
HAL Id: hal-00655066
https://hal.science/hal-00655066

Submitted on 26 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Impact of appendicularians on detritus and export
fluxes: a model approach at DyFAMed site

L. Berline, Lars Stemmann, Marcello Vichi, Fabien Lombard, Gaby Gorsky

To cite this version:
L. Berline, Lars Stemmann, Marcello Vichi, Fabien Lombard, Gaby Gorsky. Impact of appendiculari-
ans on detritus and export fluxes: a model approach at DyFAMed site. Journal of Plankton Research,
2010, �10.1093/plankt/FBQ163�. �hal-00655066�

https://hal.science/hal-00655066
https://hal.archives-ouvertes.fr


For Peer Review

 
 
 

 
 

 
 

Impact of appendicularians on detritus and export fluxes: a 

model approach at DyFAMed site 
 
 

Journal: Journal of Plankton Research 

Manuscript ID: JPR-2010-214.R2 

Manuscript Type: Original Article 

Date Submitted by the 
Author: 

22-Nov-2010 

Complete List of Authors: Berline, Léo; LOV, LOV 
stemmann, Lars; UPMC, LOV 
Vichi, Marcello; Istituto Nazionale di Geofisica e Vulcanologia 
(INGV), Centro Euro-Mediterraneo per i Cambiamenti Climatici 
(CMCC) 
Lombard, Fabien; Technical University of Denmark, Oceanography 
Section 
Gorsky, Gaby; CNRS, INSU 

Keywords: 
Zooplankton, Appendicularian, Larvacean, Detritus, Export, Model, 
Plankton functional type, Time series station 

  
 
 

 

http://mc.manuscriptcentral.com/jplankt

Journal of Plankton Research



For Peer Review

 1

Impact of appendicularians on detritus and export fluxes: a model 
approach at DyFAMed site 
 
Léo Berlinea, Lars Stemmanna, Marcello Vichib,c, Fabien Lombardd,e, Gabriel Gorskya 

 
a
Laboratoire d’Océanographie de Villefranche (LOV), Station Zoologique-BP 28, 06234 

Villefranche-sur-mer, France, 
b
Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Via Aldo Moro 44, 40127 

Bologna. Italy 
c
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Via Aldo Moro 44, 40127 Bologna. Italy 

d
Technical University of Denmark, National Institute of Aquatic Resources, Oceanography Section, 

Charlottenlund, Denmark 
e
Laboratoire d'Océanographie Physique et Biogéochimique (LOPB), Université de la Méditerranée 

(Aix-Marseille II), LOPB - UMR 6535 Campus de Luminy Case 901, F-13288 MARSEILLE Cedex 

9, FRANCE 

 

Abstract:  
So far, the role of appendicularians role in the biogeochemical cycling of organic matter has been 
largely overlooked. Appendicularians represent only a fraction of total mesozooplankton biomass, 
however these ubiquitous zooplankters have very high filtration and growth rates compared to 
copepods, and produce numerous fecal pellets and filtering houses contributing to export production 
by aggregating small marine particles. To study their quantitative impact on biogeochemical flux, 
we have included this group in the Biogeochemical Flux Model (BFM), using a recently developed 
ecophysiological model. One dimensional annual simulations of the pelagic ecosystem including 
appendicularians were conducted with realistic surface forcing for the year 2000, using data from 
the DyFAMed open ocean station. The appendicularian grazing impact was generally low, but 
appendicularians increased detritus production by 8% and export production by 55% compared to a 
simulation without appendicularians. Therefore current biogeochemical models lacking 
appendicularians probably under, or misestimate the detritus and export production by omitting the 
pathway from small sized plankton to fast sinking detritus. Detritus production and export rates are 
60% lower than estimates from mesotrophic sites, showing that appendicularians’ role is lower but 
still significant in oligotrophic environments. The simulated annual export at 200 m exceeds 
sediment trap values by 44%, suggesting an intense degradation during the sinking of 
appendicularian detritus, supported by observations made at other sites. Thus degradation and 
grazing of appendicularian detritus need better quantification if we are to accurately assess the role 
of appendicularia  in  export flux. 
 

Keywords: 

Zooplankton , Appendicularian , Larvacean , Detritus , Export , Model , Plankton functional 
type , Time series station  

 

IntroductionIntroductionIntroductionIntroduction    

In the world ocean, appendicularians are often the most abundant mesozooplankton group after 

copepods (Gorsky and Fenaux 1998). According to Hopcroft et al (1998), “Appendicularian (also 
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named larvacean) impact on phytoplankton communities may be substantial (Alldredge, 1981; 

Nakamura et al, 1997), in part because their specific filtration rates may be greater than that of 

other metazoans (e.g. copepods, Alldredge and Madin, 1982). Their importance as linkages 

between the microbial and classical food webs (Urban et al, 1992), and significance in terms of 

carbon flux (Urban et al., 1993), may also be underappreciated”. This lack of recognition is likely 

due to lower biomass compared to copepods, the difficulty of in situ investigations, and their 

fragility, resulting in high mortality, damage and stress during net sampling. Although their biomass 

is low compared to copepods, their physiological rates are significantly higher, up to one order of 

magnitude higher (López-Urrutia et al 2003). Appendicularian fecal pellet production, mortality, 

respiration, and excretion rates are also significantly greater that those of copepods (Sato et al 2005, 

Dagg and Brown 2005a;  Lombard et al 2005, 2009a). 

 

A unique characteristic of appendicularians is their external filtering apparatus, the filter house, that 

sieves and concentrates a wide range of particle sizes from 0.2 – 30 µm, thus capturing organisms 

from bacteria to microplankton (Flood et al 1992;  Gorsky and Fenaux, 1998;  Lombard et al 2010). 

These mucous houses get clogged as they retain a fraction of the filtered particles. In order to 

maintain their filtering capability, appendicularians continuously secrete and discard filtering 

houses, generating a large, carbon-rich detritus flux in addition to fecal pellets. 

 

Thus appendicularians deserve attention as an important component of the flux in the 

mesozooplankton compartment. However, in most models used to study biogeochemical fluxes in 

the marine ecosystem, the mesozooplankton compartment consists mainly of copepods (e.g. 

Fasham 1990). In the last decades, food web models have been improved and rendered more 

realistic by splitting phytoplankton, and to a lesser extent zooplankton, into functional or size class 

groups (e.g.  Baretta et al, 1995 ;  Aumont et al 2003 ;  Le Quéré et al 2005 ; Vichi et al 2007). But 

within zooplankton, the mesozooplankton component is still parameterized typically to represent 

only copepods. Le Quéré et al (2005) proposed distinguishing appendicularians as a separate 

functional type, but grouped them in a large macrozooplankton group of euphausiids, pteropods and 

salps, organisms with very different physiology and life cycles. 

 

In recent years, while being neglected in ecosystem models, knowledge of appendicularian seasonal 

cycles, ecology, physiology and metabolism has advanced significantly from in situ observations 

and laboratory experiments. Models have been developed to simulate individual growth, life cycle, 

food uptake, respiration, fecal pellets and house production (Touratier et al 2003;  López-Urrutia et 

al., 2003;  Alldredge, 2005;  Aksnes et al. 2006;  Lombard et al 2009b). However, these individual-
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based models lack the food web dynamics, i.e. the interaction of appendicularian prey and 

predators, and are restricted to a single life cycle of a few days. 

 

To our knowledge, there has been only a single attempt (Andersen et al 1987) to include 

appendicularians in a food web model. The goal of Andersen et al (1987) was to adequately model 

herbivore dynamics over a 40 day period in a  controlled experiment, though at that time 

ecophysiological knowledge of appendicularians was largely incomplete. Here, we present work  

representing a step towards the integration of appendicularians within state-of-the-art, spatially-

resolved biogeochemical models. A biomass-based set of parameterizations derived from the 

individual-based model of Lombard et al (2009b) was included as an additional module in the 

Biogeochemical Flux Model (BFM, Vichi et al 2007) to study appendicularian impact on grazing, 

detritus production, export and remineralization rates at an annual scale under realistic conditions. 

The model was parameterized for the DyFAMed station in the North West Mediterranean, where 

comprehensive data on biogeochemistry and zooplankton are available for validation (Marty, 2002). 

This station has mesotrophic conditions during the winter-early spring bloom, followed by 

oligotrophic conditions in summer. 

 

The article is structured as follows: the model and data used for initialization and validation are first 

described. Then we present the results of comparisons: 1) between annual cycles with and without 

appendicularians, 2) examining the impact of the mortality formulation, and the sensitivity to 

various appendicularian species, input parameters and forcing conditions. We then end with a 

comparative discussion with other study sites and draw conclusions. 

 

MethodMethodMethodMethod    

The coupled physicalThe coupled physicalThe coupled physicalThe coupled physical----biogeochemical model biogeochemical model biogeochemical model biogeochemical model     

 

A coupled hydrodynamical-biological model was implemented to describe the temporal changes in 

temperature, diffusion, and concentration of biogeochemical tracers in a one-dimensional vertical 

water column. 

The software GOTM (Generalized Ocean Turbulence Model; Burchard et al 1999, 

http://www.gotm.net) computes changes in  temperature and vertical diffusion coefficient forcing 
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the biogeochemical model. The biogeochemical model has a feedback effect on physics through 

light attenuation by phytoplankton. GOTM has been coupled to biogeochemical models in several 

studies (e.g. Burchard et al 2005;  Neumann et al 2002). 

 

The biogeochemical model is BFM (Biogeochemical Flux Model, http://bfm.cmcc.it; Vichi et al 

2007), successor to the ERSEM model (Baretta-Bekker et al 1997). BFM has been successfully 

used in global studies (e.g. Vichi and Masina 2009) and in the Mediterranean region (Carniel et al., 

2007; Polimene et al., 2007; Lazzari et al., 2010). It describes the dynamics of the lower trophic 

levels of the marine ecosystem and associated element fluxes (C, N, P, Si, O2, Fe). BFM is modular, 

meaning that biological compartments can be turned on and off, so that  food web complexity is 

scaled to the aim of the study. In the present set up designed for DyFAMed, the model included 

bacterioplankton, three size classes of phytoplankton (microphytoplankton (diatoms), 

nanophytoplankton (nanoflagellates) and picophytoplankton) and three size classes of zooplankton 

(heterotrophic nanoflagellates termed HNAN hereinafter, microzooplankton and copepods), plus 

appendicularians (Fig. 1).  

 

The appendicularian module was derived from the equations described in Lombard et al (2009b), 

with some simplifications. These simplifications were needed to turn the individual-based model 

into a biomass-based model, suitable for coupling with the hydrodynamic model at the annual scale. 

Appendicularians are represented in  bulk biomass, passively transported as the copepod functional 

group. Allometric relationships for filtration and respiration have been neglected (implies allometric 

coefficient = 1 instead of 0.9 and 0.75 respectively). The food trapped in the house is directly 

released as slow and fast sinking detritus into the water column (i.e. houses are discarded 

instantaneously instead of 0.5-1 per hour). All biomass is composed of structural biomass (no gonad 

fraction). The adequacy of these simplifications was first tested with zero dimensional model 

experiments reproducing appendicularian growth in laboratory cultures with satisfactory results. 

 

Mortality needed to be considered in order to study time scales much greater than the 

appendicularian life cycle. A constant mortality rate was applied, taking into account adult mortality 

and egg hatching mortality (respectively 0.1 d-1 and 50%, Lombard, unpub. results). In addition to 

this linear mortality term due to life history, a density dependent mortality term (Edwards and 

Brindley 1999;  Edwards and Yool, 2000) was used to represent predation by higher trophic levels, 

namely fish larvae or gelatinous carnivores (Gorsky and Fenaux 1998;  Fyhn et al 2005). As in situ 

mortality rates are unknown, mortality parameters were set from model trials. We further assessed 

the impact of the rate choices by simulations without considering any mortality (see simulation set 
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up). 

 

Corresponding with their known prey size range, appendicularians feed on bacteria, HNAN, 

microzooplankton and the phytoplankton compartment (Flood et al. 1992), with a preference for 

picophytoplankton and HNAN (see parameters in appendix). Appendicularians are preyed upon by 

copepods (especially egg and juvenile stages of appenducularians, Sommer et al 2003;  Stibor et al 

2004;  López-Urrutia et al 2004). As a first step in representing diversity in detritus size and sinking 

velocity, the detritus pool was divided into slow and fast sinking components and a fast 

appendicularian component. Slow detritus, sinking at 1.5 m/day, is produced by phytoplankton, 

bacteria (mortality), HNAN and microzooplankton (mortality, excretion), copepods and 

appendicularians (excretion and egestion). Fast detritus, produced by the copepods as fecal pellets, 

was set to sink at 5.0 m/day. Although fecal pellets may sink faster than 5 m/day (e.g. 70-171 

m/day, Bienfang 1980), this low value has been demonstrated to be necessary to keep enough 

organic matter in the surface layer in a one-dimensional model (Lacroix and Nival 1998). 

Appendicularian detritus (fecal pellets and 85% of the houses, Lombard and Kiørboe, 2010) was set 

at 40 m/day, which is in the lower range of estimates from Lombard and Kiørboe (2010) and 

Gorsky et al (1984).  

 

The general equation for the time rate of change of appendicularian carbon biomass is reported here 

according to the notation by Vichi et al. (2007): 

 

∂App

∂t bio

=
∂App

∂t X

flt

X = preys

∑ −
∂App

∂t

rsp

−
∂App

∂t Det

rel

−
∂App

∂t Det

mrt

−
∂App

∂t Cop

prd

 (1) 

The terms on the right hand side represent filtration, respiration, organic matter release to detritus, 

natural mortality and carbon losses due to predation.  

Filtration depends on the carbon concentration of total available food  

F = δX X
X = preys

∑        (2) 

where X is the carbon biomass of each prey item and δX the non-dimensional preference factor from 

0 to 1 (see parameter table in appendix). The filtration rate for each prey category is written as a 

Holling type-II function with total food controlled by two parameters (see appendix), a maximum 

temperature-dependent filtration rate f0 θ
T

f and the half saturation food concentration KF: 
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∂App

∂t X

flt

=
δX X

F

 

 
 

 

 
 f0θ f

T F

F + KF

App   (3) 

Respiration is assumed to be only metabolic, and parameterized as a linear function of temperature 

and a constant respiration rate with  

∂App

∂t

rsp

= f rθr

T
App      (4) 

Only a portion of food items filtered in eq. (3) is ingested: a fraction β is directly released in the 

house and only a part η of the remainder is incorporated into biomass, while the fraction 1-η is 

egested as fast-sinking fecal pellets Both β and η depend on food availability:  

1 m

F

K Fβ

β β= −
+        (5) 

1 m

F

K Fη

η η= −
+       (6) 

The loss rate to detritus is therefore partitioned in  

∂App

∂t Det

rel

= 1− β( )+ 1−η( )β[ ]∂App

∂t X

flt

    (7) 

where the first term is partly released in the water column as slow sinking detritus (a constant 

fraction ε=0.15, Lombard and Kiørboe, 2010) and the remainder stays trapped in the house and 

sinks as fast sinking detritus just like fecal pellets. 

Natural mortality is parameterized as the sum of a linear term and a quadratic population-dependent 

term 

∂App

∂t Det

mrt

= mApp + mdnsApp
2     (8) 

The internal C:N quota is assumed to be constant. The excess of nutrient or carbon in assimilated 

food is eventually computed and compared to the internal quota as proposed by Broekhuizen et al. 

(1995), then the remainder is excreted. 

 

Predation by copepods in eq. (1) is written as in Vichi et al. (2007). 
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Validation data Validation data Validation data Validation data     

 

The model was parameterized for the DyFAMed station, located in the central part of the Ligurian 

Sea, in the North West Mediterranean. The weak horizontal advection at DyFAMed allows one 

dimensional vertical studies of the ecosystem (see Raick et al 2005 for a review). This station was 

chosen as data were available to validate the model: temperature, salinity, nutrients, phytoplankton 

fluorescence and pigment composition data are available over the period 1991-2007 at a quasi 

monthly frequency, while microbial food web and mesozooplankton data are available for some 

specific periods (see http://www.obs-vlfr.fr/sodyf/). In year 2000, 11 samples with chlorophyll, 

pigments and nutrient concentrations are available. According to the chemotaxonomic classification 

of Vidussi et al (2001), nanophytoplankton dominated (46%) over microphytoplankton (33%) and 

picophytoplankton (16%) during year 2000. Mesozooplankton was sampled with WP2 vertical net 

tows (200 µm mesh) and mesozooplankton samples for taxonomic identification are available for 

the years 2006-2008.  

 

The model-data linear fit was quantified with the Pearson correlation coefficient R. 

 

The biomass of copepods and appendicularians was estimated from abundance and size 

measurements obtained from digitized images of the samples made with the ZooScan. The ZooScan 

is a laboratory instrument for digitization of fixed net samples developed at the Laboratoire 

d’Océanographie de Villefranche-sur-mer (Gorsky et al., 2010). The semi automatic recognition 

method is fully described in Gorsky et al (2010). From the sample image, all objects were 

automatically sorted into broad taxonomic groups through a supervised clustering technique. The 

results from the automatic sorting were manually checked by a taxonomist, and some groups were 

subdivided. Among appendicularians, Oikopleura spp and Fritillaria spp were distinguished, while 

copepods were pooled into one single group. We focused our study on Oikopleura spp, neglecting 

Fritillaria spp because the contribution of  Oikopleura  to export was shown to be dominant (Vargas 

et al 2002). Next, biomass was estimated. For copepods, the prosome length (LP) was computed 

from a linear regression of the major axis length (LM) measured by the imaging software (LP = 0.76 

LM, R2=0.95).  Length was converted to dry weight using Hay et al (1991), then converted to carbon 

with a carbon weight over dry weight ratio of 0.447 (Båmstedt 1986). For Oikopleura the trunk 

length was measured on 50 images (290±140 µm). Then the trunk length distribution was converted 

to weight distribution with the Sato et al (2004) relationship for Oikopleura longicauda, this species 

being the most abundant in summer (Fenaux 1961). Then the mean body carbon was computed as 
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the average weight distribution. The weight estimated from the Lombard et al (2009a) relationship 

for O dioica is similar (30% lower) to Sato et al (2004). Total mesozooplankton biomass data were 

also available for 2001-2002 (Gasparini et al 2004). 

Simulations set up Simulations set up Simulations set up Simulations set up     

The chosen model vertical resolution is 4 m, from the surface down to 200 m. Surface heat and 

momentum fluxes were computed by bulk formulae (Burchard et al 1999). The 6-hourly 

meteorological variables described in d'Ortenzio et al (2008) (wind at 10 m, air pressure, air 

temperature, dew point temperature, cloudiness) were used. The tke turbulence closure model was 

used as in Lacroix and Nival (1998) and Carniel et al (2007). To reduce model drifts and provide an 

adequate physical environment during the simulation, surface temperature was restored to in situ 

temperature with a fitted time scale of 27 hours. For simplicity and as reported in previous 

modeling studies (Raick et al 2005), we have assumed that nitrogen was the only limiting nutrient. 

Year 2000 was chosen to validate the model because of relatively comprehensive biological data 

and for comparison with Raick et al (2005). January 1st initial conditions for nitrate were taken from 

the year 2000 in situ data, while all other biological compartments were set to a constant value (0.1 

mgC/m3). 3 year simulations with the same annual surface forcing were run. After 2 years, physics 

and biology reached a steady state and only the 3rd year was analyzed. Through the model open 

bottom boundary, matter is lost by detritus sinking. To avoid depletion of the water column, nitrate 

was restored at the bottom to the annual average value (7.5 mmol/m3). During winter, vertical 

mixing reaches the bottom and refuels the surface layer, so that the nutrient pre-bloom conditions 

are identical throughout the years.  

 

As the appendicularian mortality term has an impact on slow detritus production and on the 

seasonal cycle of appendicularians, our choice of mortality rate partly determined the estimated 

detritus and export production. To quantify this effect, we conducted simulations with zero 

mortality, but with the biomass set to idealized analytical values for comparison with our 

simulations with mortality set. These simulations are called OFF (offline), while simulations 

including mortality are called FREE. The offline biomass used for simulations OFF (Fig. 4, heavy 

dashed line in the appendicularians panel) represents an idealized seasonal cycle with a minimum in 

winter and a maximum in summer, built from our 2006-2008 observations of abundance of 

Oikopleura spp. The vertical distribution follows the appendicularian prey field, as observed in the 

FREE simulations. The imposition of appendicularian biomass in the OFF simulation implies that at 

each time step the source-minus-sink term is zero, i.e. the net gain (or loss) computed by the 
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equations is virtually compensated by an external loss (or gain) so that biomass stays at the 

prescribed value. This external flux is computed during the simulation. It represents the ‘offline 

mortality’ term, not parameterized in the model. 

 

Appendicularian model parameters were set to represent O longicauda, the commonest species in 

summer and fall at DyFAMed (Lombard et al 2010). For comparison, simulations were also run 

with parameters corresponding to the two other main species (O dioica and O fusiformis), using 

Lombard et al (2010) values. 

 

First a simulation with no appendicularians (no-app) was validated over year 2000 against the 

available observations. Then the same simulation was repeated including appendicularians with 

mortality (app-free) to assess their impact on biomasses and fluxes. The OFF simulations were 

conducted to address (i) the influence of the mortality term, (ii) the role of two other 

appendicularian species and (iii) the sensitivity to biological parameters and nutrient pre-bloom 

conditions. OFF simulations were preferred over FREE for (ii) and (iii) because they provide flux 

estimates which are independent of the a priori chosen mortality rates. All simulation set-ups are 

summarized in Table 1. 

 

ResultsResultsResultsResults    

The net growth rate of modeled appendicularians differs from the other zooplankton compartments 

(Fig. 2). Because of their variable ingestion and assimilation efficiency, appendicularian growth 

saturates and decreases at food concentration higher than 100 mgC/m3 (see equations in Appendix). 

Appendicularians have growth rates 2 to 3 times higher than copepods under nearly all conditions 

of food and temperature. They also have higher growth than microzooplankton at food 

concentrations between 25 and 150 mgC/m3 and temperatures lower than 25°C. In contrast, they 

always have lower growth rates than HNAN.  

 

The water column is deeply mixed in February and March (mixed layer depth greater than 200 m) 

and temperature is homogeneous and stable around 13°C for model and observations (Fig. 3). The 

spring stratification is correctly represented by the model, as well as summer stratification. The 

destratification starts in September in the model instead of October as found in the observations, 

causing the mixed layer depth to be slightly overestimated. The 5 m temperature follows the 

observations as expected from the imposition of a restoration term (Sec. 2) with a steady increase 
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from April to July, and a decrease after August. 

 

For the sake of simplicity, model outputs and observations are compared as depth integrals over 0-

200 m, except for bacteria, microzooplankton and HNAN which were sampled over 5-110 m (Fig. 

4). HNAN and microzooplankton biomass are also pooled and discussed jointly from here on.  

 

For the simulation without appendicularians, the biomass of the main components is in reasonable 

agreement with the monthly observations, (Fig. 4, dashed lines). R values are larger than 0.6 (0.6, 

0.7, 0.9, 0.7 respectively for Chl, copepods, bacteria and microzooplankton+HNAN) except for 

nitrate and appendicularians (0.4 and 0.3 respectively). The spring bloom occurs in March, with 

simulated Chl at ca 120 mg/m2, consistent with observations although the highest value observed in 

the available monthly sampling frequency is around 60 mg/m2. A deep chlorophyll maximum (not 

shown) is simulated at about 60 m, agreeing with observations (Marty et al 2002). During the 

phytoplankton bloom, nitrate decreases steeply, but not as much as in the observations. In summer, 

nitrate stabilizes then decreases slowly in the model and observations. The 

microzooplankton+HNAN development immediately follows the phytoplankton bloom. Simulated 

microzooplankton+HNAN is low in winter, then peaks at ca. 1300 mg/m2 in April-May, while 

observations range from ca 100 to 800 mgC/m2. In April, copepod biomass builds up slowly, 

staying in the low range of observations that span from 0.5 to 5 gC/m2. The high variability of these 

data is due to the addition of several years. Bacterial biomass is slightly underestimated, but in 

reasonable agreement with observations with a maximum in summer.  

 

On an annual scale, net primary production (102 gC/m2/yr, Table 2) is in the lower range of the 

estimations from in situ samples and from satellite estimates from other years (78 to 158 gC/m2/yr, 

see Levy et al 1998, and 86-232 gC/m2/yr for Marty and Chiaverini 2002). Annual export 

production (noted EP hereinafter, computed as the downward flux of detritus at 200 m depth) is also 

in agreement with observations (4.2 vs 4.5 gC/m2/yr) for year 2000. The year 2000 value is similar 

to observations from other years (5 gC/m2/yr in 1987-1988 and 4 gC/m2/yr on average over 1987-

1990, Miquel et al 1994, 1993).  

 

The simulation with appendicularians (Fig. 4, solid lines) shows little difference in biomass 

compared to the simulation without appendicularians. The microzooplankton biomass compartment 

is the most reduced (-21% on annual average), especially in summer, while nitrate, copepod 

biomass is also slightly lower (-1%, -6% respectively) and bacteria, Chl slightly higher (+0.5%, 

+1% respectively). Appendicularian biomass stays very low in winter, then peaks in May at about 
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80 mgC/m2 and decreases steeply until November. Appendicularian trends show one maximum of 

about 50 mgC/m2 in June-July, but short peaks are also present in spring and fall. Appendicularian 

simulated biomass starts increasing in March, as soon as the phytoplankton bloom starts, but does 

not accumulate before May as winter biomass is too low. 

 

The seasonal cycle of production and export fluxes for the simulation without appendicularians is 

shown in Fig. 5. Net primary production occurs mainly from March to July. Net secondary 

production (Fig. 5A) occurs from April to June for microzooplankton, April to July for copepods. 

Export production (EP, Fig. 5B) is distributed from April to August. In April, EP rises to 20-30 

mgC/m2/day in phase with the observations, peaks in June then decreases in July, consistent with 

observations (Miquel et al 1994). Then EP drops to a minimum in September and the smaller peak 

observed in November is not reproduced in the model. The two peaks of primary production (in 

April and May), only noticeable in the simulated slow detritus export, are present in the observed 

export. In winter, the observations show a low but non-negligible export of about 6 mgC/m2/day, 

while the simulated export is slightly underestimated (4 mgC/m2/day). The increase in fast detritus 

export follows copepod growth. The export peak is delayed compared to the surface production 

peak as detritus takes 20 to 40 days to sink from the production zone (approximately 0-100 m) to 

200 m depth. The slow fraction contributes all year round to EP, since it is produced by all living 

groups (phytoplankton, microzooplankton+HNAN, bacteria and appendicularians). The fast-sinking 

fraction is mostly important during spring and summer, as it is only produced by copepods.  

 

In contrast with their weak effect on the biomass of other groups, the contribution of 

appendicularians to export fluxes can be significant (Figs 6, 7 and Table 2). During the peak at the 

end of May (Fig. 6), at the rate of 60 mgC/m2/day, their contribution to export is twice that of 

copepods, and higher than observations (see discussion below). The exported slow detritus fraction 

produced by appendicularians is negligible. Annually, appendicularians produce 7 gC/m2/yr  net 

production, compared to 28.4 gC/m2/yr by microzooplankton and 19.0 gC/m2/yr by copepods. Thus 

appendicularians represent only 12 % of zooplankton secondary production, however their ratio of 

annual production to biomass is the largest (394 against 67 for microzooplankton and 51 for 

copepods). Appendicularians represent 20% of fast detritus production. The fast detritus fraction 

dominates the total EP (82%), and appendicularians provide 2.4 gC/m2/yr, i.e. 37% of total EP (fast 

and slow detritus export). Slow detritus production is dominated by copepods, phytoplankton and 

bacteria, with lower contributions from microzooplankton and appendicularians. The presence of 

appendicularians results in a slight reduction in primary production, secondary production by 

copepods and microzooplankton, and bacterial uptake by microzooplankton (Figs. 7 and 8). 
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Appendicularians also slightly increase the production of slow detritus (6%) but substantially (13%) 

increase the fast detritus production through their uptake of phytoplankton, bacteria, and to a lesser 

extent microzooplankton. The appendicularian contribution to ammonia production is of the same 

order of magnitude as that of copepods. Ammonia is partly produced by bacterial degradation of 

dissolved organic matter and detritus pools, but also by microzooplankton and copepod excretion. 

Additional simulations conducted with surface forcings from other years (1998 to 2004, not shown) 

indicate that the reported fluxes are weakly sensitive to the interannual variability in the physics, as 

the standard deviations of fluxes are generally lower than 10% of their mean value.  

 

The role of mortality was specifically analyzed comparing the simulations FREE (app-free, 

parameterized mortality) and OFF (app-off, no mortality and prescribed biomass). The results are 

summarized in Table 2. The OFF simulation has slightly lower values of total detritus production 

and export compared to the FREE simulation, (a reduction of 6% and 20% respectively) . Although 

OFF simulations have lower average appendicularian biomass on an annual scale (see Fig. 4), their 

biomass is higher in spring during the phytoplankton bloom. This feature, combined with the higher 

primary production, explains why FREE and OFF simulations produce similar fluxes. 

 

To assess the role of the three species potentially present at DyFAMed (Oikopleura longicauda, 

dioica, and fusiformis) three simulations with set biomass (OFF) were also conducted with the 

parameters given in the Appendix and derived from Lombard et al (2010). As summarized in Table 

3,. the differences in the filtration, respiration and ingestion rates and the contrasting assimilation 

efficiencies produce clear changes in the fluxes: O dioica produces about half the detritus of O 

longicauda, while O fusiformis and O longicauda are comparable.  

 

To investigate the response of appendicularian fluxes to phytoplankton biomass, simulations with 

lower and higher initial nitrate concentrations were conducted (Table 4). The variations of the initial 

nutrient content were meant to reflect the variability of winter hydrological conditions. For a 30% 

lower and higher initial nitrate, export from appendicularia varied weakly from 0.9 to 1.2 gC/m2/yr, 

about -11% and +14% while total export varied to a larger extent (-12% and +19% respectively).  

 

Finally, we performed a more general parameter sensitivity analysis by changing parameter values 

one at a time. Secondary production, detritus production and ammonium excretion fluxes from 

appendicularians are weakly sensitive to variations in appendicularian growth parameters (not 

shown). Overall, the response to a 10% variation in parameter values was linear and close to or 

lower than identity. The most sensitive parameters were the maximum filtration rate, the half 
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saturation constant for filtration and the respiration rate. 

DiscussionDiscussionDiscussionDiscussion    

 

The focus of our one-dimensional experiment was to obtain a reasonable description of the 

appendicularian environment, namely the seasonal cycle of prey and predator biomass, and 

temperature. Over the year 2000, Chl concentration agreed with observation, except during March 

when the Chl peak was overestimated compared to observations (up to 120 mg/m2 instead of 60 

mg/m2). However, peaks of 100mg/m2 were recorded during other years (in 1999, Marty et al 2002) 

and could have been missed in 2000 by the monthly frequency sampling.  

 

In February-March, the model could not explain the observed drawdown of nitrate because mixed 

layer depth is equal to 200 m, preventing phytoplankton growth in the model. Synchronous with the 

nitrate drawdown, high Chl was observed in February, indicating that the bloom already started. 

Two possible mechanisms may be suggested: i) the bloom was immediately followed by a deep 

mixing event or ii) Chl-rich, nutrient-poor waters were advected at the DyFAMed station from the 

Ligurian current (e.g. Stemmann et al 2008). Both processes cannot be accounted for with a one 

dimensional model, unless higher resolution atmospheric forcings and additional physical data are 

provided.  

 

Microzooplankton and HNAN biomass was overestimated in April-May, partly because of the high 

phytoplankton biomass. Since the biomass estimates are not from the same year as Chl 

measurements and taking into account the sparse sampling, further data are needed to explain the 

source of this overestimation. Spring nanozooplankton biomass was also overestimated by Raick et 

al (2005). The simulated net primary production (NPP) was in the lower range of in situ and 

satellite estimates, that have a large span due to different methods and to the large interannual 

variability (Marty and Chiaverini 2002).  

 

Considering the delay in the phytoplankton peak timing as the main discrepancy, but given that Chl 

and zooplankton biomass were within the range of observations and comparable to previous studies 

(Raick et al 2005), this simulation was considered to be more than adequate to be used to assess the 

impact of appendicularians on the planktonic food web. 

 

Typical in situ conditions at DyFAMed (Fig. 2, food generally lower than 100 mgC/m3 and 
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T<25°C) are favorable for appendicularian growth. The higher HNAN growth rate indicates that 

they are better competitors for picophytoplankton than appendicularians. 

 

The model predicts that appendicularian grazing impact is generally low, being about 1-4% of net 

primary production. This agrees well with other studies in mesotrophic environments (Tomita et al 

1999). In contrast, appendicularians produce 3.9 gC/m2/yr of large detritus, leading to an increase of 

2.3 gC/m2/yr in the simulated export flux at 200m. The inclusion of appendicularians generates an 

increase in detritus production independent of the mortality used, ranging from 2 % (OFF 

simulation) to 8% (FREE simulation). As most of this detritus sinks rapidly, this production 

translates into an increase in export flux from 23% to 55% respectively. O dioica is likely to 

produce about half the export of O longicauda and O fusiformis. Therefore, in absolute terms on an 

annual scale, appendicularian contribution to detritus production is low, but their contribution to 

export is considerable. The ratio of appendicularian detrital production to biomass is much greater 

than that of copepods (respectively 468 and 64), even higher than the production/biomass ratio 

(respectively 394 and 51), thus appendicularians are much more efficient than copepods at 

generating detritus. Appendicularians also produce fast sinking detritus which contains bacteria, 

picophytoplankton and HNAN inside particles, while that of the traditional route is simply 

predation of microphytoplankton by copepod. Appendicularians can also produce fast sinking 

detritus in an ecosystem dominated by small-sized particles (e.g., picoplankton). 

 

Including appendicularians in the food web produces an export rate that is 44% higher than the 

value derived from sediment trap data (6.5 vs 4.5 gC/m2/yr). Values of appendicularian-mediated 

export exceeding sediment trap estimates have been reported in several studies (e.g. Deibel et al 

2005). This discrepancy can be attributed to several causes. First, the efficiency of the sediment trap 

for collecting appendicularian houses is probably poor due to their stickiness (Lombard et al 2010). 

However, the trapping efficiency of the DyFAMed trap was recently quantified as ca 100% from 

thorium isotope measurements (Roy-Barman et al 2009). More importantly, the degradation rate of 

houses and fecal pellets may be higher than the value used here (0.2/day), which is already in the 

upper range of estimates (Ploug et al 2008). In the model, a degradation rate of 0.7/day is sufficient 

to lower the total export to 4.5 gC/m2/yr. High degradation was also reported by Vargas et al (2002), 

who observed a 70% loss of appendicularian houses between 10 m and 30 m. This high degradation 

possibly results from a combination of bacterial activity (Ploug et al 2008) and microzooplankton 

grazing (Poulsen and Iversen 2008). Thus, a better quantification of these two processes is needed 

to translate the appendicularian detritus flux into export.  
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Appendicularians produce detritus as fecal pellets and houses. Here we compare the simulated 

production of detritus (fecal pellets plus houses) to the only available estimate in the DyFAMed 

region (Point B), and as a further comparison to the only two other studies from other mesotrophic 

stations: the Sea of Japan (Tomita et al 1999), and Gullmar Fjord, Sweden (Vargas et al 2002). All 

the other studies on detritus production available in the literature are from coastal and eutrophic 

environments that are very different from DyFAMed (Taguchi 1982;  Uye and Ichino 1995; 

Bauerfeind et al 1997;  Hopcroft and Roff 1998;  Dagg and Brown 2005b;  Deibel et al 2005). 

 

At Point B, a coastal station located 50 km from DyFAMed, Alldredge (2005) estimated a house-

related carbon flux of 26 mgC/m2/day at 75 m in May. This value is higher than the detritus flux 

simulated at 75 m, ranging from 5 mgC/m2/yr (O dioica, OFF) to 11 mgC/m2/day (O longicauda, 

OFF). OFF simulations were used for comparison as biomass in May was overestimated in the  

FREE simulations. The house flux estimated by Alldredge (2005) represented 32% of total export 

production. The model predicted it to be 5 and 10% of total detritus production for O dioica and O 

longicauda respectively. The lower contribution to export was partly due to (i) the higher simulated 

total export (113 against 82 mgC/m2/day, estimated by Alldredge (2005) from the export at 200 m) 

and (ii) the method used by Alldredge (2005), omitting house weight loss. 

 

In the Sea of Japan, Tomita et al (1999) estimated 2.66 mgC/m3/day as the maximum house carbon 

production using a fraction of biomass production. We simulated a maximum detritus production of 

1 mgC/m3/day, 37% of the value of Tomita et al (1999). For the same station, Alldredge (2005) 

found a larger maximum house production for O longicauda of 7.2 mgC/m3/day, computed using a 

size dependent house carbon content. This higher value probably came from the omission of house 

weight loss in the author's method. On an annual scale, the simulated detritus production was 3.9 

gC/m2/yr at DyFAMed, ca. one third of the house production rate of 11.3 gC/m2/yr from Tomita et 

al (1999) in the Sea of Japan. This difference may be partly due to the lower simulated biomass 

compared to Tomita et al (1999) (18 against 25 mgC/m2/yr), and to the high house carbon content 

taken by Tomita et al (1999).  

 

In Gullmar Fjord, Vargas et al (2002) estimated appendicularian detritus fluxes from sediment traps 

in October and March. They found 19 mgC/m2/day from O dioica detritus (pellets and houses) at 

30m in October, with a biomass of ca 7 mgC/m2. The maximum simulated export at DyFAMed was 

only 6 mgC/m2/day at 30m depth in May (simulation OFF) with a biomass of 18 mgC/m2 of O 

dioica. The values of Vargas et al (2002)  of export relative to biomass may be due to the fairly high 

carbon content used (15.3% of body carbon) for houses, omitting weight loss after discard, and to 
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favorable food conditions with a maximum close to the surface. Comparison with March sampling 

in Vargas et al (2002) was not possible since Fritillaria, not included in our simulations, was 

dominant. 

 

Therefore, our estimates of export rates are about 40% of the observational estimates of Alldredge 

(2005) at DyFAMed, probably because of an overestimation by the Alldredge (2005) method. 

Compared to the more mesotrophic sites of the Sea of Japan and Gullmar Fjord, our estimates are 

60% lower. These lower estimates may simply be the response to lower food, i.e. the oligotrophic 

nature of the DyFAMed site. However, it may be that fluxes estimated with simple methods based 

on average house production rates and average carbon content result in overestimation. Regardless, 

appendicularian contribution to detritus production and export is significant but may be lower than 

previously estimated at the DyFAMed oligotrophic site, and it is lower than that estimated in 

mesotrophic environments. 

 

The simulated impact of appendicularians depends on the biomass estimate. At DyFAMed, 

appendicularian biomass was 0-50 mgC/m2, in the range of values reported in other comparable 

studies (80 mgC/m2 Båmstedt et al 2005, 25.6 mgC/m2 Tomita et al 1999, 3-6 mgC/m2 Vargas et al 

2002). This represented an average 0.8% (range 0 – 16%) of total mesozooplankton biomass. This 

proportion is consistent with other studies in mesotrophic environments (1.4%, range 0 – 5% 

Båmstedt et al 2005;  1.4% Tomita et al 1999;  1 to 4% Grice and Reeve 1982). However, the 

standard deviation of our biomass estimate is large (estimated here as the coefficient of variation 

std/mean = 140%), due to the high standard deviation in both abundance and mean weight 

estimates. In the range of possible values, we have chosen a rather large mean weight (2.23 

µgC/ind) to compensate for the undersampling of small individuals (López-Urrutia et al 2005). 

 

In  the FREE simulation, a large mortality rate (0.02/day for linear and 0.1 mgC/m3/day for density 

dependent) had to be imposed in order to keep appendicularian biomass to a realistic level during 

summer. This approach is validated by the similar fluxes obtained with simulations OFF where 

mortality is not included. High predation mortality is consistent with our knowledge of 

appendicularian ecology. Since they have no escape strategy, no vertical migration capability, and 

because of their high nutritional value (no hard parts as compared to copepods, which implies a 

higher nitrogen content per individual), appendicularia are potentially preferred prey for fish larvae 

and gelatinous carnivores (Gorsky and Fenaux 1998). However this approach has the drawback of 

limiting the time window of appearance of appendicularians compared to observations, and to be 

site-specific, i.e. the chosen mortality rates may be not apply in other regions. These drawbacks 
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suggest another approach, e.g. to parameterize appendicularians instead of actually representing 

them. If estimates of appendicularian biomass are available, one simple idea is to take their biomass 

as an input to the model. Then the fluxes would be computed as in the present study with null 

mortality, and setting the source-minus-sink term to zero at each time step. Thus their effect would 

simply be a transformation of their prey biomass into detritus, and ammonium, and matter would be 

conserved. If biomass estimates are not available, one could try a more simplistic, (though risky) 

approach, such as setting their biomass to a fixed fraction of other groups’ biomass. However, 

before using this oversimplistic approach, study of appendicularians biomass in other time series 

stations such as BATS and HOT would be a necessary step for a more robust parameterization that 

can be applied at the global scale.  

 

Considering our results in the framework of biogeochemical simulations for the global ocean, 

appendicularians appear to be  a significant source of vertical carbon flux in most environments 

(Lombard et al 2010), and therefore are good candidates for a new plankton functional type sensu 

Le Queré et al (2005). Present biogeochemical models probably under, or misestimate, the 

production and export of detritus by only representing the pathway from large phytoplankton, 

copepods and detritus, omitting the picophytoplankton/HNAN-appendicularians-fast detritus 

pathway. This omission is probably serious in systems or seasons in which production is dominated 

by the picoplankton. However, including appendicularian effects on particulate flux also requires 

including the processes responsible for the transformation of this flux. Additional study of bacterial 

degradation and grazing by microzooplankton associated with appendicularian detritus (e.g. 

Poulsen and Iversen 2008) is critically needed.  

ConclusionConclusionConclusionConclusion    

Our ecosystem model including appendicularians suggests that in an oligotrophic environment such 

as DyFAMed, appendicularians are responsible for up to 8% of previously neglected detrital 

production, which translates into an increase of the export flux of carbon of up to 55% using 

conservative sinking rates. These results suggest that present biogeochemical models probably 

under, or misestimate the detritus and export production by neglecting the pathway from small size 

plankton to fast sinking detritus produced by appendicularians. The simulated yearly export exceeds 

by 44% sediment trap estimates, suggesting that their detritus degrades rapidly, as observed in other 

studies. Thus, although appendicularians appear to be efficient detritus producers, further work is 

needed to quantify the mechanisms and rates by which their detritus is degraded and grazed. 

Furthermore, for a comprehensive estimation of particulate export fluxes, winter appendicularian 
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species (Fritillaria spp), as well as salps and doliolids should be considered. As new 

ecophysiological knowledge is obtained from laboratory experiments, new organisms should be 

included in models and their biogeochemical significance assessed as in the present study if realistic 

ecosystems models are to be developed. 
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Appendix: Appendix: Appendix: Appendix: ModelModelModelModel parameters parameters parameters parameters    

Appendicularian pAppendicularian pAppendicularian pAppendicularian parametersarametersarametersarameters    

 

Parameter Sym
bol 

Unit O dioica O 

longicauda 

O fusiformis Reference 

 

Q10 filtration t10f - 1.06 1.10 1.09 1 
Q10 respiration t10r - 1.087 1.15 1.1 1 
Maximum filtration rate f day-1 3.0 8.0 7.0 1 
Maximum respiration rate fr day-1 0.108 0.048 0.14 1 
Preference micro-, nano- 
and pico-phytoplankton,  

δ - 0.0,0.5,1.0  0.0,0.5,1.0 0.0,0.5,1.0 Set 

Preference bacteria, 
microzooplankton, HNAN 

  1.0,0.5,1.0  1.0,0.5,1.0 1.0,0.5,1.0  

Linear mortality m day-1 0.02 0.05 0.06 Set 
Density dependent 
mortality 

mdns mgC m-

3 day-1 
0.1 0.11 0.3 Set 

Half saturation for 
filtration 

Kf mgC m-

3 
150 518 300 1 

Half saturation for 
ingestion efficiency 

Kβ mgC m-

3 
200 150 120 1 

Half saturation for 
assimilation efficiency 

Kη mgC m-

3 
130 120 300 1 

Minimum ingestion 
efficiency 

βm - 0.15 0.01 0.01 1 

Minimum assimilation 
efficiency 

ηm - 0.10 0.01 0.1 1 

C:N ratio RC:N gC 
molN-1 

0.021 0.021 0.021 2 

Fraction of house going to 
fast detritus 

αh - 0.85 0.85 0.85 3 

Sinking rate slow detritus νsed
 SD m day-1 1.5  1.5 4 

Sinking rate fast detritus 
copepod 

νsed
 FD m day-1 5.0 5.0 5.0 5 

Sinking rate fast detritus 
appendicularians 

νsed
 FD m day-1 40.0 40.0 40.0 3 

 
Table 1: Symbols, values and description of the appendicularians parameters. 1= Lombard et al 
(2010),  2=Gorsky et al (1988), 3=Lombard and Kiørboe (2010), 4=Lacroix and Nival (1998), 
5=Lacroix and Grégoire (2002). Set : estimated from model trials in the range of literature values. 
 

Modified pModified pModified pModified parametersarametersarametersarameters    

In addition to appendicularians parameters, the model parameters departing from Vichi et al (2007) 
are given. Values identical to Vichi et al (2007) are noted  ‘std’. 
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Symbol  P(1)  P(2)  P(3) Description Reference  

r0P  2.50  3.00  3.50 Maximum specific photosynthetic rate (d−1)  Raick et al (2005) 

γP  0.15  0.25  0.20 Activity respiration fraction (-)  Raick et al (2005) 
bP 0.03 0.05 0.07 Basal respiration (d−1) Raick et al (2005) 
βP  std  0.10 0.10 Excreted fraction of primary production (-)  Spitz et al (2001) 
Wsink 

P(1)  
0.00  - - Maximum sedimentation rate (m d−1) Set 

α0 chl  0.9 10−5  1.3 10−5  1.1 10−5 
Initial slope of PE curve i.e. maximum light utilization coefficient (mgC 
(mg chl)−1 µE−1 m2) 

Geider et al (1997) 

θ0 chl  0.03 0.025 0.03 Optimal chl:C quotum (mg chl mg C−1 )  Geider et al (1997) 

cP  0.02 0.02 0.02 Chl-specific light absorption coefficient  (m2 (mg chl)−1) Raick et al (2005) 

 
Table 2: Symbols, values and description of the phytoplankton parameters. P(1)= diatoms; P(2)= nanoflagellates, P(3)= picophytoplankton. Set : 
estimated from model trials in the range of literature values. 
 

Symbol  Z(4)  Z(5)  Z(6)  Description  Reference  

µZ  std  10.0  30.0 Feeding threshold (mg C m−3)  Set 

r0Z  1.2  2.50  std  Potential specific growth rate (d−1)  Raick et al (2005) 

vZ  0.05 - - Specific search volume (m3 mg C −1)  from Broekhuizen et al (1995) 

bZ  0.001  0.01  0.03  Basal specific respiration rate (d−1)  Set 

d0Z  0.01 0.01  0.03  Specific mortality rate (d−1) Set 

ddns Z  0.0004  -  -  
Density-dependent specific mortality rate (m3 mgC−1 
d−1) 

Set 

gZ  2.00  - - Exponent for density dependent mortality (-)  Set 

 
Table 3: Symbols, values and description of the zooplankton parameters. Z(4)= mesozooplankton (copepod); Z(5)= microzooplankton; 
Z(6)=Heterotrophic nanoflagellates. Set : estimated from model trials in the range of literature values. 
 

Symbol  Value  Description  Reference 

Q10B 2.0 Characteristic Q10 coefficient  Raick et al (2005) 
ν

1
 B  0.01  Specific potential R(1) uptake (d−1) Set 

ν
6

B 0.08  Specific potential R(6) uptake (d−1)  Set 
ν

8
B 0.08  Specific potential R(8) uptake (d−1)  (copepod fast detritus) Set 
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ν
8

B 0.2  
Specific potential R(8) uptake (d−1)  (appendicularians fast 
detritus) 

Set 

 
Table 4: Symbols, values and description of the Bacterioplankton parameters. Note that R(6) is slow detritus and R(8) is fast detritus. Set : estimated 
from model trials in the range of literature values. 
 

Symbol Value Description Reference 

Λ
nit

N4 0.03 Specific nitrification rate (d−1) Raick et al (2005) 

ho
N4 0.0 

Half saturation oxygen concentration for chemical processes 
(mmolO2 m−3) 

Set 

λW 0.06 Optical extinction coefficient for pure water (m−1) 
from Lacroix and 
Grégoire (2002) 

 
Table 5: Symbols, values and description of the general pelagic parameters. Set : estimated from model trials in the range of literature values.
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Tables and Figures legendsTables and Figures legendsTables and Figures legendsTables and Figures legends    
Table 1: Simulations set up 

Table 2: Main annual biogeochemical fluxes for simulation with no appendicularian (no-
app), FREE appendicularian (app-free) and OFF appendicularians (app-off). In 
simulations OFF, the appendicularian biomass is set and an offline mortality term is 
computed. The slow detritus production corresponding to the offline mortality is reported 
in italics. 

Table 3: Main annual biogeochemical fluxes for the three main appendicularian species 
(simulation app-off-species). In simulations OFF, the appendicularian biomass is set and 
an offline mortality term is computed. The slow detritus production corresponding to the 
offline mortality is reported in italics. 
 
Table 4: Annual appendicularian biogeochemical fluxes for a ±30% variation of the 
nitrate initial conditions, simulations app-off-sens 
 
 
 
Figure 1: Block diagram of the model. For clarity, arrows representing flow of NH4, 
DOM, and detritus indicated in the legend are numbered and not connected.  P1 is 
microphytoplankton, P2 is nanophytoplankton and P3 is picophytoplankton. 
 
Figure 2: Net growth rate (day-1) as a function of food concentration and temperature for  
appendicularian Oikopleura longicauda, copepods, microzooplankton and Heterotrophic 
nanoflagellate (HNAN). Net growth is computed as the uptake minus egestion, excretion, 
respiration, defecation and mortality.   
 
Figure 3: Annual time course of the mixed layer depth and 5 m depth temperature for the 
model (line) and the observations (triangles). Mixed layer depth observations are 
bounded at 200m, the bottom of the modeled domain.   
 
Figure 4: Annual time course of simulations with and without appendicularians (solid line 
no-app,  dashed line app-free) and observations (triangles), depth integrated over 0-200m 
except for  bacteria and microzooplankton (5-110m, the sampled layer). In the copepod 
panel, triangles are data from 2001-2002 (Gasparini et al 2004) while circles are 
estimates from the present study (2006-2008). The set biomass used for simulations OFF 
(see section simulations set up) is drawn in the appendicularians panel as heavy dashed 
line.  
 
Figure 5: Annual time course of net primary and secondary production (A) and export 
production at 200 m (B) for model (lines) and sediment traps (bars) for simulation 
without appendicularians (no-app).   
 
Figure 6: Annual time course of net primary and secondary production (A) and export 
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 3

production at 200 m (B) for model (lines) and sediment traps (bars) for simulation with 
appendicularians (app-free).   
 
Figure 7: Annual contribution of each living group to the main biogeochemical fluxes, for 
run without appendicularians (no-app)   
 
Figure 8: Annual contribution of each living group to the main biogeochemical fluxes, for 
run with appendicularians (app-free)   
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Simulations name Appendicularians  Objective 

No-app No Reference run 

app-free Yes, free biomass  Appendicularian impact 

app-off Yes, set biomass  Appendicularian impact without mortality 

app-off-species Yes, set biomass  Impact of different appendicularian species 

app-off-sens Yes, set biomass  Sensitivity to parameters and nitrate initial conditions 

Table 1 : Simulations set up 
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Annual flux (gC/m
2
/yr) 

*(mmolN/m
2
/yr) 

no-app app-free app-off 

Net primary production 102.4 96.5 102 

Export non App  4.2 4.0 4.1 

Export App  - 2.4 1.0 

Excretion NH4 App* - 46.3 46.3 

App uptake Phytoplankton - 3.9 1.5 

Other uptake Phytoplankton 69.8 60.5 67.7 

App uptake MiZ+HNAN - 3.5 1.5 

App uptake Bac - 4.6 2.3 

Cop uptake App - 0.9 0.3 

MiZ+HNAN uptake Bac 32.2 24.2 29.0 

Slow Detritus production total 35.2 37.3 35.1 

Slow Detritus production App - 4.5 0.5+1.3 

Fast Detritus production total 16.6 18.7 17.6 

Fast Detritus production App - 3.9 1.4 

Slow Detritus Export 1.1 1.2 1.2 

Fast Detritus Export 3.1 5.3 3.9 

Table 2 : Main annual biogeochemical fluxes for simulation with no appendicularian (no-

app), FREE appendicularian (app-free) and OFF appendicularians (app-off). In 

simulations OFF, the appendicularian biomass is set and an offline mortality term is 

computed. The slow detritus production corresponding to the offline mortality is reported 

in italics 
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Annual flux (gC/m2/yr) O longicauda O dioica O fusiformis 

Net primary production 102.0 102.4 102.7 

Export non App  4.1 4.2 4.1 

Export App  1.0 0.5 1.0 

Slow Detritus production total 35.1 35.2 35.3 

Slow Detritus production App 0.5+1.3 0.2+0.6 0.5+1.7 

Fast Detritus production total 17.6 17.2 17.6 

Fast Detritus production App 1.4 0.7 1.4 

Slow Detritus Export 1.2 1.2 1.2 

Fast Detritus Export 3.9 3.5 3.9 

 

Table 3 : Main annual biogeochemical fluxes for the three main appendicularian species 

(simulation app-off-species). In simulations OFF, the appendicularian biomass is set 

and an offline mortality term is computed. The slow detritus production corresponding 

to the offline mortality is reported in italics. 
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Annual flux (gC/m
2
/yr) -30%  Control +30%  

Net primary production 83.3 102 117.4 

Export non App  3.2 4.1 4.5 

Export App  0.9 1.0 1.2 

App uptake Phytoplankton 1.4 1.5 1.7 

Table 4 : Annual appendicularian biogeochemical fluxes for a ±30% variation of the nitrate initial 

conditions, simulations app-off-sens 
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Net growth rate (day-1) as a function of food concentration and temperature for  
appendicularian Oikopleura longicauda, copepods, microzooplankton and Heterotrophic 

nanoflagellate (HNAN). Net growth is computed as the uptake minus egestion, excretion, 

respiration, defecation and mortality.  
203x152mm (300 x 300 DPI)  
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Annual time course of the mixed layer depth and 5 m depth temperature for the model (line) and 
the observations (triangles). Mixed layer depth observations are bounded at 200m, the bottom of 

the modeled domain.  

203x152mm (300 x 300 DPI)  
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Annual time course of simulations with and without appendicularians (solid line no-app,  dashed line 
app-free) and observations (triangles), depth integrated over 0-200m except for  bacteria and 
microzooplankton (5-110m, the sampled layer). In the copepod panel, triangles are data from 

2001-2002 (Gasparini et al 2004) while circles are estimates from the present study (2006-2008). 
The set biomass used for simulations OFF (see section simulations set up) is drawn in the 

appendicularians panel as heavy dashed line.  
179x239mm (300 x 300 DPI)  
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Annual time course of net primary and secondary production (A) and export production at 200 m 

(B) for model (lines) and sediment traps (bars) for simulation without appendicularians (no-app).    
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Annual time course of net primary and secondary production (A) and export production at 200 m 

(B) for model (lines) and sediment traps (bars) for simulation with appendicularians (app-free).  
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Annual contribution of each living group to the main biogeochemical fluxes, for run without 
appendicularians (no-app)  
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Annual contribution of each living group to the main biogeochemical fluxes, for run with 
appendicularians (app-free)  
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