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Abstract Considering a family of gradient-enhanced damage models and taking advantage of its variational

formulation, we study the stability of homogeneous states in a full three-dimensional context. We show that

gradient terms have a stabilizing effect, but also how those terms induce structural effects. We emphasize the great

importance of the type of boundary conditions, the size and the shape of the body on the stability properties of

such states.
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1 Introduction

Before their failure, quasi-brittle materials exhibit a softening behavior in their mechanical response under uniaxial

tests. The modeling of this ultimate stage of degradation within the framework of damage theory is a complicated

task. Indeed, the associated boundary-value problem governing the evolution of damage in the sample ceases to

be well-posed with local models. Accordingly, regularization techniques must be introduced as those based on the

gradient of strain (Peerlings et al. 1996b), on the gradient of damage (Comi 1999; Frémond and Nedjar 1996;

Pham and Marigo 2010b; Pham et al. 2011a,b) or on integral laws (Pijaudier-Cabot and Bazant 1987). Additional

non-local terms remove some pathologies of local models such as failure by localization without any dissipated

energy or a part of numerical simulations mesh-dependency. For instance, Pijaudier-Cabot and Benallal (1993)
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and Peerlings et al. (1996a) showed by means of a wave propagation analysis the benefits of their regularized

damage model. However, none of these regularization methods have solved the issue of the non-uniqueness of the

response which turns out to be an intrinsic property of any softening law. For instance, in the case of regularization

by gradient damage terms, it was proved in (Benallal and Marigo 2007) in a simplified one-dimensional context

that there exists a continuum set of branches which are solutions of the damage evolution problem. Therefore,

it has become necessary to introduce additional criteria to select physically realistic solutions. In the spirit of

Nguyen (2000), recent variational approaches (Charlotte et al. 2000; Laverne and Marigo 2004; Mielke 2005;

Charlotte et al. 2006; Bourdin et al. 2008) propose to reinforce usual stationary conditions with a stability

condition. Making a full use of the justification of such an energetic approach given by Marigo (1989, 2000), see

also DeSimone et al. (2001), Pham and Marigo (2010a,b) introduced this stability criterion as one of the three

principles (along with irreversibility and energy balance) that governs the evolution of damage in a body. This

allowed Pham et al. (2011b) to study the stability of the homogeneous response1 of a bar whose displacements

at the ends are controlled by a hard device. The main goal of this paper is to generalize this analysis in a full

three-dimensional setting. For this purpose, we consider three-dimensional bodies under boundary conditions that

are compatible with a homogeneous state. Then, we study whether such a homogeneous state is stable or not.

The results depend on the type of boundary conditions (soft or hard device), on the size of the body and on its

shape. We claim, as already shown in Pham et al. (2011b), that the study of the stability of these states can be

used for identifying the different constitutive functions of the model.

The paper is structured as follows. In Section 2, we set the main ingredients of the gradient damage model and

introduce the stability criterion. In Section 3 we start the study of the stability of homogeneous states. We distin-

guish stress-hardening from stress-softening behaviors, elastic homogeneous states from damaging homogeneous

states and different types of boundary conditions depending on whether those are prescribed by a soft device or a

hard device, including uniaxial test. Then, the stability of any homogeneous state in the case of stress-hardening

materials is obtained. We also prove that elastic homogeneous states are always stable. This allows us to focus on

damaging states for stress-softening materials which is the most common case in real-world applications. We easily

prove that in such a case, any damaging state is always unstable when the boundary is controlled by a soft device.

Section 4 is devoted to the case where the boundary is controlled by a hard device and we show how this leads to

the appearance of size effects. More specifically, we prove that a damaging state is stable provided that the size

of the body is less than a critical value which depends in general both on the state and the shape of the body.

However, it can happen that this critical size becomes infinite which means that the state is stable independently

of the size of the body. Moreover, the finiteness of this critical size is conditional on the state and the damage

model, but not on the shape of the body. This is illustrated by some examples. In Section 5, we consider the case

of uniaxial tensile tests of cylinders and show that both size and shape effects are present. In particular, we study

the asymptotic case of slender cylinders and obtain the closed-form expression of the critical size. The last section

is devoted to a comparison between our stability criterion and the strong ellipticity condition which is generally

used for studying the stability of homogeneous state in softening materials.

Throughout the paper, the following notation is used. The vectors and second order tensors are denoted by

boldface letters, like u for the displacement vector and ε for the strain tensor, while their components are denoted

by italic letters, like ui and εij . The fourth order tensors are represented by sans serif letters, like A and S for

the rigidity and the compliance tensors. In general, intrinsic notation is used: for instance Aε denotes the second

order tensor whose ij component is given by Aijklεkl (where here and henceforth the summation convention

is implicitly used). The inner product between vectors or between second order tensors is indicated by a dot.

Accordingly, one reads u·v = uivi, Aε·ε = Aijklεijεkl. The space of n×n symmetric matrices is denoted by M
n
s .

When v is a displacement field, i.e. a vector field of Rn, its associated strain tensor field ε(v) is the symmetric

part of the gradient of v, i.e. 2ε(v) = ∇v+(∇v)T . In terms of components, we get 2εij(v) = vi,j +vj,i where the

comma denotes the partial derivative with respect to the concerned coordinate. L2(Ω) denotes the Hilbert space

1 the response for which both strain and damage fields are constant in space
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of square integrable functions over the open set Ω of Rn, equipped with its natural norm ‖·‖0; H1(Ω) denotes the

Hilbert space of functions f which are in L2(Ω) and whose first weak derivatives f,i are also in L2(Ω), equipped

with its natural norm ‖ · ‖1:

‖f‖20 =

∫

Ω

f(x)2dx, ‖f‖21 = ‖f‖20 +

n
∑

i=1

‖f,i‖20.

For vector-valued or tensor-valued fields, the spaces L2(Ω,Rn), L2(Ω,Mn
s ), H

1(Ω,Rn) are defined in similar way.

For instance, for the vector field v and the tensor field ε we set:

‖v‖20 =

∫

Ω

v(x) · v(x)dx, ‖ε‖20 =

∫

Ω

ε(x) · ε(x)dx, ‖v‖21 = ‖v‖20 + ‖∇v‖20.

2 The gradient damage model

2.1 The non-local form of the strain work

We assume that the damage state at a material point is characterized by a scalar internal variable α growing

from 0 to αm ≤ +∞, 0 corresponding to the undamaged state and αm to the full damaged state. This scalar

damage variable represents at a macroscale a measure of the presence of defects at a microscale like microvoids or

microcracks. But the precise link between microdefects and the effective behavior of the material goes well beyond

the scope of this paper and we will follow a phenomenological procedure to set the constitutive equations. More

specifically, in our variational approach, we directly postulate the form of the non-local strain work at a material

point. In Pham and Marigo (2010b), it has been shown that for an elastic isotropic material with a scalar damage

variable, up to a change of damage variable, the strain work can be written in the following form:

W (ε, α,∇α) = w1α+
1

2
A(α)ε·ε+

1

2
w1ℓ(α)

2∇α·∇α. (1)

In (1), w1 is a material constant which has the dimension of a pressure (i.e. an energy by volume unit) provided

that α is dimensionless. A(α) denotes the stiffness tensor of the material in the damage state α, ε is the strain

tensor and hence 1
2A(α)ε·ε is the elastic energy density. Because of the damage process, α 7→ A(α) is a decreasing

function, going from A(0) = A0 to A(αm) = 0, A0 being the stiffness tensor of the sound material. We also use the

“damaged” compliance tensor α 7→ S(α) defined as the inverse of A(α), S(α) = A(α)−1. The last term in the right

hand side of (1), i.e. 1
2w1ℓ(α)

2∇α·∇α, corresponds to the non-local contribution which contains the real-valued

positive function α 7→ ℓ(α), ℓ(α) having the physical dimension of a length. Since the material is isotropic, the

stiffness and the compliance tensors of the material in the damaged state α can read as

A(α)ijkl = λ(α)δijδkl + µ(α)(δikδjl + δilδjk), S(α)ijkl = − ν(α)

E(α)
δijδkl +

1 + ν(α)

E(α)
(δikδjl + δilδjk) (2)

where λ(α), µ(α), ν(α) and E(α) are respectively the Lamé coefficients, the Poisson’s ratio and the Young modulus

of the material in the damaged state α.

Throughout the paper we adopt the following assumptions on the constitutive functions

Hypothesis 1 For all α ∈ [0, αm), A(α) > 0, A′(α) < 0, S(α) > 0, S′(α) > 0, ℓ(α) > 0.
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2.2 The hardening and softening properties

Like in plasticity, hardening and softening properties play a keyrole in the well-posedness of the problem. These

properties deal with the local behavior of the material and only involve the local part of the strain work

W0(ε, α) = w1α+
1

2
A(α)ε·ε. (3)

Following (Marigo 1989), the elastic domain E(α) in which strain is allowed to lie, when damage is spatially locally

uniform (∇α = 0) and equal to α, is given by

E(α) =
{

ε ∈ M
n
s : −1

2
A
′(α)ε·ε ≤ w1

}

=

{

ε ∈ M
n
s :

∂W0

∂α
(ε, α) ≥ 0

}

. (4)

This corresponds to a critical elastic energy release rate criterion. The image of the elastic domain in the space

of stresses, namely E
∗(α), is obtained after introducing the Legendre transform σ 7→ W ∗

0 (σ, α) of ε 7→ W0(ε, α)

W ∗
0 (σ, α) = sup

ε′∈Mn
s

{

σ ·ε′ −W0(ε
′, α)

}

=
1

2
S(α)σ ·σ − w1α. (5)

It follows that

E
∗(α) =

{

σ ∈ M
n
s :

1

2
S
′(α)σ ·σ ≤ w1

}

=

{

σ ∈ M
n
s :

∂W ∗
0

∂α
(σ, α) ≤ 0

}

. (6)

Definition 1 One says that the material behavior is strain-hardening when α 7→ E(α) is increasing, stress-

hardening when α 7→ E
∗(α) is increasing and stress-softening when α 7→ E

∗(α) is decreasing.

These variations of the elastic domains must be understood in the sense of inclusion between sets. For instance,

the behavior strain hardening means that if α and α′ are such that α < α′ then E(α) ⊂ E(α′). These intrinsic

material properties can be deduced from convexity properties of the constitutive function α 7→ A(α) as it can be

seen in the following

Proposition 2 The behavior is strain-hardening when α 7→ A
′(α) is an increasing function with respect to α,

A
′′(α) > 0. (7)

The behavior is stress-hardening ( resp. stress-softening) when α 7→ S
′(α) is decreasing with respect to α,

S
′′(α) < (resp. >)0. (8)

Hypothesis 2 From now on, we only consider brittle materials with a strain-hardening behavior.

2.3 The stability criterion

For rate-independent material behaviors, stability is a state property of a body at a given time and not a property

of the time-evolution problem. Accordingly, this latter is defined by comparing the total energy of a body in the

considered state with the total energy that this body should have after a state perturbation, the loading being
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fixed. More specifically, let us consider a homogeneous body whose reference configuration is the open connected

bounded set Ω ⊂ R
n. This body is made of a non-local damaging material characterized by the state function

(1). We suppose that the set of kinematically admissible displacement is of the form CU = U + C0 where U is

a given displacement field and C0 is a vectorial space. The body is also subjected to a system of external forces

whose potential is the linear form We : CU 7→ R. Considering only damage fields without failure, the convex set

of admissible damage field is given by

D = {α ∈ H1(Ω,R) : α ≥ 0, sup
Ω

α < αm},

and the convex cone of admissible damage direction fields by

D+ = {α ∈ H1(Ω,R) : α ≥ 0}.

The energy of the body in the admissible state (u, α) ∈ CU ×D reads as

P(u, α) =

∫

Ω

W (ε(u)(x), α(x),∇α(x)) dx−We(u), (9)

where ε(u) stands for the symmetric part of the gradient of u. The stability property is then given by

Definition 1 The state (u, α) ∈ CU × D is stable with respect to a perturbation in the direction (u∗, α∗) ∈
C0 ×D+, or, shortly, stable in the direction (u∗, α∗), if there exists h̄ > 0 such that for all h ∈ [0, h̄]

P(u+ hu∗, α+ hα∗) ≥ P(u, α). (10)

If (u, α) is stable in all directions of C0 ×D+, then (u, α) is directionally stable.

Note that the stability criterion only requires to compare the energy of the tested state (u, α) with the energy

of more damaged states. Indded, by virtue of the irreversibility of damage, the structure can only evolve to more

damaged configurations than its actual state.

3 The question of the stability of homogeneous states

3.1 Homogeneous states and the different types of control of the boundary conditions

In order to identify the constitutive function α 7→ A(α) and the material constant w1, one often uses uni- or multi-

axial tests on cylindrical samples by prescribing boundary conditions compatible with a spatially homogeneous

response. Then, the corresponding state of the sample is the homogeneous one (u0, α0) = (ε0x, α0) with (ε0, α0) ∈
M

n
s ×[0, αm). However, the observability of such a state is possible only if this state is directionally stable. The

goal of the present section is to study under which conditions this stability property holds. We first remark that

the stability of the state generally depends on how one controls the boundary conditions: the same homogeneous

state can be stable under displacement controlled (hard device) but unstable under force controlled (soft device).

Accordingly, we will discriminate between several types of boundary conditions:

5



1. Soft device. The boundary ∂Ω of the body is subjected to homogeneous surfaces forces σ0n where σ0 ∈ M
n
s

is a given stress tensor. The associated homogeneous state of the body is then given by α(x) = α0 and

u(x) = S(α0)σ0x. The corresponding stress state is σ0 while the set C0 of kinematically admissible directions

of perturbation and the potential We of the given external forces are

C0 = H1(Ω,Rn), We(v) =

∫

∂Ω

σ0n·vdS. (11)

2. Hard device. The boundary ∂Ω of the body is subjected to displacements ε0x where ε0 ∈ M
n
s is a given

strain tensor. The associated homogeneous state of the body is then given by α(x) = α0 and u(x) = ε0x.

The corresponding stress state is σ0 = A(α0)ε0 while the set C0 of kinematically admissible directions of

perturbation and the potential We of the given external forces read

C0 = H1
0 (Ω,Rn), We(v) = 0 (12)

where H1
0 (Ω) denotes the subspace of H1(Ω) made of fields whose trace over ∂Ω vanishes.

3. Uniaxial tensile test. The body is the cylinder Ω = (0, L)×Σ with Σ its cross-section. The lateral boundary

(0, L)× ∂Σ is free (σn = 0). The ends x1 = 0 and x1 = L are under mixed boundary conditions: there is no

shear (σ21 = σ31 = 0) and the normal displacement is fixed to a uniform value on each end (u1|x1=0 = 0,

u1|x1=L = εL). Then, the associated homogeneous state of the body is given by α(x) = α0 and u(x) = ε0x

with ε0 = εe1 ⊗ e1 − ν(α0)ε(e2 ⊗ e2 + e3 ⊗ e3). The corresponding stress state is σ0 = E(α0)εe1 ⊗ e1 while

the set C0 of kinematically admissible directions of perturbation and the potential We of the given external

forces are

C0 = {v ∈ H1(Ω,Rn) : v1 = 0 on {0, L} ×Σ}, We(v) = 0. (13)

3.2 Non damaging and damaging homogeneous states

Let us consider a homogeneous state (u0, α0) = (ε0x, α0) with (ε0, α0) ∈ M
n
s ×[0, αm). Let (v, β) ∈ C0×D+ be

an admissible direction and h be a small positive number. Expanding the total energy of the body in the state

(u0 + hv, α0 + hβ) with respect to h up to the second order leads to

P(u0 + hv, α0 + hβ) =P(u0, α0) + hP ′(u0, α0)(v, β) +
h2

2
P ′′(u0, α0)(v, β) + o(h2). (14)

In (14), the first order derivative is given by

P ′(u0, α0)(v, β) =

∫

Ω

σ0 ·ε(v) dx−We(v) +

∫

Ω

(

w1 − 1

2
S
′(α0)σ0 ·σ0

)

β dx (15)

where we used the identity S
′(α0)σ0 ·σ0 = −A

′(α0)ε0 ·ε0 with σ0 = A(α0)ε0. In (15) there is no term involving

the non local character of the damage model, i.e. no term containing ℓ(α0) or ℓ′(α0) as the state α0 is assumed

to be spatially homogeneous and hence ∇α0 = 0. The second order derivative reads as

P ′′(u0, α0)(v, β) =

∫

Ω

(

A(α0)ε(v)·ε(v) + w1ℓ(α0)
2∇β ·∇β + 2A′(α0)ε0 ·ε(v)β

)

dx

+

∫

Ω

1

2
A
′′(α0)ε0 ·ε0 β2 dx. (16)
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Note that it contains terms with the gradient of the direction of damage. Then, a necessary condition for (u0, α0)

to be directionally stable is

0 ≤ lim
h→0

1

h
(P(u0 + hv, α0 + hβ)− P(u0, α0)) = P ′(u0, α0)(v, β), ∀(v, β) ∈ C0×D+. (17)

Taking β = 0 in (17) and recalling (15) leads to the variational formulation of the mechanical equilibrium
∫

Ω

σ0 ·ε(v) dx = We(v), ∀v ∈ C0 (18)

which is automatically satisfied by virtue of the definitions of We and C0 and given the fact that the stress field

is uniform. Accordingly, the first order stability condition (17) becomes

P ′(u0, α0)(v, β) =
(

w1 − 1

2
S
′(α0)σ0 ·σ0

)

∫

Ω

β dx ≥ 0, (19)

where the inequality must hold for any field β ≥ 0. Therefore, the homogeneous state is stable only if the stress

satisfies the damage criterion

S
′(α0)σ0 ·σ0 ≤ 2w1. (20)

This inequality can also be written in terms of the strain tensor and then reads as

−A
′(α0)ε0 ·ε0 ≤ 2w1. (21)

A state such that the inequality in (20) or (21) is strict should correspond in an evolution problem to a state where

the damage yield criterion is not reached and then for which the damage rate α̇ should vanish. We will call such a

state a non damaging state. On the other hand, a state such that (20) or (21) is an equality should correspond in

an evolution problem to a state where the damage yield criterion is reached. In this case, the damage rate could

be positive. We will call such a state a damaging state. For further references, this terminology is recalled in the

following definition

Definition 2 A homogeneous state (ε0x, α0) such that −A
′(α0)ε0 ·ε0 < 2w1 is called a non damaging state,

whereas a homogeneous state such that −A
′(α0)ε0 ·ε0 = 2w1 is called a damaging state.

Let us first study the stability of non damaging states.

3.3 Stability of the non damaging states

In the case of a non damaging state, since S
′(α0)σ0 ·σ0 < 2w1, the first term in the expansion of the perturbed

energy (14) vanishes if and only if the damage direction is β = 0 (everywhere in Ω). When β 6= 0 (somewhere in

Ω), then the first order term is positive and the state is stable in this direction of perturbation. On the other hand,

when β = 0, then the first order term vanishes and the stability in this direction depends on the sign of the second

order term. Calculating the second order derivative for β = 0, we find P ′′(u0, α0)(v, 0) =
∫

Ω
A(α0)ε(v)·ε(v)dx.

Accordingly, the second order term in the expansion (14) is non negative. Moreover, it vanishes if and only if

ε(v) = 0, i.e. if and only if the perturbation corresponds to a rigid motion. Therefore, one can conclude

Proposition 1 Any non damaging state is directionally stable, independently of the type of boundary conditions

and the hardening properties of the material.
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3.4 Case of a stress-hardening behavior

Let us consider a damaging state. Since −A
′(α0)ε0 ·ε0 = 2w1, the first order term in (14) vanishes. Moreover, by

virtue of the strain hardening condition (7), with the strain tensor ε0 ∈ M
n
s is associated a unique α0 ∈ [0, αm)

such that (21) holds. In other words, the damage state is given by the strain state. The stability of this homogeneous

state depends on the sign of the second derivative of the energy. Introducing the stress state σ0 rather than the

strain state ε0, P ′′(u0, α0) can read as

P ′′(u0, α0)(v, β) =

∫

Ω

A(α0)
(

ε(v)− βS′(α0)σ0

)

·
(

ε(v)− βS′(α0)σ0

)

dx+ w1ℓ(α0)
2
∫

Ω

∇β ·∇βdx

− 1

2
S
′′(α0)σ0 ·σ0

∫

Ω

β2 dx (22)

where we used the identity

S
′′(α0)σ0 ·σ0 = 2A(α0)S

′(α0)σ0 ·S′(α0)σ0 − A
′′(α0)ε0 ·ε0. (23)

Accordingly, if the material behavior is stress-hardening, then S
′′(α0) < 0 and the second order derivative of the

total energy in (22) is the sum of three non negative terms. Moreover, the three terms vanish simultaneously if

and only if β = 0 and ε(v) = 0. Therefore, we can conclude that

Proposition 3 Any homogeneous state is directionally stable when the material behavior is stress-hardening,

independently of the type of boundary conditions.

It remains to study the stability of damaging states for stress-softening material and hence we adopt the

Hypothesis 3 Throughout the remainder of the paper, the material behavior is with stress softening and the

homogeneous state is a damaging state.

In such a case, the type of boundary conditions becomes essential. Let us first remark that damaging states

are stable in all directions (v, 0) where v ∈ C0. Indeed, for such directions, the second derivative reads as

P ′′(u0, α0)(v, 0) =
∫

Ω
A(α0)ε(v) ·ε(v) dx and hence is positive for any v which is not a rigid motion. Conse-

quently, we only have to consider directions of perturbation such that β 6= 0. Let us now remark that if the

material behavior is stress-softening, then S
′′(α0) > 0. Hence, to find the sign of the second order derivative is

equivalent to compare with 1 the infimum of the following Rayleigh ratio over C0 × (D+ \ {0}):

R(v, β) =

∫

Ω

w1ℓ(α0)
2∇β ·∇βdx+

∫

Ω

A(α0)
(

ε(v)− β S
′(α0)σ0

)

·
(

ε(v)− β S
′(α0)σ0

)

dx

1
2
S
′′(α0)σ0 ·σ0

∫

Ω

β2dx

. (24)

More specifically, the state will be directionally stable if (resp. only if) infC0×(D+\{0}) R > (resp. ≥)1. It is easy

to conclude when the forces are controlled on the whole boundary, whereas the other cases are more subtle and

require a more detailed analysis.
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3.5 Case of a soft device

The surface forces being σ0n, the homogeneous state is (S(α0)σ0x, α0) with α0 the unique solution of S′(α0)σ0·
σ0 = w1. The set of admissible displacement directions is C0 = H1(Ω,R3). Therefore, considering the direction

(v, β) = (S′(α0)σ0x, 1) which belongs to C0 ×D+, one immediately obtains that the Rayleigh ratio vanishes:

R(S′(α0)σ0x, 1) = 0. (25)

We can then conclude that

Proposition 4 Any damaging state in the case of a stress-softening material is unstable when the boundary

conditions are prescribed by a soft device.

4 Size effects on the stability of the damaging states in the case of a hard device

4.1 Setting of the problem

At each point x of the boundary ∂Ω, the displacement is prescribed to ε0x. The homogeneous state is (ε0x, α0)

with α0 given by (21) and the stress state is σ0 = A(α0)ε0. Since the displacements at the boundary are

prescribed, the space of perturbation directions of the displacements is H1
0 (Ω,Rn) and it does not contain the

direction S(α0)σ0x. Therefore, we can not conclude as easily as in the case of a control by a soft device. In fact,

we show that the stability of the homogeneous state essentially depends on the size of the domain.

For studying these size effects, we consider families of domains such that all the members of a given family

share the same shape and only differ by their size. More precisely, for a given domain Ω1 we associate the family

of homothetic domains {ΩL = LΩ1}L>0. To compare the Rayleigh ratio of the different members of the family, it

is more convenient to work with spaces of perturbation directions that are independent of the size of the domain.

From this perspective, one performs the change of coordinates x 7→ y = x/L which maps the domain ΩL into the

domain Ω1. In the same way, one transports the directions of perturbation (vL, βL) of H1
0 (ΩL,R

n)×H1(ΩL,R
+)

into (v, β) of C0 ×D+ = H1
0 (Ω1,R

n)×H1(Ω1,R
+) by using

vL(x) = Lv(y), βL(x) = β(y). (26)

Accordingly, the Rayleigh ratio associated with the domain ΩL is denoted by RL and is defined on the fixed space

C0 × (D+ \ {0}) by

RL(v, β) =

w1
ℓ20
L2

∫

Ω1

∇β ·∇βdy +

∫

Ω1

A0

(

ε(v)− β e0
)

·
(

ε(v)− β e0
)

dy

1

2
S
′′
0σ0 ·σ0

∫

Ω1

β2dy

, (27)

where we have used the condensed notations

A0 = A(α0), S
′′
0 = S

′′(α0), σ0 = A(α0)ε0 ℓ0 = ℓ(α0), e0 = S
′(α0)σ0. (28)
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Note that the size of the domain appears explicitly in the definition of the Rayleigh ratio and that for a given

direction (v, β) the Rayleigh ratio is a decreasing function of L. Let us call

ρL(ε0, Ω1) = inf
C0×(D+\{0})

RL (29)

and let us first prove that the infimum is reached and positive.

It is clear that the infimum is non-negative and finite. Let (vn, βn) be a minimizing sequence. Owing to

the homogeneity of the ratio, we can choose βn such that
∫

Ω1
β2
ndx = 1. Since the numerator converges to the

infimum, βn and vn are bounded in H1(Ω1). Hence, there exists a subsequence that weakly converges in H1(Ω1)

and strongly in L2(Ω1) to (v∞, β∞) in C0 × D+ (which is weakly closed in H1(Ω1,R
n)×H1(Ω1)). We deduce

that
∫

Ω1
β2
∞dx = 1. Then, by virtue of the weakly lower semi-continuity of the numerator of RL, we obtain

RL(v∞, β∞) ≤ lim
n→∞

RL(vn, βn) = inf
C0×(D+\{0})

RL.

Therefore the infimum is a minimum. If the minimum was 0, β∞ should be a positive constant and ε(v∞) should be

equal to β∞e0. Integrating over Ω1 and taking into account that v∞ = 0 on ∂Ω1 we should get 0 = e0
∫

Ω1
β∞dy

which is impossible since e0 6= 0 and hence ρL(ε0, Ω1) > 0.

For a given domain Ω1 and a given strain tensor ε0, it is clear from (27) that L 7→ ρL(ε0, Ω1) is a decreasing

function of L. Therefore, the homogeneous states have more chance to be stable for small domains than for large

ones. Let us first study the stability for small domains before to consider the full range of sizes.

4.2 Case of small domains

Let us prove the following fundamental result:

Proposition 2 Since limL→0 ρL(ε0, Ω1) =
A(α0)S

′(α0)σ0 ·S′(α0)σ0
1
2
S
′′(α0)σ0 ·σ0

> 1, there exists for each family of homo-

thetic domains a positive (possibly infinite) critical size, say Lc(ε0, Ω1), below which the damaging state (ε0x, α0)

is directionally stable.

Proof To simplify the notation, we do not make explicit the dependence on ε0 and Ω1 of any quantity. Let us

call (vL, βL) the minimizer of RL and let us use the condensed notation (28). Then the following relations hold

ρL = RL(vL, βL), (30)

1 =

∫

Ω1

β2
Ldy, (31)

0 =

∫

Ω1

A0(ε(vL)− βLe0)·ε(v)dy, ∀v ∈ C0, (32)

where the last equation is the stationary condition: R′
L(vL, βL)(v, 0) = 0, ∀v ∈ C0. Taking v = vL in (32) and

inserting into (30) leads to

1
2
S
′′
0σ0 ·σ0 ρL = w1

ℓ20
L2

∫

Ω1

∇βL ·∇βLdy + A0e0 ·e0 −
∫

Ω1

βLA0e0 ·ε(vL) dy. (33)
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By virtue of the minimality of ρL, we have for any L > 0

0 < ρL ≤ RL(0, 1) =
A0e0 ·e0

1
2
S′′0σ0 ·σ0

, (34)

hence the sequence L 7→ ρL is bounded. Since ρL is a decreasing function of L, we deduce that the sequence

L 7→ ρL converges to some ρ0 ≥ 0 when L goes to 0. From (34), we deduce that the sequences L 7→ vL and

L 7→ βL are bounded in H1(Ω1). Therefore, (up to extracting a subsequence) βL converges weakly in H1(Ω1),

strongly in L2(Ω1) and almost everywhere to some β0. Similarly, vL converges weakly in H1(Ω1,R
n) and strongly

in L2(Ω1,R
n) to some v0. Passing to the limit in (31) and (32) gives

1 =

∫

Ω1

β2
0dy, (35)

0 =

∫

Ω1

A0(ε(v0)− β0e0)·ε(v)dy, ∀v ∈ C0. (36)

Moreover, since for any L > 0, βL is non negative a.e., its limit β0 is also non-negative a.e.. The inequality (34)

shows in addition that ‖∇βL‖L2(Ω1) ≤ CL where C is a positive constant (independent of L). By virtue of the

lower semi-continuity of the norm, we get ‖∇β0‖L2(Ω1) = 0 which means that β0 is a positive constant over Ω1.

Accordingly, (36) reads
∫

Ω1

A0ε(v0)·ε(v)dy = β0A0e0 ·
∫

Ω1

ε(v)dy = 0, ∀v ∈ C0. (37)

Taking v = v0 and using the positivity of A0, we deduce that ε(v0) = 0 and hence v0 = 0. Using (33) and (34)

gives the following bounds for ρL

A0e0 ·e0 −
∫

Ω1

βLA0e0 ·ε(vL) dy ≤ 1
2
S
′′
0σ0 ·σ0 ρL ≤ A0e0 ·e0. (38)

Since ε(vL) is bounded in L2(Ω1), ε(vL) converges weakly to ε(v0) = 0 in L2(Ω1) and βL converges strongly to

β0 in L2(Ω1). Hence, we have

lim
L→0

∫

Ω1

βLA0e0 ·ε(vL) dy = 0.

Inserting into (38) gives the desired result

lim
L→0

ρL = ρ0 :=
A0e0 ·e0

1
2
S′′0σ0 ·σ0

.

Note that this limit is independent of the shape of the family of domains. Now, making use of the identity (23) we

deduce from the strain hardening assumption 1
2
A
′′(α0)ε0·ε0 > 0 that ρ0 > 1. As L 7→ ρL is a decreasing function,

we conclude that there exists a critical size Lc > 0 such that the state is stable if L < Lc and unstable if L > Lc.

Of course, if Lc = +∞, then the state is stable independently of the size of the domain. ⊓⊔

4.3 Case of large domains

We have shown in the previous subsection that a damaging state is directionally stable for sufficiently “small”

structures. It remains to see whether this stability property holds for the full range of sizes or whether there

exists a finite critical length beyond which the homogeneous state is no more stable. To answer this question it is

sufficient to determine the limit of ρL when L goes to ∞. Indeed, by virtue of Proposition 2, we have
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Corollary 1 Depending on whether limL→∞ ρL(ε0, Ω1) is less or greater than 1, we are in one of the two

following situations:

1. If limL→∞ ρL(ε0, Ω1) ≥ 1, then the damaging homogeneous state is directionally stable, independently of the

size of the domain;

2. If limL→∞ ρL(ε0, Ω1) < 1, then the damaging homogeneous state is directionally stable when the size of the

domain is less than a (positive and finite) critical value Lc(ε0, Ω1) and unstable otherwise.

Let us determine the asymptotic behavior of the Rayleigh ratio when the characteristic size L of the structure

goes to +∞. Note first that the limit exists because ρL is a decreasing function of L bounded from below by 0.

By definition, we have

ρL ≤ RL(v, β), ∀(v, β) ∈ C0 ×D+. (39)

For a fixed direction (v, β), passing to the limit when L → +∞, we obtain

ρ∞ ≤ R∞(v, β), ∀(v, β) ∈ C0 ×D+ (40)

where R∞ is defined as the “limit” Rayleigh ratio

R∞(v, β) =

∫

Ω1
A0

(

ε(v)− β e0
)

·
(

ε(v)− β e0
)

dy

1
2
S′′0σ0 ·σ0

∫

Ω1
β2dy

. (41)

which involves no more gradient damage term. By taking the infimum over C0 × D+ in (40), we deduce that

ρ∞ ≤ infC0×D+ R∞. Moreover, since the contribution of gradient damage terms to the Rayleigh ratio is non

negative, we have conversely

ρL = RL(vL, βL) ≥ R∞(vL, βL) ≥ inf
C0×D+

R∞ (42)

and hence finally

ρ∞ = inf
C0×D+

R∞. (43)

Note that we are no more ensured that the infimum is reached and we have to consider minimizing sequences.

The value of ρ∞ can be derived by following the method proposed by (Kohn 1991) to calculate the relaxation of

a double-well elastic potential. This requires to introduce some preliminary definitions.

Let Sn be the unit sphere of Rn, i.e. Sn = {k ∈ R
n : |k| = 1}. With k ∈ S

n we associate the n-dimension

subspace V (k) of Mn
s by

V (k) = {k⊗ v + v ⊗ k : v ∈ R
n}. (44)

Let δ(ε0) be the real number defined by

δ(ε0) = max
{k :|k|=1}

A0ξ(k)·ξ(k) (45)

where ξ(k) ∈ V (k) is obtained by solving the following minimization problem (which depends only on ε0):

ξ(k) = argmin
ξ∈V (k)

A0(e0 − ξ)·(e0 − ξ). (46)

Following the method proposed by Kohn (1991), let us prove the

12



Lemma 1 The infimum of R∞ over C0 × (D+ \ {0}) is independent of Ω1 and is given by

ρ∞(ε0) =
A(α0)S

′(α0)σ0 ·S′(α0)σ0 − δ(ε0)
1
2S

′′(α0)σ0 ·σ0
. (47)

Proof By homogeneity, we can assume that β is such that
∫

Ω1
β2dy = 1. Accordingly, setting

∆(v, β) =

∫

Ω1

(

A0ε(v)·ε(v)− 2βA0e0 ·ε(v)
)

dy

one has to prove that

−δ(ε0) = inf
β≥0

∫
Ω1

β2dy=1

{

min
v∈H1

0
(Ω1,Rn)

∆(v, β)

}

. (48)

It is possible to prove directly that the infimum does not depend on Ω1 and hence to take for Ω1 the cube (0, 2π)n.

Moreover, the Dirichlet conditions for v can be replaced by periodic conditions without changing the infimum,

see (Kohn 1991, Lemma 2.1). By density, it is sufficient to consider piecewise constant damage fields, i.e. β such

that

β(y) =

N
∑

i=1

βiχi(y), βi ≥ 0, χi(y) ∈ {0, 1}, χi(y)χj(y) = 0 if j 6= i,
∑

i

χi(y) = 1

with
∫

Ω1

χidy = θi meas(Ω1),

N
∑

i=1

β2
i θi meas(Ω1) = 1.

Then ∆(v, β) becomes

∆(v, β) =

∫

Ω1

(

A0ε(v)·ε(v)− 2

N
∑

i=1

χiβiA0e0 ·ε(v)
)

dy

and the problem is equivalent to find the relaxation of an elastic potential which contains N wells located at

ξi = βie0. Since all the wells are proportional to e0 we can follow the procedure proposed in (Kohn 1991,

Proposition 8.1) and based on Fourier analysis. Taking the Fourier transform of the N periodic characteristic

functions χi, i.e.

χi(y) =
∑

k∈Zn

χ̂i(k) exp
ik·y,

and minimizing ∆(v,
∑

i=1 βiχi) over all the periodic v, one gets

min
v

∆(v,
∑

i=1

βiχi) = −
∑

k∈Zn\{0}

N
∑

i,j=1

βiβj χ̂i(k)χ̂j(k)A0ξ(k)·ξ(k)

where z denotes the complex conjugate of z and ξ(k) is given by (46). Since

∑

k∈Zn\{0}

N
∑

i,j=1

βiβj χ̂i(k)χ̂j(k) =

∫

Ω1

(

N
∑

i=1

βi(χi(y)− θi)

)2

dy = 1− 1

meas(Ω1)

(∫

Ω1

β(y)dy

)2

,

one immediately obtains

inf
β

min
v

∆(v, β) ≥ − max
{k :|k|=1}

A0ξ(k)·ξ(k) = −δ(ε0).
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To obtain the converse inequality, one first chooses k as a maximizer of A0ξ(k) · ξ(k) over S
n and one then

approaches k by k̃/‖k̃‖ with k̃ ∈ Z
n. For β we construct a minimizing sequence {βm}m∈N such that

βm(y) = fm(k·y) with fm(θ) =

{ √
m

(2π)n/2 if 0 < θ < 2π
m

0 otherwise
.

Accordingly,
∫

Ω1
β2
m(y)dy = 1 and limm→∞

∫

Ω1
βm(y)dy = 0. We finally obtain

lim
m→∞

min
v

∆(v, βm) = −δ(ε0)

which completes the proof. ⊓⊔

Since ρ∞ does not depend on the shape of the reference domain Ω1 but only on ε0, we get that, if ρ∞(ε0) ≥ 1,

then Lc(ε0, Ω1) = +∞, ∀Ω1. Note, however, that if ρ∞(ε0) < 1, then the critical length (is finite and) depends

in general both on ε0 and Ω1. The following Proposition gives the cases where ρ∞(ε0) = 0 and hence cases where

the damaging state is necessarily unstable for sufficiently large structures:

Proposition 3 When the damaging homogeneous state is such that one of the two following properties holds

(i) e0 := S
′(α0)A(α0)ε0 is a rank one tensor of Mn

s ,

(ii) e0 := S
′(α0)A(α0)ε0 is a rank two tensor of Mn

s and its nonzero eigenvalues have opposite signs,

then ρ∞(ε0) = 0 and hence 0 < Lc(ε0, Ω1) < +∞ for all Ω1. Conversely, ρ∞(ε0) = 0 only if e0 satisfies (i) or

(ii).

Proof It is clear from (45)–(47) that ρ∞(ε0) = 0 if and only if e0 belongs to V (k) for some k.

If e0 is a rank one tensor of Mn
s , then it can be written e0 = γk⊗ k with k ∈ S

n and hence e0 ∈ V (k).

If e0 is a rank-two tensor of Mn
s with its two non zero eigenvalues of opposite signs, then e0 can read as

e0 = γ1k1 ⊗ k1 − γ2k2 ⊗ k2 with γ1 > 0, γ2 > 0, k1 and k2 ∈ S
n, k1 ·k2 = 0. Setting

k =

√

γ1
γ1 + γ2

k1 +

√

γ2
γ1 + γ2

k2, v =
√
γ1 + γ2

(√
γ1

2
k1 −

√
γ2

2
k2

)

,

one easily checks that e0 = k⊗ v + v ⊗ k.

If e0 = k ⊗ v + v ⊗ k with k ∈ S
n and v ∈ R

n \ {0}, then e0 is a rank one or a rank two tensor according

to whether or not v is parallel to k. When v is not parallel to k, then v can read as v = vk+ v∗k∗ with v∗ 6= 0

and k∗ ∈ S
n, k · k∗ = 0. Therefore, e0 can be represented by the following matrix in the basis (k,k∗):

e0 =

(

2v v∗
v∗ 0

)

(k,k∗)

.

The product of its two eigenvalues being −v2∗, these eigenvalues have opposite signs. ⊓⊔

When the damaging state does not satisfy one of the two cases above, one cannot conclude without giving more

detailed information on the model. As an illustrative example, we will consider in the next subsection the case of

spherical homogeneous states with a particular class of isotropic brittle materials.
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4.4 Stability of spherical homogeneous states for a class of isotropic brittle materials

Let us consider the following damage law

A(α) = a(α)A0 with A
0
ijkl = λ δijδkl + µ (δikδjl + δilδjk) (49)

S(α) = s(α)S0 with S
0
ijkl = − ν

E
δijδkl +

1 + ν

2E
(δikδjl + δilδjk) (50)

where a : [0, αm) → R
+, α 7→ a(α) is a decreasing twice differentiable dimensionless function such that a(0) = 1,

a(αm) = 0 and a′ < 0. In (50), s denotes the compliance factor, i.e. s = 1/a. Accordingly, parameters (λ, µ)

are the Lamé coefficients, ν the Poisson’s ratio and E the Young modulus of the sound material. Moreover, the

Poisson’s ratio does not change when damage grows. We will only consider cases with spatial dimension n = 2 or

3. Hence, the positivity of stiffness and compliance tensors is equivalent to

µ > 0, nλ+ 2µ > 0, E > 0, −1 < ν <
1

n− 1
. (51)

Relations between stiffness and compliance coefficients read as

2µ =
E

1 + ν
, λ =

νE

(1 + ν)(1− (n− 1)ν)
, (52)

while the strain-hardening and stress-softening conditions are equivalent to a′′ > 0 and s′′ > 0.

Displacements are prescribed at the boundary of the body so that the homogeneous strain and stress states

are spherical tensors:

ε0 = εI, σ0 = (nλ+ 2µ)a(α0)εI (53)

where n is the spatial dimension, ε is a given real number such that the homogeneous state be a damaging state,

i.e. ε ≥ εc with

εc =

√

2w1

−(nλ+ 2µ)a′(0)
. (54)

The damage state α0 depends only on ε and is given by

α0 = (a′)−1

(

a′(0)
ε2c
ε2

)

. (55)

The relation between spherical stress σ and the spherical strain ε is then

σ = (nλ+ 2µ)a(α0)ε. (56)

Providing this choice of loading and damage law, a direct calculation gives



































A(α0)e0 ·e0 = n(nλ+ 2µ)s′(α0)
2a(α0)

3ε2,

δ(ε0) =
(nλ+ 2µ)2

λ+ 2µ
s′(α0)

2a(α0)
3ε2,

1
2S

′′(α0)σ0 ·σ0 = 1
2n(nλ+ 2µ)s′′(α0)a(α0)

2ε2.

(57)
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εc

σc

Fig. 1 Spherical stress versus spherical strain response in the case of a strongly brittle material (left) or a weakly brittle
material (right) .

The unique calculation which is not straightforward is that of δ(ε0). To obtain the expression above, one starts

from (45)-(46) and uses the special form (49) of A0. Then, introducing v(k) as the optimal vector of Rn, i.e. such

that ξ(k) = k⊗ v(k) + v(k)⊗ k, we get

v(k) = argmin
v∈Rn

(

(λ+ µ)(v·k)2 + µv·v − (nλ+ 2µ)s′(α0)a(α0)εv·k
)

.

A direct calculation gives v(k) =
nλ+ 2µ

2(λ+ 2µ)
s′(α0)a(α0)εk, then it turns out that A0ξ(k)·ξ(k) is independent of

k and one finally gets the expression (57) for δ(ε0).

We deduce from (47) and (57) that ρ∞(ε) reads

ρ∞(ε0) =
(n− 1)

(

1− (n− 1)ν
)

n
(

1− (n− 2)ν
)

2s′(α0)
2

s(α0)s′′(α0)
(58)

and the fact that it is greater or less than 1 depends on the strain state ε, the spatial dimension n, the Poisson’s

ratio ν and the compliance function s. Let us study these dependencies on two examples.

Example 1 Let us first consider a family of strongly brittle materials in the sense of (Pham et al. 2011b) such that

the maximal damage value αm and the stiffness function α 7→ a(α) are given by

αm = 1, a(α) = (1− α)q, q > 1 (59)

where the exponent q must be greater than 1 so that the strain hardening condition is satisfied. The condition of

stress softening is then automatically satisfied. Relations (55) and (56) between α0, σ and ε for a damaging state

read as

α0 = 1−
(

εc
ε

)
2

q−1

, σ = σc

(

εc
ε

)
q+1

q−1

, σc = (nλ+ 2µ)εc,

see Figure 1(left). To compare ρ∞(ε0) with 1, let us discriminate according to the spatial dimension n.

For dimension n = 2, we find that

ρ∞(ε0) =
(1− ν)q

q + 1

and hence Lc(ε0, Ω1) < +∞ when νq + 1 > 0. This situation corresponds to the gray area in Figure 2(left).
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n = 2 n = 3q q

ν ν

Fig. 2 For a strongly brittle material, the gray area depicts the range of exponent q and Poisson’s ratio ν for which
Lc(ε0, Ω1) < +∞, i.e. the critical size of the domain below which the damaging homogeneous spherical state is directionally
stable is finite. Left: n = 2; Right: n = 3.

For dimension n = 3, we find that

ρ∞(ε0) =
4(1− 2ν)q

3(1− ν)(q + 1)

and hence Lc(ε0, Ω1) < +∞ when (1 − 5ν)q < 3(1 − ν). This situation corresponds to the gray area in Fig-

ure 2(right).

Example 2 Let us now consider a family of weakly brittle materials in the sense of (Pham et al. 2011b):

αm = +∞, a(α) =
1

(1 + α)p
, p > 1. (60)

where the maximal damage value is infinite and the exponent p must be greater than 1 so that the behavior be

with softening. The relations (55) and (56) between α0, σ and ε for a damaging state read as

α0 =
(

ε

εc

)
2

p+1 − 1, σ = σc

(

εc
ε

)
p−1

p+1

, σc = (nλ+ 2µ)εc,

see Figure 1(right). To compare ρ∞(ε0) with 1, we discriminate again according to the spatial dimension.

For dimension n = 2, we find that

ρ∞(ε0) =
(1− ν)p

p− 1

and thus Lc(ε0, Ω1) < +∞ when νp > 1. This situation corresponds to the gray area in Figure 3(left).

For dimension n = 3, we find that

ρ∞(ε0) =
4(1− 2ν)p

3(1− ν)(p− 1)

and thus Lc(ε0, Ω1) < +∞ when (1 − 5ν)p + 3(1 − ν) < 0. This situation corresponds to the gray area in

Figure 3(right).
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n = 2 n = 3

ν ν

p p

Fig. 3 For a weakly brittle material, the gray area depicts the range of exponent q and Poisson’s ratio ν for which
Lc(ε0, Ω1) < +∞, i.e. the critical size of the domain below which the damaging homogeneous spherical state is directionally
stable is finite. Left: n = 2; Right: n = 3.

5 Size and shape effects in the stability of the homogeneous damaging states in the case of a

uniaxial tensile test

5.1 Setting of the problem

We consider now the third type of boundary conditions i.e. those which corresopnds to a uniaxial tensile test

(the most common experimental test), see Section 3. The reference domain Ω1 is the three dimensional cylinder

of length 1 and cross-section Σ1, i.e. Ω1 = (0, 1) × Σ1. Other domains are obtained by homothety, ΩL = LΩ1,

L > 0. Using the change of coordinates x 7→ y = x/L and the mappings (26), we can consider that all perturbation

fields are defined on Ω1 and that the sets of kinematically admissible displacement perturbations and admissible

damage perturbations are independent of L and given by

C0 = {v ∈ H1(Ω1,R
3) : v1 = 0 on {0, 1} ×Σ1}, D+ = {β ∈ H1(Ω1) : β ≥ 0}.

Constitutive material is assumed to be isotropic and damage law is such that the Poisson’s ratio remains constant

and equal to ν ∈ (−1, 1/2). Thus stiffness and compliance tensors are given by (49)-(50):

A(α) = a(α)A0, S(α) = s(α)S0 with a > 0, a′ < 0, a′′ > 0, s = 1/a, s′′ > 0.

Accordingly, the damaging homogeneous state is (ε0y, α0) where the strain tensor ε0 and the damage state α0

are given by

ε0 = εe1 ⊗ e1 − νεe2 ⊗ e2 − νεe3 ⊗ e3, a′(α0) = a′(0)
ε2c
ε2

, ε ≥ εc =

√

2w1

−a′(0)E
.

The associated homogeneous stress tensor is uniaxial and reads as

σ0 = a(α0)Eεe1 ⊗ e1.

The Rayleigh ratio RL associated with the domain ΩL and defined on the fixed space C0 × (D+ \ {0}) is still

given by (27) if we use the condensed notations (28). By virtue of the particular forms of the damage law and of

the specific properties of the uniaxial test, some quantities can be easily calculated. Indeed, we have

e0 = −a′(α0)

a(α0)
ε0, A0e0 = −a′(α0)Eεe1 ⊗ e1, A0e0 ·e0 =

a′(α0)
2

a(α0)
Eε2, S

′′
0σ0 ·σ0 = s′′(α0)a(α0)

2Eε2. (61)
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The minimum of RL over C0 × (D+ \ {0}) depends a priori on L, ε and Σ1. Thus, let us set

ρL(ε,Σ1) = min
C0×(D+\{0})

RL.

The homogeneous state is directionally stable depending on whether ρL(ε,Σ1) is less or greater than 1. Since

only a part of the displacements are controlled on the boundary, we are in an intermediate situation between a

soft device and a hard device. However, it turns out that the present case is quite similar to a hard device as it

is proved in the following Proposition.

5.2 Size effects

Proposition 4 The minimum ρL(ε,Σ1) of the Rayleigh ratio is a decreasing function of L such that

lim
L→0

ρL(ε,Σ1) =
1

1− a(α0)a
′′(α0)

2a′(α0)2

> 1. (62)

Therefore, the damaging homogeneous state is directionally stable provided that the size of the cylinder is small

enough.

Proof The proof is essentially the same as the one of Proposition 2 and we simply emphasize the differences. The

notations are unchanged, we still call (vL, βL) the minimizer of RL which still satisfy (30)–(32). Note that in this

case vL is not unique, but is determined up to a rigid motion compatible with the boundary conditions, i.e. up

to a transversal translation and a rotation around the x1-axis. This indeterminacy can be fixed by considering

the quotient of C0 by these rigid motions. Then, we deduce that the sequences L 7→ ρL, L 7→ vL and L 7→ βL
are bounded and converge (for the relevant topology) respectively to ρ0 ≥ 0, v0 ∈ C0 and a positive constant β0.

Passing to the limit in (32) gives

∫

Ω1

A0ε(v0)·ε(v)dy = β0A0e0 ·
∫

Ω1

ε(v)dy, ∀v ∈ C0. (63)

Since A0e0 ·ε(v) = −a′(α0)Eεv1,1, we still have A0e0 ·
∫

Ω1
ε(v)dy = 0, ∀v ∈ C0, and hence ε(v0) = 0. The end of

the proof is unchanged, one obtains

ρ0 =
A0e0 ·e0

1
2
S′′0σ0 ·σ0

.

By using (61), one finally gets (62). ⊓⊔

To know if the stability of the homogeneous state holds for any size of the cylinder, one must compare ρ∞(ε,Σ1) :=

limL→∞ ρL(ε,Σ1) with 1. Following the same procedure as in the previous section, one easily obtains

ρ∞(ε,Σ1) = inf
C0×(D+\{0})

R∞

where R∞ is still given by (41) (provided that one uses (61) for the definition of the state dependent quantities).

However, since C0 ⊃ H1
0 (Ω,R3), one has merely infH1

0
(Ω,R3)×(D+\{0}) R∞ ≥ infC0×(D+\{0}) R∞ and one can

only use Lemma 1 to obtain an upper bound for ρ∞(ε,Σ1). More specifically, one gets
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Lemma 2 When the size L of the domain tends to ∞, the limit value ρ∞(ε,Σ1) of the minimum of the Rayleigh

ratio is bounded from above as follows

ρ∞(ε,Σ1) ≤
1− (1 + ν)(1− 2ν)

1− ν

1− a(α0)a
′′(α0)

2a′(α0)2

if ν ≤ 0, ρ∞(ε,Σ1) ≤
ν2

1− a(α0)a
′′(α0)

2a′(α0)2

if ν ≥ 0. (64)

Proof By virtue of Lemma 1, one has

ρ∞(ε,Σ1) ≤
A0e0 ·e0 −maxk∈S3 A0ξ(k)·ξ(k)

1
2
S′′0σ0 ·σ0

.

It remains to determine maxk∈S3 A0ξ(k)·ξ(k). Let us first determine ξ(k) for k ∈ S
3. By its definition (46), ξ(k)

is the element of V (k) which minimizes A0(e0 − ξ)·(e0 − ξ) over all the ξ of V (k). Accordingly, ξ(k) can read as

ξ(k) = k⊗ v(k) + v(k)⊗ k with v(k) ∈ R
3 given by

v(k) = argmin
v∈R3

{

(λ+ µ)(v·k)2 + µv·v +
a′(α0)

a(α0)
Eε k1v1

}

.

We immediately deduce that the condition of optimality for v(k) reads as

(λ+ µ)v(k)·k k+ µv(k) +
a′(α0)

2a(α0)
Eε k1e1 = 0

from which one easily obtains v(k):

v(k) =
a′(α0)

a(α0)

Eε

2µ

(

λ+ µ

λ+ 2µ
k21 k− k1e1

)

.

Therefore, one gets the expression of A0ξ(k)·ξ(k):

A0ξ(k)·ξ(k) =
2a′(α0)

2

a(α0)
Eε2(1 + ν)k21

(

1− k21
2(1− ν)

)

which is a strictly concave function of k21 that one has to maximize over the closed interval [0, 1]. The maximum

is reached for k21 = 1 or k21 = 1− ν depending on whether ν is negative or positive. After elementary calculations,

one finally obtains (64). ⊓⊔

Note that, when ν = 0, Lemma 2 gives ρ∞(ε,Σ1) = 0, which a result is in agreement with Proposition 3, e0
being then of rank one. Accordingly, when the Poisson’s ratio vanishes, the homogeneous state is stable if and

only if the size of the cylinder is small enough, the critical length Lc(ε,Σ1) depending a priori on the damage

state and on the shape of the cross section. Since ρ∞ depends continuously on the Poisson’s ratio, this property

holds true in some interval of ν = 0. The fact that ρ∞(ε,Σ1) < 1 (and hence that there exists a finite critical

size beyond which the homogeneous state is unstable) for any ν ∈ (−1,+1/2) can depend on the damage model.

Let us consider for instance the case of the family of strongly brittle materials of the example 1 above, see (59).

Inserting into (64) gives

ρ∞(ε,Σ1) ≤
4ν2q

(1− ν)(q + 1)
if ν ≤ 0, ρ∞(ε,Σ1) ≤

2ν2q

(q + 1)
if ν ≥ 0.
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q

ν

Fig. 4 For a strongly brittle material, the gray area depicts the range of exponent q and Poisson’s ratio ν for which the
critical size of the domain below which the damaging homogeneous uniaxial state is directionally stable is necessarily finite

Accordingly, one necessarily has Lc(ε,Σ1) < +∞ (and that for every ε ≥ εc and every Σ1) when the constitutive

parameters q and ν satisfy the following inequalities

(

(1− ν − 4ν2)q + 1− ν ≥ 0 and ν < 0
)

or ν ≥ 0.

This corresponds to the gray area in Figure 4. It appears that the above estimate of ρ∞(ε,Σ1) is not sufficient to

ensure that Lc(ε,Σ1) < +∞ in the full range of material parameters. It turns out that this property can depend

on the shape of the cross-section as it is explained in the next subsection.

5.3 Shape effects

5.3.1 General estimates

Throughout this subsection, Greek indices run from 2 to 3 whereas Latin indices run from 1 to 3. We propose here

to study the influence of the slenderness of the family of cylinders on the stability of the homogeneous state. The

slenderness parameter η is defined as the ratio of the diameter of the cross-section by the length of the cylinder,

the diameter being defined as the smallest disk which contains the cross-section. The inverse 1/η of the slenderness

is the thinness. The cylinder of unit length and slenderness η is denoted by Ωη
1 and its cross-section by Ση

1 instead

of Ω1 and Σ1 as it was made in the previous sections. Accordingly, Ωη
1 = (0, 1)×Ση

1 and Ωη
L = LΩη

1 .

To study the influence of η we use the mapping y = (y1, y2, y3) 7→ z = (y1, y2/η, y3/η) which transforms the

cross-section Ση
1 into its homothetic one Σ1

1 of diameter 1, and the cylinder Ωη
1 onto Ω1

1 = (0, 1)×Σ1
1 . The origin

of the coordinates is chosen so that (0, 0) is the center of Σ1
1 . The area of Σ1

1 and its geometrical second moments

will be denoted by
∣

∣Σ1
1

∣

∣ and I1αβ :

∣

∣

∣
Σ1

1

∣

∣

∣
=

∫

Σ1
1

dz2dz3,

∫

Σ1
1

zαdz2dz3 = 0, I1αβ =

∫

Σ1
1

zαzβdz2dz3. (65)
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Moreover, with the displacement field v̂ defined on Ωη
1 we associate the “rescaled” displacement field v defined

on Ω1
1 by

v̂1(y) =
a′(α0)

a(α0)
ε v1(z), v̂α(y) =

1

η

a′(α0)

a(α0)
ε vα(z), α ∈ {2, 3}.

Accordingly, the Rayleigh ratio which governs the stability of the homogeneous state of Ωη
L can be seen as the

following functional Rη
L defined on the fixed set C1 ×D+

1 by

Rη
L(v, β) =

N η
L(v, β)

1− a(α0)a
′′(α0)

2a′(α0)2

(66)

with

N η
L(v, β) = 1 +

∫

Ω1
1

(

d20
L2

β2
,1 +

λ+ 2µ

E
ε11(v)

2 + 2βε11(v)

)

dz

+
1

η2

∫

Ω1
1

(

d20
L2

β,αβ,α +
2λ

E
ε11(v)εαα(v) +

4µ

E
εα1(v)εα1(v)

)

dz

+
1

η4

∫

Ω1
1

(

λ

E
εαα(v)εββ(v) +

2µ

E
εαβ(v)εαβ(v)

)

dz (67)

and

d20 =
w1a(α0)ℓ(α0)

2

Eε2a′(α0)2
. (68)

In the set C1 of admissible displacements, we introduce three integral constraints so that the transversal translation

and the axial rotation of the cylinder are fixed:

C1 =

{

v ∈ H1(Ω1
1 ,R

3) : v1 = 0 on {0, 1} ×Σ1
1 ,

∫

Ω1
1

v2dz =

∫

Ω1
1

v3dz =

∫

Ω1
1

(z3v2 − z2v3)dz = 0

}

.

The admissible damage fields are normalized and D+
1 reads as

D+
1 = {β ∈ H1(Ω1

1) : β ≥ 0,

∫

Ω1
1

β2dz = 1}.

Let (vη
L, β

η
L) be a minimizer of Rη

L and hence of N η
L over C1 ×D+

1 (we know that such a minimizer exists). The

optimality condition (32) becomes

0 =

∫

Ω1
1

(

λ+ 2µ

E
ε11(v

η
L) + βη

L

)

ε11(v)dz

+
1

η2

∫

Ω1
1

(

λ

E
ε11(v

η
L)εαα(v) +

λ

E
εαα(v

η
L)ε11(v) +

4µ

E
εα1(v

η
L)εα1(v)

)

dz

+
1

η4

∫

Ω1
1

(

λ

E
εαα(v

η
L)εββ(v) +

2µ

E
εαβ(v

η
L)εαβ(v)

)

dz. (69)

After introducing the symmetric tensor field ε
η
L and the vector field gηL as follows

ε
η
L =





ε11(v
η
L)

1
η ε1β(v

η
L)

1
η εα1(v

η
L)

1
η2 εαβ(v

η
L)



 , gηL =





βη
L,1

1
ηβ

η
L,α



 , (70)
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the minimum Nη
L of N η

L can read as

Nη
L := N η

L(v
η
L, β

η
L) = 1 +

∫

Ω1
1

(

A
0

E
ε
η
L ·εηL +

d20
L2

gηL · gηL
)

dz + 2

∫

Ω1
1

βη
Lε

η
L11dz (71)

where A
0 is the stiffness tensor of the sound material. Since N η

L(v = 0, β =
√

∣

∣Σ1
1

∣

∣) = 1, we have Nη
L ≤ 1. Owing

to the positivity of A0, there exists a positive constant κ (which depends only on ν) such that A
0ε·ε ≥ κEε·ε.

By Cauchy-Schwarz inequality and using the normalization of βη
L, we get

∫

Ω1
1

βη
Lε

η
L11dz ≥ −‖βη

L‖0‖ε
η
L11‖0 = −‖εηL11‖0.

Therefore, we have the inequalities

1 + κ‖εηL‖
2
0 +

d20
L2

‖gηL‖
2
0 − 2‖εηL11‖0 ≤ Nη

L ≤ 1

from which we deduce the following estimates

‖ε11(vη
L)‖0 ≤ C, ‖εα1(vη

L)‖0 ≤ Cη, ‖εαβ(vη
L)‖0 ≤ Cη2, ‖βη

L,1‖0 ≤ CL, ‖βη
L,α‖0 ≤ CηL (72)

where C stands for a generic positive constant which depends only on ν. Since these estimates hold in the whole

range of L and η, they are useful to study the asymptotic cases of very slender or very thin cylinders. However,

we will consider here only slender cylinders.

5.3.2 Case of slender cylinders: η ≪ 1

The length L is fixed and we study the behavior of (vη
L, β

η
L) when η goes to 0. Once this asymptotic behavior will

be found for any given L, we will study the dependence on L and in particular the asymptotic behavior when L

goes to infinity. Note that this procedure is different from the one followed to study the size effects. Indeed, in

this latter case, the slenderness η was fixed and we studied the dependence of (vη
L, β

η
L) on L.

Let us prove the following

Proposition 5 For a given L, when η goes to 0, the minimum of the Rayleigh ratio ρηL tends to a limit given by

lim
η→0

ρηL = ρ0L :=
N0

L

1− a(α0)a
′′(α0)

2a′(α0)2

, N0
L = min

β∈(D+\{0})

d2
0

L2

∫ 1
0
β′(ζ)2dζ +

(

∫ 1
0
β(ζ)dζ

)2

∫ 1
0
β(ζ)2dζ

(73)

where D+ = {β ∈ H1(0, 1) : β ≥ 0}.

Proof The proof is divided into several steps.

1. Asymptotic behavior of βη
L. We deduce from (72) that βη

L is bounded in H1(Ω1
1) and hence (up to extracting

a subsequence) weakly converges in H1(Ω1
1) and strongly in in L2(Ω1

1) to some β0
L ∈ D+

1 . Furthermore, since

‖βη
L,α‖0 ≤ CηL, βη

L,α converges strongly to 0 in L2(Ω1
1) and hence β0

L is a non-negative function of only z1

which can be seen as an element of D+ such that its L2(0, 1) norm is equal to 1/
∣

∣Σ1
1

∣

∣.
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2. Asymptotic behavior of vη
L. To a large extent, this step roots at the basis of the construction of the asymptotic

theory of linearly elastic beams. Since this procedure is now well known, we merely recall the main lines of the

proofs and the interested reader is invited to refer to Geymonat et al. (1987a,b); Marigo and Meunier (2006)

for more details.

We deduce from (72) that vη
L is bounded in H1(Ω1

1 ,R
3). Hence, one can extract a subsequence which weakly

converges to some v0
L ∈ C1. Furthermore, since ‖εα1(vη

L)‖0 ≤ Cη and ‖εαβ(vη
L)‖0 ≤ Cη2, v0

L satisfies

εα1(v
0
L) = εαβ(v

0
L) = 0 and hence is a Bernoulli-Navier displacement field. Accordingly, v0

L can read as

v0
L(z) = (VL1(z1)− zαV

′
Lα(z1))e1 + VLα(z1)eα. (74)

Moreover, in order that v0
L be in C1, the fields VLi must satisfy

VL1 ∈ H1
0 (0, 1), VLα ∈ H2(0, 1) with V ′

Lα(0) = V ′
Lα(1) = 0,

∫ 1

0

VLα(ζ)dζ = 0. (75)

From the estimates, we also get that εαβ(v
η
L)/η

2 weakly converges in L2(Ω1
1) to εαβ(v

∗
L) where v∗

L does not

belong in general to C1 but merely to L2((0, 1), H1(Σ1
1)), i.e. the space of functions f which are in L2(Ω1

1) and

whose tangential derivatives f,α are also in L2(Ω1
1). Accordingly, v∗

L does not satisfy in general the boundary

conditions at z1 = 0 and z1 = 1.

3. Determination of v0
L and v∗

L. Multiplying (69) by η2 and passing to the limit as η → 0 leads to

0 =

∫

Ω1
1

(

λ(ε11(v
0
L) + εαα(v

∗
L))εββ(v) + 2µεαβ(v

∗
L)εαβ(v)

)

dz, ∀v ∈ C1. (76)

This equation is nothing but the variational formulation of the de Saint Venant’s problems of stretching and

bending which give v∗
L in terms of v0

L. More specifically, one obtains that the plane components of the stress

must vanish, i.e.

λ(ε11(v
0
L) + εγγ(v

∗
L))δαβ + 2µεαβ(v

∗
L) = 0 in Ω1

1

which gives in particular

εαα(v
∗
L) = − λ

λ+ µ
ε11(v

0
L) in Ω1

1 . (77)

Taking for v in (69) a Bernoulli-Navier displacement field, i.e.

v(z) = (V1(z1)− zαV
′
α(z1))e1 + Vα(z1)eα, (78)

and passing to the limit as η → 0 leads to

∫

Ω1
1

(

λ+ 2µ

E
ε11(v

0
L) +

λ

E
εαα(v

∗
L) + β0

L

)

ε11(v)dz = 0. (79)

Inserting (77) into (79) and remarking that λ+ 2µ− λ2/(λ+ µ) = E, one finally obtains the problem which

gives v0
L in terms of β0

L:
∫

Ω1
1

(

ε11(v
0
L) + β0

L

)

ε11(v)dz = 0, (80)

where the equality holds for any Bernoulli-Navier displacement in C1. Using (65), (74), (78) and the fact that

β0
L depends only on z1, (80) becomes

∫ 1

0

∣

∣

∣
Σ1

1

∣

∣

∣

(

V 0′

L1(z1) + β0
L(z1)

)

V ′
1(z1)dz1 +

∫ 1

0

I1αβV
0′′

Lα(z1)V
′′

β (z1)dz1 = 0
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and holds for any V1 ∈ H1
0 (0, 1) and any Vα ∈ H2(0, 1) such that V ′

α(0) = V ′
α(1) = 0 and

∫ 1
0
Vα(ζ)dζ = 0.

One immediately deduces that VLα = 0 (no bending) and that V 0′

L1(z1) + β0
L(z1) = constant =

∫ 1
0
β0
L(ζ)dζ.

Finally one gets

v0
L(z) =

(

z1

∫ 1

0

β0
L(ζ)dζ −

∫ z1

0

β0
L(ζ)dζ

)

e1. (81)

4. Lower bound of lim infη→0 ρ
η
L. By virtue of (69), the minimum of N η

L can read as

N η
L(v

η
L, β

η
L) = 1 +

d20
L2

∫

Ω1
1

βη
L,1β

η
L,1dz +

d20
η2L2

∫

Ω1
1

βη
L,αβ

η
L,αdz +

∫

Ω1
1

βη
Lε11(v

η
L)dz. (82)

Let us examine the limit of each term in the right hand side of (82). By lower semi-continuity of the L2(Ω1
1)

norm, one has

lim
η→0

∫

Ω1
1

βη
L,1β

η
L,1dz ≥

∫

Ω1
1

β0
L,1β

0
L,1dz =

∣

∣

∣
Σ1

1

∣

∣

∣

∫ 1

0

β0′

L (ζ)2dζ.

By the positivity of the norm, one has

lim
η→0

1

η2

∫

Ω1
1

βη
L,αβ

η
L,αdz ≥ 0.

By virtue of the weak convergence of ε11(v
η
L) and of the strong convergence of βη

L in L2(Ω1
1), after using (81)

and recalling that
∣

∣Σ1
1

∣

∣

∫ 1
0
β0
L(ζ)

2dζ = 1, one gets

lim
η→0

∫

Ω1
1

βη
Lε11(v

η
L)dz =

∫

Ω1
1

β0
Lε11(v

0
L)dz =

∣

∣

∣
Σ1

1

∣

∣

∣

(∫ 1

0

β0
L(ζ)dζ

)2

− 1.

Since all these estimates hold for any convergent subsequence, one has obtained

lim inf
η→0

N η
L(v

η
L, β

η
L) ≥

∣

∣

∣
Σ1

1

∣

∣

∣

d20
L2

∫ 1

0

β0′

L (ζ)2dζ +
∣

∣

∣
Σ1

1

∣

∣

∣

(∫ 1

0

β0
L(ζ)dζ

)2

.

Since β0
L is an element of D+ with a L2(0, 1) norm equals to 1/

√

∣

∣Σ1
1

∣

∣, one concludes that

lim inf
η→0

ρηL ≥ ρ0L

with ρ0L given by (73).

5. Upper bound of lim supη→0 ρ
η
L. Let β̄L be a minimizer (such a minimizer exists because one can prove that

the infimum is reached in the same way as for N η
L) giving N0

L in (73). By homogeneity, for every k > 0, kβ̄L is

also a minimizer and hence we can choose k so that the L2(0, 1) norm of Rη
L is equal to 1/

√

∣

∣Σ1
1

∣

∣. Therefore,

β̄L can be seen as an element of D+
1 . Let v̄η

L be the unique element of C1 which minimizes N η
L(., β̄L) over C1.

It is easy to check that v̄η
L satisfies the same estimates (72) as vη

L. Following the same steps as for vη
L, one

obtains that v̄η
L weakly converges to the Bernoulli-Navier displacement v̄0

L given by

v̄0
L(z) =

(

z1

∫ 1

0

β̄L(ζ)dζ −
∫ z1

0

β̄L(ζ)dζ

)

e1. (83)

Moreover, since the limit is unique (for a given minimizer β̄L), all the sequence v̄η
L converges to v̄0

L. By virtue

of the optimality of v̄η
L, N

η
L(v̄

η
L, β̄L) can read as

N η
L(v̄

η
L, β̄L) = 1 +

∣

∣

∣
Σ1

1

∣

∣

∣

d20
L2

∫ 1

0

β̄′
L(ζ)

2dζ +

∫

Ω1
1

β̄Lε11(v̄
η
L)dz.
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Passing to the limit in the last term in the right hand side above, one obtains

lim
η→0

∫

Ω1
1

β̄Lε11(v
η
L)dz =

∫

Ω1
1

β̄Lε11(v̄
0
L)dz =

∣

∣

∣
Σ1

1

∣

∣

∣

(∫ 1

0

β̄L(ζ)dζ

)2

− 1

and hence

lim
η→0

N η
L(v̄

η
L, β̄L) = N0

L.

SinceN η
L(v

η
L, β

η
L) ≤ N η

L(v̄
η
L, β̄L), by passing to the limit one gets limη→0 N η

L(v
η
L, β

η
L) ≤ N0

L for any convergent

subsequence. Therefore, one has

lim sup
η→0

ρηL ≤ ρ0L.

Comparing with the lower bound, we obtain the desired result, limη→0 ρ
η
L = ρ0L. The proof is complete. ⊓⊔

Equipped with this characterization of the asymptotic behavior of the Rayleigh ratio, it becomes easy to conclude

on the stability of damaging states for slender cylinders.

Proposition 6 For very slender cylinders, the damaging state characterized by the axial strain ε in a uniaxial

tensile test is directionally stable if and only if the length L of the cylinder is less than the critical value Lc(ε).

This latter depends only on ε and is given by

Lc(ε) =
s′(α0)

5/2

s(α0)s′′(α0)3/2
2πℓ(α0) with a′(α0) = −2w1

Eε2
. (84)

Proof It suffices to calculate ρ0L and to compare it with 1. To obtain ρ0L, we use (Pham et al. 2011b, Proposi-

tion A.2) where the minimization of the Rayleigh ratio involved in (73) is made. One gets

N0
L =











1 if 0 < L ≤ πd0
(

πd0
L

)2/3

if L > πd0
. (85)

Then, using (68) and (73), the critical length is obtained by equaling ρ0L to 1. ⊓⊔

Remark 1 This result is consistent with the one obtained in (Pham et al. 2011b, Proposition 3.4) in the one

dimensional setting. This means that, as expected, slender cylinders behave like one-dimensional bars. Note

however that we have obtained (73) and hence (84) by passing to the limit as η goes to 0, at given L. Therefore,

from the practical viewpoint, this result is relevant only when the diameter of the cylinder is (much) smaller than

the characteristic length ℓ(α0) of the material.

6 Comparison of directional stability with strong ellipticity

In this last section, we investigate the link between our definition of directional stability and the strong ellipticity

condition (Ball 1980). By essence, this latter one, which requires a strict positivity condition for the second order
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derivative of the total strain work, makes sense only for the underlying local damage model, i.e. for the model

without the gradient damage terms. More specifically, since the underlying local model is defined by

W0(ε, α) = w1α+
1

2
A(α)ε·ε, (86)

the condition of strong ellipticity is satisfied at the given state (ε0, α0) if and only if the following inequality holds

W ′′
0 (ε0, α0)(k⊙ v, β) > 0, ∀k ∈ S

n, ∀(v, β) ∈ R
n × R \ {(0, 0)} (SE)

where k⊙ v = k⊗ v + v ⊗ k. Using the condensed notation (28), the second order derivative reads

W ′′
0 (ε0, α0)(ξ, β) = A0(ξ − βe0)·(ξ − βe0)− 1

2
S
′′
0σ0 ·σ0β

2, (87)

Therefore, we first deduce that if the material has a stress-hardening behavior, then the strong ellipticity condition

is automatically fulfilled for any state, because A0 > 0 and S
′′
0 < 0. Now let us consider a stress-softening behavior,

i.e. the case S
′′
0 > 0. Since by virtue of the positivity of A0, the inequality (SE) is satisfied when β = 0, we can

consider only the cases β 6= 0 and hence, by homogeneity, the cases β = 1. Accordingly, the strong ellipticity

condition (SE) is satisfied if and only if

min
(k,v)∈Sn×Rn

A0(k⊙ v − e0)·(k⊙ v − e0) > 1
2
S
′′
0σ0 ·σ0. (88)

Note that the minimization above admits a solution since it is performed over a compact set. For a given k, let

v(k) be the minimizer over v ∈ R
n. By virtue of the strict convexity of v 7→ A0(k⊙ v − e0)·(k⊙ v − e0), there

exists a unique minimizer. The optimality condition reads

A0(k⊙ v(k)− e0)·(k⊙ v) = 0, ∀v ∈ R
n. (89)

Then, introducing ξ(k) = k⊙ v(k) and setting v = v(k) in (89) lead to

A0(ξ(k)− e0)·(ξ(k)− e0) = A0e0 ·e0 − A0ξ(k)·ξ(k).

Therefore, (88) becomes

A0e0 ·e0 − max
k∈Sn

A0ξ(k)·ξ(k) > 1
2
S
′′
0σ0 ·σ0. (90)

Comparing with Corollary 1 and Lemma 1, we have thus proved

Proposition 5 For a stress-softening behavior, a damaging state is directionally stable under displacement con-

trolled and independently of the size and the shape of the domain if and only the strong ellipticity condition holds

at this state.

It appears that the strong ellipticity condition (SE) is a particular case of directional stability. (SE) is made

to study the stability of homogeneous states only in the cases where the size of the domain is much larger

than the characteristic length of the material. (SE) is, by nature, unable to give the critical size under which the

homogeneous is stable (except, of course, in the case where this critical size is infinite). Moreover, (SE) is unable to

discriminate between the different types of boundary conditions. In conclusion, we can affirm that our directional

stability criterion is more general and richer.
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7 Concluding remarks

A stability analysis based on the selection of unilateral local minima of the total energy has been carried out for

a class of gradient damage models. We have studied in which situations a homogeneous state can be stable and

hence can be observed in experimental tests. Let us see how such homogeneous tests can be useful in practice to

identify the damage law of a stress-softening material. Note that the measurement of homogeneous states gives

only access to a part of the damage law. Indeed, these states depend only on the parameter w1 and on the stiffness

function α 7→ A(α), but not on the state function α 7→ ℓ(α) involved in the gradient damage terms. On the other

hand, non-homogeneous states such as localized damage response depend on all the damage law and are only

accessible by numerical computations.

We now first summarize how one can observe homogeneous responses. It turns out for a stress-softening

material that the stability of a damaging homogeneous state depends essentially on how the boundary is controlled.

When the surface forces are prescribed on the whole boundary by a soft device, the state is necessarily unstable.

Accordingly, to observe such a state, one must control the displacements on all or a part of the boundary. It

appears that the more the displacements are controlled, the more the state has a chance to be stable. In the case

where the displacements are controlled on the whole boundary by a hard device, the state is necessarily stable for

small enough samples. Moreover, the fact that the stability holds for any size is independent of the shape of the

sample and depends only on the material (and on the state). As shown in the examples of Section 4, Poisson’s

ratio seems to have a significant influence on the stability. It also appears that spherical strain or stress states

have more chance to be stable than uniaxial ones, even though this property has to be confirmed by a more

thorough analysis. Regarding the shape effects, those latter play an important role in uniaxial tests, but a better

understanding of this dependency needs also further investigations.

Finally, let us give more insights on how one can have access to the state function α 7→ ℓ(α). As explained

in Pham et al. (2011b) in a one-dimensional setting, detecting the stability loss of the homogeneous state when

one changes the size of the sample gives information on the state function α 7→ ℓ(α). More specifically, as shown

in Section 5 for very slender cylinders, the critical size beyond which the homogeneous state becomes unstable

involves all the damage law and is proportional to ℓ(α). Accordingly, the measurement of this critical size provides

the expected complementary information. In fact, it was shown in Pham et al. (2011b) that this measurement,

together with the homogeneous stress-strain response, is sufficient to identify all the constitutive functions and

parameters, at least in a one-dimensional setting. However, to extend this result to the three-dimensional case for

which the critical size Lc(ε0, Ω1) cannot be obtained in a closed form, such detection experiments of the stability

loss of homogeneous states should be coupled with numerical computations.
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