Integrability properties and Limit Theorems for the exit time from a cone of planar Brownian motion

S. Vakeroudis *† M. Yor *‡

December 22, 2011

Abstract

We obtain some integrability properties and some limit Theorems for the exit time from a cone of a planar Brownian motion, and we check that our computations are correct via Bougerol's identity.

Key words: Bougerol's identity, planar Brownian motion, skew-product representation, exit time from a cone.

MSC Classification (2010): 60J65, 60F05.

1 Introduction

We consider a standard planar Brownian motion§ $(Z_t = X_t + iY_t, t \ge 0)$, starting from $x_0 + i0, x_0 > 0$, where $(X_t, t \ge 0)$ and $(Y_t, t \ge 0)$ are two independent linear Brownian motions, starting respectively from x_0 and 0.

As is well known [ItMK65], since $x_0 \neq 0$, $(Z_t, t \geq 0)$ does not visit a.s. the point 0 but keeps winding around 0 infinitely often. In particular, the continuous winding process $\theta_t = \operatorname{Im}(\int_0^t \frac{dZ_s}{Z_s}), t \geq 0$ is well defined. A scaling argument shows that we may assume $x_0 = 1$, without loss of generality, since, with obvious notation:

$$\left(Z_t^{(x_0)}, t \ge 0\right) \stackrel{(law)}{=} \left(x_0 Z_{(t/x_0^2)}^{(1)}, t \ge 0\right). \tag{1}$$

^{*}Laboratoire de Probabilités et Modèles Aléatoires (LPMA) CNRS : UMR7599, Université Pierre et Marie Curie - Paris VI, Université Paris-Diderot - Paris VII, 4 Place Jussieu, 75252 Paris Cedex 05, France. E-mail: stavros.vakeroudis@etu.upmc.fr

[†]Probability and Statistics Group, School of Mathematics, University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL, United Kingdom.

[‡]Institut Universitaire de France, Paris, France. E-mail: yormarc@aol.com

[§]When we simply write: Brownian motion, we always mean real-valued Brownian motion, starting from 0. For 2-dimensional Brownian motion, we indicate planar or complex BM.

Thus, from now on, we shall take $x_0 = 1$.

Furthermore, there is the skew product representation:

$$\log|Z_t| + i\theta_t \equiv \int_0^t \frac{dZ_s}{Z_s} = (\beta_u + i\gamma_u) \Big|_{u = H_t = \int_0^t \frac{ds}{|Z_s|^2}}, \tag{2}$$

where $(\beta_u + i\gamma_u, u \ge 0)$ is another planar Brownian motion starting from $\log 1 + i0 = 0$. Thus, the Bessel clock H plays a key role in many aspects of the study of the winding number process $(\theta_t, t \ge 0)$ (see e.g. [Yor80]). Rewriting (2) as:

$$\log |Z_t| = \beta_{H_t}; \quad \theta_t = \gamma_{H_t}, \tag{3}$$

we easily obtain that the two σ -fields $\sigma\{|Z_t|, t \geq 0\}$ and $\sigma\{\beta_u, u \geq 0\}$ are identical, whereas $(\gamma_u, u \geq 0)$ is independent from $(|Z_t|, t \geq 0)$.

We shall also use Bougerol's celebrated identity in law [Bou83, ADY97] and [Yor01] (p. 200), which may be written as:

for fixed
$$t$$
, $\sinh(\beta_t) \stackrel{(law)}{=} \hat{\beta}_{A_t(\beta)}$ (4)

where $(\beta_u, u \geq 0)$ is 1-dimensional BM, $A_u(\beta) = \int_0^u ds \exp(2\beta_s)$ and $(\hat{\beta}_v, v \geq 0)$ is another BM, independent of $(\beta_u, u \geq 0)$. For the random times $T_c^{|\theta|} \equiv \inf\{t : |\theta_t| = c\}$, and $T_c^{|\gamma|} \equiv \inf\{t : |\gamma_t| = c\}$, (c > 0) by using the skew-product representation (3) of planar Brownian motion [ReY99], we obtain:

$$T_c^{|\theta|} = A_{T_c^{|\gamma|}}(\beta) \equiv \int_0^{T_c^{|\gamma|}} ds \exp(2\beta_s) = H_u^{-1} \Big|_{u=T_c^{|\gamma|}}$$
 (5)

Moreover, it has been recently shown that, Bougerol's identity applied with the random time $T_c^{|\theta|}$ instead of t in (4) yields the following [Vak11]:

Proposition 1.1 The distribution of $T_c^{|\theta|}$ is characterized by its Gauss-Laplace transform:

$$E\left[\sqrt{\frac{2c^2}{\pi T_c^{|\theta|}}}\exp\left(-\frac{x}{2T_c^{|\theta|}}\right)\right] = \frac{1}{\sqrt{1+x}}\varphi_m(x),\tag{6}$$

for every $x \ge 0$, with $m = \frac{\pi}{2c}$, and:

$$\varphi_m(x) = \frac{2}{(G_+(x))^m + (G_-(x))^m}, \quad G_{\pm}(x) = \sqrt{1+x} \pm \sqrt{x}. \tag{7}$$

The remainder of this article is organized as follows: in Section 2 we study some integrability properties for the exit times from a cone; more precisely we obtain some new results concerning the negative moments of $T_c^{|\theta|}$ and of $T_c^{\theta} \equiv \inf\{t : \theta_t = c\}$. In Section 3 we state and prove some limit Theorems for these random times for $c \to 0$ and for $c \to \infty$ followed by several generalizations (for extensions of these works to more general planar processes, see e.g. [DoV12]). We use these results in order to obtain (see Remark 3.4) a

new simple non-computational proof of Spitzer's celebrated asymptotic Theorem [Spi58], which states that:

$$\frac{2}{\log t} \theta_t \xrightarrow[t \to \infty]{(law)} C_1 , \qquad (8)$$

with C_1 denoting a standard Cauchy variable (for other proofs, see also e.g. [Wil74, Dur82, MeY82, BeW94, Yor97, Vak11]). Finally, in Section 4 we use the Gauss-Laplace transform (6) which is equivalent to Bougerol's identity (4) in order to check our results.

2 Integrability Properties

Concerning the moments of $T_c^{|\theta|}$, we have the following (a more extended discussion is found in e.g. [MaY05]):

Theorem 2.1 For every c > 0, $T_c^{|\theta|}$ enjoys the following integrability properties:

(i) for
$$p > 0$$
, $E\left[\left(T_c^{|\theta|}\right)^p\right] < \infty$, if and only if $p < \frac{\pi}{4c}$.

(ii) for any
$$p < 0$$
, $E\left[\left(T_c^{|\theta|}\right)^p\right] < \infty$.

Corollary 2.2 For 0 < c < d, the random times $T_{-d,c}^{\theta} \equiv \inf\{t : \theta_t \notin (-d,c)\}$, $T_c^{|\theta|}$ and T_c^{θ} satisfy the inequality:

$$T_c^{\theta} \ge T_{-d,c}^{\theta} \ge T_c^{|\theta|}. \tag{9}$$

Thus, their negative moments satisfy:

for
$$p > 0$$
, $E\left[\frac{1}{\left(T_c^{\theta}\right)^p}\right] \le E\left[\frac{1}{\left(T_{-d,c}^{\theta}\right)^p}\right] \le E\left[\frac{1}{\left(T_c^{|\theta|}\right)^p}\right] < \infty.$ (10)

Proofs of Theorem 2.1 and of Corollary 2.2

- (i) The original proof is given by Spitzer [Spi58], followed later by many authors [Wil74, Bur77, MeY82, Dur82, Yor85]. See also [ReY99] Ex. 2.21/page 196.
- (ii) In order to obtain this result, we might use the representation $T_c^{|\theta|} = A_{T_c^{|\gamma|}}$ together with a recurrence formula for the negative moments of A_t [Duf00], Theorem 4.2, p. 417 (in fact, Dufresne also considers $A_t^{(\mu)} = \int_0^t ds \exp(2\beta_s + 2\mu s)$, but we only need to take $\mu = 0$ for our purpose, and we note $A_t \equiv A_t^{(0)}$ [Vakth11]. However, we can also obtain this result by simply remarking that the RHS of the Gauss-Laplace transform (6) in Proposition 1.1 is an infinitely differentiable function in 0 (see also [VaY11]), thus:

$$E\left[\frac{1}{\left(T_c^{|\theta|}\right)^p}\right] < \infty, \text{ for every } p > 0.$$
 (11)

Now, Corollary 2.2 follows immediately from Theorem 2.1 (ii).

3 Limit Theorems for $T_c^{|\theta|}$

3.1 Limit Theorems for $T_c^{|\theta|}$, as $c \to 0$ and $c \to \infty$

The skew-product representation of planar Brownian motion allows to prove the three following asymptotic results for $T_c^{|\theta|}$:

Proposition 3.1 a) For $c \to 0$, we have:

$$\frac{1}{c^2} T_c^{|\theta|} \xrightarrow[c \to 0]{(law)} T_1^{|\gamma|}. \tag{12}$$

b) For $c \to \infty$, we have:

$$\frac{1}{c} \log \left(T_c^{|\theta|} \right) \xrightarrow[c \to \infty]{(law)} 2|\beta|_{T_1^{|\gamma|}}. \tag{13}$$

c) For $\varepsilon \to 0$, we have:

$$\frac{1}{\varepsilon^2} \left(T_{c+\varepsilon}^{|\theta|} - T_c^{|\theta|} \right) \xrightarrow[\varepsilon \to 0]{(law)} \exp\left(2\beta_{T_c^{|\gamma|}} \right) T_1^{\gamma'}, \tag{14}$$

where γ' stands for a real Brownian motion, independent from γ , and $T_1^{\gamma'} = \inf\{t : \gamma_t' = 1\}$

Proof of Proposition 3.1:

We rely upon (5) for the three proofs. By using the scaling property of BM, we obtain:

$$T_c^{|\theta|} = A_{T_c^{|\gamma|}}(\beta) \stackrel{(law)}{=} A_u(\beta) \Big|_{u=c^2 T_1^{|\gamma|}}$$

thus:

$$\frac{1}{c^2} T_c^{|\theta|} \stackrel{(law)}{=} \int_0^{T_1^{|\gamma|}} dv \, \exp\left(2c\beta_v\right) \,. \tag{15}$$

- a) For $c \to 0$, the RHS of (15) converges to $T_1^{|\gamma|}$, thus we obtain part a) of the Proposition.
- b) For $c \to \infty$, taking logarithms on both sides of (15) and dividing by c, on the LHS we obtain $\frac{1}{c} \log \left(T_c^{|\theta|}\right) \frac{2}{c} \log c$ and on the RHS:

$$\frac{1}{c} \log \left(\int_0^{T_1^{|\gamma|}} dv \, \exp\left(2c\beta_v\right) \right) = \log \left(\int_0^{T_1^{|\gamma|}} dv \, \exp\left(2c\beta_v\right) \right)^{1/c},$$

which, from the classical Laplace argument: $||f||_p \xrightarrow{p \to \infty} ||f||_{\infty}$, converges for $c \to \infty$, towards:

$$2\sup_{v\leq T_1^{|\gamma|}}\left(\beta_v\right)\stackrel{(law)}{=}2|\beta|_{T_1^{|\gamma|}}.$$

This proves part b) of the Proposition.

c)

$$T_{c+\varepsilon}^{|\theta|} - T_c^{|\theta|} = \int_{T_c^{|\gamma|}}^{T_{c+\varepsilon}^{|\gamma|}} du \exp(2\beta_u) = \int_0^{T_{c+\varepsilon}^{|\gamma|} - T_c^{|\gamma|}} dv \exp\left(2\beta_{T_c^{|\gamma|}}\right) \exp\left(2\left(\beta_{v+T_c^{|\gamma|}} - \beta_{T_c^{|\gamma|}}\right)\right)$$

$$= \exp\left(2\beta_{T_c^{|\gamma|}}\right) \int_0^{T_{c+\varepsilon}^{|\gamma|} - T_c^{|\gamma|}} dv \exp(2B_v), \qquad (16)$$

where $\left(B_s \equiv \beta_{s+T_c^{|\gamma|}} - \beta_{T_c^{|\gamma|}}, s \ge 0\right)$ is a BM independent of $T_c^{|\gamma|}$.

We study now $\tilde{T}_{c,c+\varepsilon}^{|\gamma|} \equiv T_{c+\varepsilon}^{|\gamma|} - T_c^{|\gamma|}$, the first hitting time of the level $c+\varepsilon$ from $|\gamma|$, starting from c. Thus, we define: $\rho_u \equiv |\gamma_u|$, starting also from c. Thus, $\rho_u = c + \delta_u + L_u$, where $(\delta_s, s \ge 0)$ is a BM and $(L_s, s \ge 0)$ is the local time of ρ at 0. Thus:

$$\tilde{T}_{c,c+\varepsilon}^{|\gamma|} = \inf \left\{ u \ge 0 : \rho_u = c + \varepsilon \right\} \equiv \inf \left\{ u \ge 0 : \delta_u + L_u = \varepsilon \right\}
\stackrel{u=\varepsilon^2 v}{=} \varepsilon^2 \inf \left\{ v \ge 0 : \frac{1}{\varepsilon} \delta_{v\varepsilon^2} + \frac{1}{\varepsilon} L_{v\varepsilon^2} = 1 \right\}.$$
(17)

From Skorokhod's Lemma [ReY99]:

$$L_u = \sup_{y \le u} \left(\left(-c - \delta_y \right) \lor 0 \right)$$

we deduce:

$$\frac{1}{\varepsilon}L_{v\varepsilon^2} = \sup_{y \le v\varepsilon^2} \left(\left(-c - \delta_y \right) \lor 0 \right) \stackrel{y = \varepsilon^2 \sigma}{=} \sup_{\sigma \le v} \left(\left(-c - \varepsilon \frac{1}{\varepsilon} \delta_{\sigma\varepsilon^2} \right) \lor 0 \right) = 0. \tag{18}$$

Hence, with γ' denoting a new BM independent from γ , (16) writes:

$$T_{c+\varepsilon}^{|\theta|} - T_c^{|\theta|} = \exp\left(2\beta_{T_c^{|\gamma|}}\right) \int_0^{\varepsilon^2 T_1^{\gamma'}} dv \, \exp\left(2B_v\right). \tag{19}$$

Thus, dividing both sides of (19) by ε^2 and making $\varepsilon \to 0$, we obtain part c) of the Proposition.

Remark 3.2 The asymptotic result c) in Proposition 3.1 may also be obtained in a straightforward manner from (16) by analytic computations. Indeed, using the Laplace transform of the first hitting time of a fixed level by the absolute value of a linear Brownian motion $E\left[e^{-\frac{\lambda^2}{2}T_b^{|\gamma|}}\right] = \frac{1}{\cosh(\lambda b)}$ (see e.g. Proposition 3.7, p 71 in Revuz and Yor [ReY99]), we have that for 0 < c < b, and $\lambda \ge 0$:

$$E\left[e^{-\frac{\lambda^2}{2}\left(T_b^{|\gamma|} - T_c^{|\gamma|}\right)}\right] = \frac{\cosh(\lambda c)}{\cosh(\lambda b)} \tag{20}$$

Using now $b = c + \varepsilon$, for every $\varepsilon > 0$, the latter equals:

$$\frac{\cosh(\frac{\lambda c}{\varepsilon})}{\cosh(\frac{\lambda}{\varepsilon}(c+\varepsilon))} \xrightarrow{\varepsilon \to 0} e^{-\lambda}.$$

The result follows now by remarking that $e^{-\lambda}$ is the Laplace transform (for the argument $\lambda^2/2$) of the first hitting time of 1 by a linear Brownian motion γ' , independent from γ .

3.2 Generalizations

Obviously we can obtain several variants of Proposition 3.1, by studying $T^{\theta}_{-bc,ac}$, $0 < a, b \leq \infty$, for $c \to 0$ or $c \to \infty$, and a, b fixed. We define $T^{\gamma}_{-d,c} \equiv \inf\{t : \gamma_t \notin (-d,c)\}$ and we have:

•
$$\frac{1}{c^2} T^{\theta}_{-bc,ac} \xrightarrow[c \to 0]{(law)} T^{\gamma}_{-b,a}$$
.

•
$$\frac{1}{c} \log \left(T_{-bc,ac}^{\theta} \right) \xrightarrow[c \to \infty]{(law)} 2|\beta|_{T_{-b,a}^{\gamma}}.$$

In particular, we can take $b = \infty$, hence:

Corollary 3.3 a) For $c \to 0$, we have:

$$\frac{1}{c^2} T_{ac}^{\theta} \xrightarrow[c \to 0]{(law)} T_a^{\gamma}. \tag{21}$$

b) For $c \to \infty$, we have:

$$\frac{1}{c} \log \left(T_{ac}^{\theta} \right) \xrightarrow[c \to \infty]{(law)} 2|\beta|_{T_a^{\gamma}} \stackrel{(law)}{=} 2|C_a|, \tag{22}$$

where $(C_a, a \ge 0)$ is a standard Cauchy process.

Remark 3.4 (Yet another proof of Spitzer's Theorem)

Taking a = 1, from Corollary 3.3(b), we can obtain yet another proof of Spitzer's celebrated asymptotic Theorem stated in (8). Indeed, (22) can be equivalently stated as:

$$P\left(\log T_c^{\theta} < cx\right) \xrightarrow[c \to \infty]{(law)} P\left(2|C_1| < x\right). \tag{23}$$

Now, the LHS of (23) equals:

$$P\left(\log T_c^{\theta} < cx\right) \equiv P\left(T_c^{\theta} < \exp(cx)\right) \equiv P\left(\sup_{u \le \exp(cx)} \theta_u > c\right)$$
$$= P\left(|\theta_{\exp(cx)}| > c\right) = P\left(|\theta_t| > \frac{\log t}{x}\right), \tag{24}$$

with $t = \exp(cx)$. Thus, because $|C_1| \stackrel{(law)}{=} |C_1|^{-1}$, (23) now writes:

for every
$$x > 0$$
 given, $P\left(|\theta_t| > \frac{\log t}{x}\right) \xrightarrow[t \to \infty]{(law)} P\left(|C_1| > \frac{2}{x}\right)$, (25)

which yields precisely Spitzer's Theorem (8).

3.3 Speed of convergence

We can easily improve upon Proposition 3.1 by studying the speed of convergence of the distribution of $\frac{1}{c^2} T_c^{|\theta|}$ towards that of $T_1^{|\gamma|}$, i.e.:

Proposition 3.5 For any function $\varphi \in C^2$, with compact support,

$$\frac{1}{c^{2}}\left(E\left[\varphi\left(\frac{1}{c^{2}}T_{c}^{|\theta|}\right)\right]-E\left[\varphi\left(T_{1}^{|\gamma|}\right)\right]\right)\underset{c\rightarrow0}{\longrightarrow}E\left[\varphi'\left(T_{1}^{|\gamma|}\right)\ \left(T_{1}^{|\gamma|}\right)^{2}+\frac{2}{3}\varphi''\left(T_{1}^{|\gamma|}\right)\ \left(T_{1}^{|\gamma|}\right)^{3}\right].(26)$$

Proof of Proposition 3.5:

We develop $\exp(2c\beta_v)$, for $c \to 0$, up to the second order term, i.e.:

$$e^{2c\beta_v} = 1 + 2c\beta_v + 2c^2\beta_v^2 + \dots$$

More precisely, we develop up to the second order term, and we obtain:

$$E\left[\varphi\left(\frac{1}{c^{2}}T_{c}^{|\theta|}\right)\right] = E\left[\varphi\left(\int_{0}^{T_{1}^{|\gamma|}} dv \exp\left(2c\beta_{v}\right)\right)\right]$$

$$= E\left[\varphi\left(T_{1}^{|\gamma|}\right) + \varphi'\left(T_{1}^{|\gamma|}\right) \int_{0}^{T_{1}^{|\gamma|}} \left(2c\beta_{v} + 2c^{2}\beta_{v}^{2}\right) dv\right]$$

$$+ \frac{1}{2}E\left[\varphi''\left(T_{1}^{|\gamma|}\right) 4c^{2}\left(\int_{0}^{T_{1}^{|\gamma|}} \beta_{v} dv\right)^{2}\right] + c^{2}o(c).$$

We then remark that $E\left[\int_0^t \beta_v dv\right] = 0$, $E\left[\int_0^t \beta_v^2 dv\right] = t^2/2$ and $E\left[\left(\int_0^t \beta_v dv\right)^2\right] = t^3/3$, thus we obtain (26).

4 Checks via Bougerol's identity

So far, we have not made use of Bougerol's identity (4), which helps us to characterize the distribution of $T_c^{|\theta|}$ [Vak11]. In this Subsection, we verify that writing the Gauss-Laplace transform in (6) as:

$$E\left[\sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{\frac{1}{c^2} T_c^{|\theta|}}} \exp\left(-\frac{xc^2}{2T_c^{|\theta|}}\right)\right] = \frac{1}{\sqrt{1+xc^2}} \varphi_m(xc^2),\tag{27}$$

with $m = \pi/(2c)$, we find asymptotically for $c \to 0$ the Gauss-Laplace transform of $T_1^{|\gamma|}$. Indeed, from (27), for $c \to 0$, we obtain:

$$E\left[\sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{T_1^{|\gamma|}}} \exp\left(-\frac{x}{2T_1^{|\gamma|}}\right)\right] = \lim_{c \to 0} \frac{2}{\left(\sqrt{1 + xc^2} + \sqrt{xc^2}\right)^{\pi/2c} + \left(\sqrt{1 + xc^2} - \sqrt{xc^2}\right)^{\pi/2c}}.$$
(28)

Let us now study:

$$\left(\sqrt{1+xc^2} + \sqrt{xc^2}\right)^{\pi/2c} = \exp\left(\frac{\pi}{2c}\log\left[1 + \left(\sqrt{1+xc^2} - 1\right) + \sqrt{xc^2}\right]\right)$$

$$\sim \exp\left(\frac{\pi}{2c}\left[c\sqrt{x} + \frac{xc^2}{2}\right]\right) \xrightarrow[c \to 0]{} \exp\left(\frac{\pi\sqrt{x}}{2}\right).$$

A similar calculation finally gives:

$$E\left[\sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{T_1^{|\gamma|}}} \exp\left(-\frac{x}{2T_1^{|\gamma|}}\right)\right] = \frac{1}{\cosh\left(\frac{\pi}{2}\sqrt{x}\right)}, \qquad (29)$$

a result which is in agreement with the law of $\beta_{T_{\cdot}^{|\gamma|}}$, whose density is:

$$E\left[\frac{1}{\sqrt{2\pi T_1^{|\gamma|}}}\exp\left(-\frac{y^2}{2T_1^{|\gamma|}}\right)\right] = \frac{1}{2\cosh\left(\frac{\pi}{2}y\right)}.$$
 (30)

Indeed, the law of $\beta_{T_c^{|\gamma|}}$ may be obtained from its characteristic function which is given by [ReY99], page 73:

$$E\left[\exp(i\lambda\beta_{T_c^{|\gamma|}})\right] = \frac{1}{\cosh(\lambda c)}$$
.

It is well known that [Lev80, BiY87]:

$$E\left[\exp(i\lambda\beta_{T_c^{|\gamma|}})\right] = \frac{1}{\cosh(\lambda c)} = \frac{1}{\cosh(\pi\lambda\frac{c}{\pi})} = \int_{-\infty}^{\infty} e^{i\left(\frac{\lambda c}{\pi}\right)y} \frac{1}{2\pi} \frac{1}{\cosh(\frac{y}{2})} dy$$

$$\stackrel{x=\frac{cy}{\pi}}{=} \int_{-\infty}^{\infty} e^{i\lambda x} \frac{1}{2\pi} \frac{\frac{\pi}{c}}{\cosh(\frac{x\pi}{2c})} dx = \int_{-\infty}^{\infty} e^{i\lambda x} \frac{1}{2c} \frac{1}{\cosh(\frac{x\pi}{2c})} dx . \quad (31)$$

So, the density $h_{-c,c}$ of $\beta_{T_{-c,c}}$ is:

$$h_{-c,c}(y) = \left(\frac{1}{2c}\right) \frac{1}{\cosh(\frac{y\pi}{2c})} = \left(\frac{1}{c}\right) \frac{1}{e^{\frac{y\pi}{2c}} + e^{-\frac{y\pi}{2c}}},$$

and for c = 1, we obtain (30).

We recall from Remark 3.2 that (see also [PiY03], where further results concerning the infinitely divisible distributions generated by some Lévy processes associated with the hyperbolic functions cosh, sinh and tanh can also be found):

$$E\left[\exp\left(-\frac{\lambda^2}{2}T_c^{|\gamma|}\right)\right] = \frac{1}{\cosh(\lambda c)} , \qquad (32)$$

thus, for c=1 and $\lambda=\frac{\pi}{2}\sqrt{x}$, (29) now writes:

$$E\left[\sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{T_1^{|\gamma|}}} \exp\left(-\frac{x}{2T_1^{|\gamma|}}\right)\right] = E\left[\exp\left(-\frac{x\pi^2}{8}T_1^{|\gamma|}\right)\right],\tag{33}$$

a result which gives a probabilistic proof of the reciprocal relation in [BPY01] (using the notation of this article, Table 1, p.442):

$$f_{C_1}(x) = \left(\frac{2}{\pi x}\right)^{3/2} f_{C_1}\left(\frac{4}{\pi^2 x}\right).$$

References

- [ADY97] L. Alili, D. Dufresne and M. Yor (1997). Sur l'identité de Bougerol pour les fonctionnelles exponentielles du mouvement Brownien avec drift. In Exponential Functionals and Principal Values related to Brownian Motion. A collection of research papers; Biblioteca de la Revista Matematica, Ibero-Americana, ed. M. Yor, 3-14.
- [BeW94] J. Bertoin and W. Werner (1994). Asymptotic windings of planar Brownian motion revisited via the Ornstein-Uhlenbeck process. Sém. Prob. XXVIII, Lect. Notes in Mathematics, 1583, Springer, Berlin Heidelberg New York 138-152.
- [BPY01] P. Biane, J. Pitman and M. Yor (2001). Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions. *Bull. Amer. Math. Soc.*, **38**, 435-465.
- [BiY87] P. Biane and M. Yor (1987). Valeurs principales associées aux temps locaux browniens. *Bull. Sci. Math.*, **111**, 23-101.
- [Bou83] Ph. Bougerol (1983). Exemples de théorèmes locaux sur les groupes résolubles. Ann. Inst. H. Poincaré, 19, 369-391.
- [Bur77] D. Burkholder (1977). Exit times of Brownian Motion, Harmonic Majorization and Hardy Spaces. Adv. in Math., 26, 182-205.
- [DoV12] R.A. Doney and S. Vakeroudis (2012). Windings of planar stable processes. In preparation.
- [Duf00] D. Dufresne (2000). Laguerre Series for Asian and Other Options. *Mathematical Finance*, Vol. **10**, No. 4, 407-428.
- [Dur82] R. Durrett (1982). A new proof of Spitzer's result on the winding of 2-dimensional Brownian motion. Ann. Prob. 10, 244-246.
- [ItMK65] K. Itô and H.P. McKean (1965). Diffusion Processes and their Sample Paths. Springer, Berlin Heidelberg New York.
- [Lev80] D. Dugué (1980). Œuvres de Paul Lévy, Vol. IV, Processus Stochastiques, Gauthier-Villars. 158 Random Functions: General Theory with Special Reference to Laplacian Random Functions by Paul Lévy.

- [MaY05] H. Matsumoto and M. Yor (2005). Exponential functionals of Brownian motion, I: Probability laws at fixed time. *Probab. Surveys* Volume **2**, 312-347.
- [MeY82] P. Messulam and M. Yor (1982). On D. Williams' "pinching method" and some applications. *J. London Math. Soc.*, **26**, 348-364.
- [PiY03] J.W. Pitman and M. Yor (2003). Infinitely divisible laws associated with hyperbolic functions. *Canad. J. Math.* **55**, 292-330.
- [ReY99] D. Revuz and M. Yor (1999). Continuous Martingales and Brownian Motion. 3rd ed., Springer, Berlin.
- [Spi58] F. Spitzer (1958). Some theorems concerning two-dimensional Brownian Motion. Trans. Amer. Math. Soc. 87, 187-197.
- [Vakth11] S. Vakeroudis (2011). Nombres de tours de certains processus stochastiques plans et applications à la rotation d'un polymère. (Windings of some planar Stochastic Processes and applications to the rotation of a polymer). PhD Dissertation, Université Pierre et Marie Curie (Paris VI), April 2011.
- [Vak11] S. Vakeroudis (2011). On hitting times of the winding processes of planar Brownian motion and of Ornstein-Uhlenbeck processes, via Bougerol's identity. *Teor. Veroyatnost. i Primenen.-SIAM Theory Probab. Appl.*, **56** (3), 566-591 (in TVP)
- [VaY11] S. Vakeroudis and M. Yor (2011). Some infinite divisibility properties of the reciprocal of planar Brownian motion exit time from a cone. Submitted.
- [Wil74] D. Williams (1974). A simple geometric proof of Spitzer's winding number formula for 2-dimensional Brownian motion. University College, Swansea. Unpublished.
- [Yor80] M. Yor (1980). Loi de l'indice du lacet Brownien et Distribution de Hartman-Watson. Z. Wahrsch. verw. Gebiete, 53, 71-95.
- [Yor85] M. Yor (1985). Une décomposition asymptotique du nombre de tours du mouvement brownien complexe. [An asymptotic decomposition of the winding number of complex Brownian motion]. Colloquium in honor of Laurent Schwartz, Vol. 2 (Palaiseau, 1983). Astérisque No. 132 (1985), 103–126.
- [Yor97] M. Yor (1997). Generalized meanders as limits of weighted Bessel processes, and an elementary proof of Spitzer's asymptotic result on Brownian windings. *Studia Scient. Math. Hung.* **33**, 339-343.
- [Yor01] M. Yor (2001). Exponential Functionals of Brownian Motion and Related Processes. Springer Finance. Springer-Verlag, Berlin.