s) in 36 

FEBEX bentonite. Comparing the values of λ(s), GMZ bentonite shows the highest values: λ(s) 37 

= 0.12 – 0.16 at s = 9 – 110 MPa for GMZ bentonite; λ(s) = 0.08 – 0.12 at s = 9 – 110 MPa for 38 

MX80 bentonite; λ(s) = 0.065 -0.080 at s = 8 - 14 MPa for FEBEX bentonite (from 39 

suction-controlled oedometer tests by Lloret et al., 2003). 40 

The effect of temperature on the yield stress p0 of GMZ bentonite and MX80 bentonite 41 

(see Tang et al. 2008a) is similar; only a slight decrease of p0 was observed for high suction 42 

values (s = 110 and 39 MPa). In contrast, for FEBEX bentonite, at s = 120 MPa, Lloret et al. 43 

(2004) showed that p0 decreased drastically from 20 MPa (at 20°C) to 3 MPa (at 50 °C).  44 
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In order to compare the effect of suction decrease on the yield stress, the results of three 1 

bentonites (GMZ, MX80 and FEBEX) are plotted together in Fig. 13. At high suctions (s = 2 

110 – 127 MPa), the yield stresses of the three soils are close to 20 MPa. Upon wetting, the 3 

yield stress decreases in similar pattern for GMZ bentonite and FEBEX bentonite but at a 4 

lower rate than MX80 bentonite: at s = 9 MPa, p0 of GMZ and FEBEX bentonites decreases 5 

to 2 MPa while that of MX80 is much lower (0.38 MPa).  6 

Conclusions 7 

 8 

The thermo-mechanical behavior of GMZ bentonite, which has been selected as a possible 9 

material for the engineered barriers in the high-level radioactive waste disposals in China, was 10 

experimentally investigated. The results obtained were compared with other bentonites which 11 

have been widely investigated as reference materials in the projects carried out in other 12 

countries (MX80, FEBEX, FoCa, and Kunigel-V1). The following conclusions can be drawn 13 

from the present study: 14 

i) The montmorillonite content of GMZ bentonite is lower than that of MX80 bentonite 15 

and FEBEX bentonite but it is higher than that of Kunigel-V1 bentonite. That explains 16 

the large values of its cations exchange capacity (CEC) and specific surface area S. In 17 

general, good correlations can be established between the montmorillonite content and 18 

the CEC values or the specific surface area S (Table 2). Nevertheless, no direct 19 

correlation can be made between the montmorillonite content and the basic geotechnical 20 

properties; other factors, such as the nature of base exchangeable cations, also appear to 21 

have a significant influence. 22 

ii)  The same observation has been made in terms of swelling potential. In general, the 23 

higher the montmorillonite content, the higher the swelling potential. However, a 24 

Ca-based bentonite generally shows lower swelling potential than a Na-based bentonite. 25 

For GMZ bentonite it was observed that wetting (suction decreased from 110 to 9 MPa) 26 

induced a swelling volumetric strain of 30%. That is lower than MX80 (50%) and 27 

higher than that of other bentonites (less than 20%). 28 

iii)  The quartz content of GMZ bentonite is relatively high (11.7%) just behind Kunigel V1 29 

bentonite (29-38%). This could explain their relatively large values of thermal 30 

conductivity. Note that compared to the values for other bentonites, the difference is too 31 

small to allow for a relevant correlation to be drawn between their thermal conductivity 32 

and the quartz content. 33 

iv) The coefficient of thermal expansion of the compacted GMZ bentonite is 2.10-4°C-1, that 34 

is similar to the values obtained for the compacted MX80 bentonite (Tang et al., 2008a) 35 

and the compacted FEBEX bentonite (Romero et al., 2005). As the compacted MX 80 36 

bentonite, the GMZ bentonite also showed a thermal expansion upon heating at high 37 

suctions (39 and 110 MPa) and a thermal contraction at lower suction (9 MPa).  38 

v) The effect of suction and temperature on κ and λ(s) of GMZ bentonite is similar to 39 

MX80: κ and λ(s) increase with decreasing suction but are independent of the 40 

temperature changes. Compared to other bentonites, GMZ bentonite has the highest 41 

values of λ(s): 0.12 – 0.16 at s = 9 – 110 MPa. 42 
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vi) The effect of temperature on the yield stress p0 of the GMZ bentonite has been found to 1 

be insignificant. A similar observation was made for MX80 bentonite by Tang et al. 2 

(2008a). In contrast, a significant suction effect was identified. As is also the case for 3 

MX80 bentonite and FEBEX bentonite, the yield stress p0 of the GMZ bentonite 4 

decreased significantly, at a rate similar to that of FEBEX bentonite but lower than that 5 

of MX80 bentonite.  6 

 7 
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Table 1. Mineral composition of some bentonites 24 

Mineral Kunigel V1 a FoCa b MX80 c FEBEX d GMZ e 
Montmorillonite 
(%) 

46-49 
80% (interstratified 
smectite/kaolinite) 

79 
92±3 

75.4 

Plagioclase (%) — — 9.2 2±1 — 
Pyrite (%) 0.5-0.7 — 0.- 0.02±0.01 — 
Calcite (%) 2.1-2.6 1.4 0.8 Traces 0.5 
Dolomite (%) 2.0-2.8 — — 0.60±0.13 — 
Gypsum (%) — 0.4 — 0.14±0.01 — 
Halite (%) — — — 0.13±0.02 — 
Analcite (%) 3.0-3.5 — — — — 
Mica (%) — — <1 — — 
Feldspar (%) 2.7-5.5 — 2.0 Traces 4.3 
Cristobalite (%) — — — 2±1 7.3 
Kaolinite (%) — 4 — — 0.8 
Quartz (%) 29-38 6 2.8 2±1 11.7 
Field organic 0.31-0.34 — 0.1 0.35±0.05 — 
a JNC (2000); b Guillot et al. (2002); c Montes-H. et al.(2003);d ENRESA (2000); eWen 25 

(2006). 26 
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Table 2. Physical properties of some bentonites 1 

Parameter Kunigel V1a FoCab MX80c FEBEXd GMZe 

particle < 2µm 
(%) 

64.5 — 60 68 60 

CEC(meq/100g) 73.2 54 82.3  102j 77.30 
Base cations 
exchange 

Na-Ca Ca  Na  Ca-Mg Na-Ca 

wL (%) 474  112 519  102  313 
wP (%) 27  50 35  53  38 
IP 447 62 484 49  275 
ρs (Mg/m3) 2.79 2.67 2.76 2.70 2.66 
S (m2/g) 687 300 522 725 570 
a Komine (2004); b Marcial et al. (2002); c Tang and Cui (2005); d ENRESA (2000); eWen 2 

(2006). 3 

 4 
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Table 3. Stress paths of thermo-mechanical tests  1 

 2 

 T1 T2 T3 T4 T5 T6 
p: MPa 0 0 0 0 0 0 
s: MPa 110 110 110 110 110 110 

Initial 
condition 

T: °C 25 25 25 25 25 25 
p: MPa 0.1 0 0 0 0 0 
s: MPa 110 39 9 110 39 9 Path I 
T: °C 25 25 25 25 25 25 
p: MPa 50 0.1 0.1 0.1 0.1 0.1 
s: MPa 110 39 9 110 39 9 Path II 
T: °C 25 25 25 25 25 25 
p: MPa  50 50 0.1 0.1 0.1 
s: MPa  39 9 110 39 9 Path III 
T: °C   25 25 60 60 60 
p: MPa    50 30 30 
s: MPa    110 39 9 Path IV 
T: °C    60 60 60 

 3 

 4 

 5 

Fig. 1. Basic scheme of the suction-temperature controlled isotropic cell (after Tang et al., 2007) 6 

 7 

 8 
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Fig. 2. Stress paths of tests T1-T6 2 
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Fig. 3. Determination of soil volume change during loading step from 1 to 2 MPa 3 
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Fig. 4. Determination of soil volume change during heating under confining pressure of 0.1 MPa 6 
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Fig. 5. Axial, radial and volumetric strain during wetting 2 
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Fig. 6. Volumetric strain during thermal loading under constant pressure at 0.1 MPa: tests T4-T6 6 
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(b) s = 39 MPa 5 
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Fig. 7. Results of mechanical loading at constant suction and temperature: tests T1-T6 3 
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Fig. 8. Compressibility parameters κ and λ(s) versus suction for tests at 25°C 6 
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Fig. 9. Yield pressure p0 versus temperature 3 
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Fig. 10. Correlation between the montmorillonite content with (a) Cations Exchange Capacity, CEC; (b) 2 

specifice surface area, S; (c) Liquid limit, wL; and (d) Plasticity index, IP  3 
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Fig. 11. Variations of thermal conductivity with air-volume fraction for GMZ bentonite (after Wen, 2006) 5 
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Fig. 12. Swelling of various compacted bentonite from a initial suction of 110 MPa 2 
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Fig. 13. Relationship between yield stress and the applied suction for various bentonites 3 
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