Integrability properties and Limit Theorems for the exit time from a cone of planar Brownian motion

S. Vakeroudis ${ }^{* \dagger}$ M. Yor ${ }^{* \ddagger}$

December 22, 2011

Abstract

We obtain some integrability properties and some limit Theorems for the exit time from a cone of a planar Brownian motion, and we check that our computations are correct via Bougerol's identity.

Key words: Bougerol's identity, planar Brownian motion, skew-product representation, exit time from a cone.

MSC Classification (2010): 60J65, 60F05.

1 Introduction

We consider a standard planar Brownian motion ${ }^{\S}\left(Z_{t}=X_{t}+i Y_{t}, t \geq 0\right)$, starting from $x_{0}+i 0, x_{0}>0$, where $\left(X_{t}, t \geq 0\right)$ and ($\left.Y_{t}, t \geq 0\right)$ are two independent linear Brownian motions, starting respectively from x_{0} and 0 .
As is well known [ItMK65], since $x_{0} \neq 0,\left(Z_{t}, t \geq 0\right)$ does not visit a.s. the point 0 but keeps winding around 0 infinitely often. In particular, the continuous winding process $\theta_{t}=\operatorname{Im}\left(\int_{0}^{t} \frac{d Z_{s}}{Z_{s}}\right), t \geq 0$ is well defined. A scaling argument shows that we may assume $x_{0}=1$, without loss of generality, since, with obvious notation:

$$
\begin{equation*}
\left(Z_{t}^{\left(x_{0}\right)}, t \geq 0\right) \stackrel{(l a w)}{=}\left(x_{0} Z_{\left(t / x_{0}^{2}\right)}^{(1)}, t \geq 0\right) . \tag{1}
\end{equation*}
$$

[^0]Thus, from now on, we shall take $x_{0}=1$.
Furthermore, there is the skew product representation:

$$
\begin{equation*}
\log \left|Z_{t}\right|+i \theta_{t} \equiv \int_{0}^{t} \frac{d Z_{s}}{Z_{s}}=\left.\left(\beta_{u}+i \gamma_{u}\right)\right|_{u=H_{t}=\int_{0}^{t} \frac{d s}{\frac{\left.z_{s}\right|^{2}}{}}} \tag{2}
\end{equation*}
$$

where $\left(\beta_{u}+i \gamma_{u}, u \geq 0\right)$ is another planar Brownian motion starting from $\log 1+i 0=0$. Thus, the Bessel clock H plays a key role in many aspects of the study of the winding number process $\left(\theta_{t}, t \geq 0\right)$ (see e.g. [Yor80]).
Rewriting (2) as:

$$
\begin{equation*}
\log \left|Z_{t}\right|=\beta_{H_{t}} ; \quad \theta_{t}=\gamma_{H_{t}} \tag{3}
\end{equation*}
$$

we easily obtain that the two σ-fields $\sigma\left\{\left|Z_{t}\right|, t \geq 0\right\}$ and $\sigma\left\{\beta_{u}, u \geq 0\right\}$ are identical, whereas $\left(\gamma_{u}, u \geq 0\right)$ is independent from $\left(\left|Z_{t}\right|, t \geq 0\right)$.
We shall also use Bougerol's celebrated identity in law [Bou83, ADY97] and [Yor01] (p. 200), which may be written as:

$$
\begin{equation*}
\text { for fixed } t, \quad \sinh \left(\beta_{t}\right) \stackrel{(\text { law })}{=} \hat{\beta}_{A_{t}(\beta)} \tag{4}
\end{equation*}
$$

where $\left(\beta_{u}, u \geq 0\right)$ is 1 -dimensional $\mathrm{BM}, A_{u}(\beta)=\int_{0}^{u} d s \exp \left(2 \beta_{s}\right)$ and ($\left.\hat{\beta}_{v}, v \geq 0\right)$ is another BM, independent of $\left(\beta_{u}, u \geq 0\right)$. For the random times $T_{c}^{|\theta|} \equiv \inf \left\{t:\left|\theta_{t}\right|=c\right\}$, and $T_{c}^{|\gamma|} \equiv \inf \left\{t:\left|\gamma_{t}\right|=c\right\},(c>0)$ by using the skew-product representation (3) of planar Brownian motion [ReY99], we obtain:

$$
\begin{equation*}
T_{c}^{|\theta|}=A_{T_{c}^{|\gamma|}}(\beta) \equiv \int_{0}^{T_{c}^{|\gamma|}} d s \exp \left(2 \beta_{s}\right)=\left.H_{u}^{-1}\right|_{u=T_{c}^{|\gamma|}} \tag{5}
\end{equation*}
$$

Moreover, it has been recently shown that, Bougerol's identity applied with the random time $T_{c}^{|\theta|}$ instead of t in (4) yields the following [Vak11]:

Proposition 1.1 The distribution of $T_{c}^{|\theta|}$ is characterized by its Gauss-Laplace transform:

$$
\begin{equation*}
E\left[\sqrt{\frac{2 c^{2}}{\pi T_{c}^{|\theta|}}} \exp \left(-\frac{x}{2 T_{c}^{|\theta|}}\right)\right]=\frac{1}{\sqrt{1+x}} \varphi_{m}(x) \tag{6}
\end{equation*}
$$

for every $x \geq 0$, with $m=\frac{\pi}{2 c}$, and:

$$
\begin{equation*}
\varphi_{m}(x)=\frac{2}{\left(G_{+}(x)\right)^{m}+\left(G_{-}(x)\right)^{m}}, \quad G_{ \pm}(x)=\sqrt{1+x} \pm \sqrt{x} \tag{7}
\end{equation*}
$$

The remainder of this article is organized as follows: in Section 2 we study some integrability properties for the exit times from a cone; more precisely we obtain some new results concerning the negative moments of $T_{c}^{|\theta|}$ and of $T_{c}^{\theta} \equiv \inf \left\{t: \theta_{t}=c\right\}$. In Section 3 we state and prove some limit Theorems for these random times for $c \rightarrow 0$ and for $c \rightarrow \infty$ followed by several generalizations (for extensions of these works to more general planar processes, see e.g. [DoV12]). We use these results in order to obtain (see Remark 3.4) a
new simple non-computational proof of Spitzer's celebrated asymptotic Theorem [Spi58], which states that:

$$
\begin{equation*}
\frac{2}{\log t} \theta_{t} \xrightarrow[t \rightarrow \infty]{(\text { law })} C_{1} \tag{8}
\end{equation*}
$$

with C_{1} denoting a standard Cauchy variable (for other proofs, see also e.g. [Wil74, Dur82, MeY82, BeW94, Yor97, Vak11]). Finally, in Section 4 we use the Gauss-Laplace transform (6) which is equivalent to Bougerol's identity (4) in order to check our results.

2 Integrability Properties

Concerning the moments of $T_{c}^{|\theta|}$, we have the following (a more extended discussion is found in e.g. [MaY05]):

Theorem 2.1 For every $c>0, T_{c}^{|\theta|}$ enjoys the following integrability properties:
(i) for $p>0, E\left[\left(T_{c}^{|\theta|}\right)^{p}\right]<\infty$, if and only if $p<\frac{\pi}{4 c}$.
(ii) for any $p<0, E\left[\left(T_{c}^{|\theta|}\right)^{p}\right]<\infty$.

Corollary 2.2 For $0<c<d$, the random times $T_{-d, c}^{\theta} \equiv \inf \left\{t: \theta_{t} \notin(-d, c)\right\}, T_{c}^{|\theta|}$ and T_{c}^{θ} satisfy the inequality:

$$
\begin{equation*}
T_{c}^{\theta} \geq T_{-d, c}^{\theta} \geq T_{c}^{|\theta|} \tag{9}
\end{equation*}
$$

Thus, their negative moments satisfy:

$$
\begin{equation*}
\text { for } p>0, E\left[\frac{1}{\left(T_{c}^{\theta}\right)^{p}}\right] \leq E\left[\frac{1}{\left(T_{-d, c}^{\theta}\right)^{p}}\right] \leq E\left[\frac{1}{\left(T_{c}^{|\theta|}\right)^{p}}\right]<\infty . \tag{10}
\end{equation*}
$$

Proofs of Theorem 2.1 and of Corollary 2.2
(i) The original proof is given by Spitzer [Spi58], followed later by many authors [Wil74, Bur77, MeY82, Dur82, Yor85]. See also [ReY99] Ex. 2.21/page 196.
(ii) In order to obtain this result, we might use the representation $T_{c}^{|\theta|}=A_{T_{c}^{|\gamma|}}$ together with a recurrence formula for the negative moments of A_{t} [Duf00], Theorem 4.2, p. 417 (in fact, Dufresne also considers $A_{t}^{(\mu)}=\int_{0}^{t} d s \exp \left(2 \beta_{s}+2 \mu s\right)$, but we only need to take $\mu=0$ for our purpose, and we note $A_{t} \equiv A_{t}^{(0)}$) [Vakth11]. However, we can also obtain this result by simply remarking that the RHS of the Gauss-Laplace transform (6) in Proposition 1.1 is an infinitely differentiable function in 0 (see also [VaY11]), thus:

$$
\begin{equation*}
E\left[\frac{1}{\left(T_{c}^{|\theta|}\right)^{p}}\right]<\infty, \text { for every } p>0 \tag{11}
\end{equation*}
$$

Now, Corollary 2.2 follows immediately from Theorem 2.1 (ii).

3 Limit Theorems for $T_{c}^{|\theta|}$

3.1 Limit Theorems for $T_{c}^{|\theta|}$, as $c \rightarrow 0$ and $c \rightarrow \infty$

The skew-product representation of planar Brownian motion allows to prove the three following asymptotic results for $T_{c}^{|\theta|}$:

Proposition 3.1 a) For $c \rightarrow 0$, we have:

$$
\begin{equation*}
\frac{1}{c^{2}} T_{c}^{|\theta|} \xrightarrow[c \rightarrow 0]{(\text { law })} T_{1}^{|\gamma|} . \tag{12}
\end{equation*}
$$

b) For $c \rightarrow \infty$, we have:

$$
\begin{equation*}
\frac{1}{c} \log \left(T_{c}^{|\theta|}\right) \underset{c \rightarrow \infty}{(l a w)} 2|\beta|_{T_{1}^{|\gamma|}} . \tag{13}
\end{equation*}
$$

c) For $\varepsilon \rightarrow 0$, we have:

$$
\begin{equation*}
\frac{1}{\varepsilon^{2}}\left(T_{c+\varepsilon}^{|\theta|}-T_{c}^{|\theta|}\right) \xrightarrow[\varepsilon \rightarrow 0]{(\operatorname{laww})} \exp \left(2 \beta_{T_{c}^{|\gamma|}}\right) T_{1}^{\gamma^{\prime}}, \tag{14}
\end{equation*}
$$

where γ^{\prime} stands for a real Brownian motion, independent from γ, and $T_{1}^{\gamma^{\prime}}=\inf \left\{t: \gamma_{t}^{\prime}=1\right\}$

Proof of Proposition 3.1:

We rely upon (5) for the three proofs. By using the scaling property of BM, we obtain:

$$
T_{c}^{|\theta|}=\left.A_{T_{c}^{|\gamma|}}(\beta) \stackrel{(l a w)}{=} A_{u}(\beta)\right|_{u=c^{2} T_{1}^{|\gamma|}}
$$

thus:

$$
\begin{equation*}
\frac{1}{c^{2}} T_{c}^{|\theta|} \stackrel{(l a w)}{=} \int_{0}^{T_{1}^{|\gamma|}} d v \exp \left(2 c \beta_{v}\right) \tag{15}
\end{equation*}
$$

a) For $c \rightarrow 0$, the RHS of (15) converges to $T_{1}^{|\gamma|}$, thus we obtain part a) of the Proposition.
b) For $c \rightarrow \infty$, taking logarithms on both sides of (15) and dividing by c, on the LHS we obtain $\frac{1}{c} \log \left(T_{c}^{|\theta|}\right)-\frac{2}{c} \log c$ and on the RHS:

$$
\frac{1}{c} \log \left(\int_{0}^{T_{1}^{|\gamma|}} d v \exp \left(2 c \beta_{v}\right)\right)=\log \left(\int_{0}^{T_{1}^{|\gamma|}} d v \exp \left(2 c \beta_{v}\right)\right)^{1 / c}
$$

which, from the classical Laplace argument: $\|f\|_{p} \xrightarrow{p \rightarrow \infty}\|f\|_{\infty}$, converges for $c \rightarrow \infty$, towards:

$$
2 \sup _{v \leq T_{1}^{|\gamma|}}\left(\beta_{v}\right) \stackrel{(l a w)}{=} 2|\beta|_{T_{1}^{|\gamma|}} .
$$

This proves part b) of the Proposition.
c)

$$
\begin{align*}
T_{c+\varepsilon}^{|\theta|}-T_{c}^{|\theta|} & =\int_{T_{c}^{|\gamma|}}^{T_{c}^{|\gamma| \varepsilon}} d u \exp \left(2 \beta_{u}\right)=\int_{0}^{T_{c+\varepsilon}^{|\gamma|}-T_{c}^{|\gamma|}} d v \exp \left(2 \beta_{T_{c}^{|\gamma|}}\right) \exp \left(2\left(\beta_{v+T_{c}^{|\gamma|}}-\beta_{T_{c}^{|\gamma|}}\right)\right) \\
& =\exp \left(2 \beta_{T_{c}^{|\gamma|}}\right) \int_{0}^{T_{c+\varepsilon}^{|\gamma|}-T_{c}^{|\gamma|}} d v \exp \left(2 B_{v}\right) \tag{16}
\end{align*}
$$

where $\left(B_{s} \equiv \beta_{s+T_{c}^{|\gamma|}}-\beta_{T_{c}^{|\gamma|}}, s \geq 0\right)$ is a BM independent of $T_{c}^{|\gamma|}$.
We study now $\tilde{T}_{c, c+\varepsilon}^{|\gamma|} \equiv T_{c+\varepsilon}^{|\gamma|}-T_{c}^{|\gamma|}$, the first hitting time of the level $c+\varepsilon$ from $|\gamma|$, starting from c. Thus, we define: $\rho_{u} \equiv\left|\gamma_{u}\right|$, starting also from c. Thus, $\rho_{u}=c+\delta_{u}+L_{u}$, where $\left(\delta_{s}, s \geq 0\right)$ is a BM and $\left(L_{s}, s \geq 0\right)$ is the local time of ρ at 0 . Thus:

$$
\begin{align*}
\tilde{T}_{c, c+\varepsilon}^{|\gamma|} & =\quad \inf \left\{u \geq 0: \rho_{u}=c+\varepsilon\right\} \equiv \inf \left\{u \geq 0: \delta_{u}+L_{u}=\varepsilon\right\} \\
& \begin{array}{l}
u=\varepsilon^{2} v \\
=
\end{array} \varepsilon^{2} \inf \left\{v \geq 0: \frac{1}{\varepsilon} \delta_{v \varepsilon^{2}}+\frac{1}{\varepsilon} L_{v \varepsilon^{2}}=1\right\} . \tag{17}
\end{align*}
$$

From Skorokhod's Lemma [ReY99]:

$$
L_{u}=\sup _{y \leq u}\left(\left(-c-\delta_{y}\right) \vee 0\right)
$$

we deduce:

$$
\begin{equation*}
\frac{1}{\varepsilon} L_{v \varepsilon^{2}}=\sup _{y \leq v \varepsilon^{2}}\left(\left(-c-\delta_{y}\right) \vee 0\right) \stackrel{y=\varepsilon^{2} \sigma}{=} \sup _{\sigma \leq v}\left(\left(-c-\varepsilon \frac{1}{\varepsilon} \delta_{\sigma \varepsilon^{2}}\right) \vee 0\right)=0 . \tag{18}
\end{equation*}
$$

Hence, with γ^{\prime} denoting a new BM independent from γ, (16) writes:

$$
\begin{equation*}
T_{c+\varepsilon}^{|\theta|}-T_{c}^{|\theta|}=\exp \left(2 \beta_{T_{c}^{|c|}}\right) \int_{0}^{\varepsilon^{2} T_{1}^{\gamma^{\prime}}} d v \exp \left(2 B_{v}\right) \tag{19}
\end{equation*}
$$

Thus, dividing both sides of (19) by ε^{2} and making $\varepsilon \rightarrow 0$, we obtain part c) of the Proposition.

Remark 3.2 The asymptotic result c) in Proposition 3.1 may also be obtained in a straightforward manner from (16) by analytic computations. Indeed, using the Laplace transform of the first hitting time of a fixed level by the absolute value of a linear Brownian motion $E\left[e^{-\frac{\lambda^{2}}{2} T_{b}^{|\gamma|}}\right]=\frac{1}{\cosh (\lambda b)}$ (see e.g. Proposition 3.7, p 71 in Revuz and Yor [Re Y99]), we have that for $0<c<b$, and $\lambda \geq 0$:

$$
\begin{equation*}
E\left[e^{-\frac{\lambda^{2}}{2}\left(T_{b}^{|\gamma|}-T_{c}^{|\gamma|}\right)}\right]=\frac{\cosh (\lambda c)}{\cosh (\lambda b)} \tag{20}
\end{equation*}
$$

Using now $b=c+\varepsilon$, for every $\varepsilon>0$, the latter equals:

$$
\frac{\cosh \left(\frac{\lambda c}{\varepsilon}\right)}{\cosh \left(\frac{\lambda}{\varepsilon}(c+\varepsilon)\right)} \xrightarrow{\varepsilon \rightarrow 0} e^{-\lambda} .
$$

The result follows now by remarking that $e^{-\lambda}$ is the Laplace transform (for the argument $\lambda^{2} / 2$) of the first hitting time of 1 by a linear Brownian motion γ^{\prime}, independent from γ.

3.2 Generalizations

Obviously we can obtain several variants of Proposition 3.1, by studying $T_{-b c, a c}^{\theta}, 0<$ $a, b \leq \infty$, for $c \rightarrow 0$ or $c \rightarrow \infty$, and a, b fixed. We define $T_{-d, c}^{\gamma} \equiv \inf \left\{t: \gamma_{t} \notin(-d, c)\right\}$ and we have:

- $\frac{1}{c^{2}} T_{-b c, a c}^{\theta} \underset{c \rightarrow 0}{\stackrel{(l a w)}{ }} T_{-b, a}^{\gamma}$.
- $\frac{1}{c} \log \left(T_{-b c, a c}^{\theta}\right) \xrightarrow[c \rightarrow \infty]{(\text { law })} \underset{\rightarrow}{\infty}|\beta|_{T_{-b, a}^{\gamma}}$.

In particular, we can take $b=\infty$, hence:
Corollary 3.3 a) For $c \rightarrow 0$, we have:

$$
\begin{equation*}
\frac{1}{c^{2}} T_{a c}^{\theta} \xrightarrow[c \rightarrow 0]{(l a w)} T_{a}^{\gamma} . \tag{21}
\end{equation*}
$$

b) For $c \rightarrow \infty$, we have:

$$
\begin{equation*}
\frac{1}{c} \log \left(T_{a c}^{\theta}\right) \xrightarrow[c \rightarrow \infty]{(\text { law })} 2|\beta|_{T_{a}^{\gamma}} \stackrel{(\text { law })}{=} 2\left|C_{a}\right|, \tag{22}
\end{equation*}
$$

where $\left(C_{a}, a \geq 0\right)$ is a standard Cauchy process.

Remark 3.4 (Yet another proof of Spitzer's Theorem)

Taking $a=1$, from Corollary 3.3(b), we can obtain yet another proof of Spitzer's celebrated asymptotic Theorem stated in (8). Indeed, (22) can be equivalently stated as:

$$
\begin{equation*}
P\left(\log T_{c}^{\theta}<c x\right) \underset{c \rightarrow \infty}{(l a w)} P\left(2\left|C_{1}\right|<x\right) . \tag{23}
\end{equation*}
$$

Now, the LHS of (23) equals:

$$
\begin{align*}
P\left(\log T_{c}^{\theta}<c x\right) & \equiv P\left(T_{c}^{\theta}<\exp (c x)\right) \equiv P\left(\sup _{u \leq \exp (c x)} \theta_{u}>c\right) \\
& =P\left(\left|\theta_{\exp (c x)}\right|>c\right)=P\left(\left|\theta_{t}\right|>\frac{\log t}{x}\right), \tag{24}
\end{align*}
$$

with $t=\exp (c x)$. Thus, because $\left|C_{1}\right| \stackrel{(\text { law })}{=}\left|C_{1}\right|^{-1}$, (23) now writes:

$$
\begin{equation*}
\text { for every } x>0 \text { given, } P\left(\left|\theta_{t}\right|>\frac{\log t}{x}\right) \underset{t \rightarrow \infty}{\stackrel{(\text { law })}{\rightarrow}} P\left(\left|C_{1}\right|>\frac{2}{x}\right) \text {, } \tag{25}
\end{equation*}
$$

which yields precisely Spitzer's Theorem (8).

3.3 Speed of convergence

We can easily improve upon Proposition 3.1 by studying the speed of convergence of the distribution of $\frac{1}{c^{2}} T_{c}^{|\theta|}$ towards that of $T_{1}^{|\gamma|}$, i.e.:

Proposition 3.5 For any function $\varphi \in \mathcal{C}^{2}$, with compact support,

$$
\begin{equation*}
\frac{1}{c^{2}}\left(E\left[\varphi\left(\frac{1}{c^{2}} T_{c}^{|\theta|}\right)\right]-E\left[\varphi\left(T_{1}^{|\gamma|}\right)\right]\right) \underset{c \rightarrow 0}{\longrightarrow} E\left[\varphi^{\prime}\left(T_{1}^{|\gamma|}\right)\left(T_{1}^{|\gamma|}\right)^{2}+\frac{2}{3} \varphi^{\prime \prime}\left(T_{1}^{|\gamma|}\right)\left(T_{1}^{|\gamma|}\right)^{3}\right] . \tag{26}
\end{equation*}
$$

Proof of Proposition 3.5:

We develop $\exp \left(2 c \beta_{v}\right)$, for $c \rightarrow 0$, up to the second order term, i.e.:

$$
e^{2 c \beta_{v}}=1+2 c \beta_{v}+2 c^{2} \beta_{v}^{2}+\ldots .
$$

More precisely, we develop up to the second order term, and we obtain:

$$
\begin{aligned}
E\left[\varphi\left(\frac{1}{c^{2}} T_{c}^{|\theta|}\right)\right]= & E\left[\varphi\left(\int_{0}^{T_{1}^{|\gamma|}} d v \exp \left(2 c \beta_{v}\right)\right)\right] \\
= & E\left[\varphi\left(T_{1}^{|\gamma|}\right)+\varphi^{\prime}\left(T_{1}^{|\gamma|}\right) \int_{0}^{T_{1}^{|\gamma|}}\left(2 c \beta_{v}+2 c^{2} \beta_{v}^{2}\right) d v\right] \\
& +\frac{1}{2} E\left[\varphi^{\prime \prime}\left(T_{1}^{|\gamma|}\right) 4 c^{2}\left(\int_{0}^{T_{1}^{|\gamma|}} \beta_{v} d v\right)^{2}\right]+c^{2} o(c) .
\end{aligned}
$$

We then remark that $E\left[\int_{0}^{t} \beta_{v} d v\right]=0, E\left[\int_{0}^{t} \beta_{v}^{2} d v\right]=t^{2} / 2$ and $E\left[\left(\int_{0}^{t} \beta_{v} d v\right)^{2}\right]=t^{3} / 3$, thus we obtain (26).

4 Checks via Bougerol's identity

So far, we have not made use of Bougerol's identity (4), which helps us to characterize the distribution of $T_{c}^{|\theta|}$ [Vak11]. In this Subsection, we verify that writing the Gauss-Laplace transform in (6) as:

$$
\begin{equation*}
E\left[\sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{\frac{1}{c^{2}} T_{c}^{|\theta|}}} \exp \left(-\frac{x c^{2}}{2 T_{c}^{|\theta|}}\right)\right]=\frac{1}{\sqrt{1+x c^{2}}} \varphi_{m}\left(x c^{2}\right) \tag{27}
\end{equation*}
$$

with $m=\pi /(2 c)$, we find asymptotically for $c \rightarrow 0$ the Gauss-Laplace transform of $T_{1}^{|\gamma|}$. Indeed, from (27), for $c \rightarrow 0$, we obtain:

$$
\begin{equation*}
E\left[\sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{T_{1}^{|\gamma|}}} \exp \left(-\frac{x}{2 T_{1}^{|\gamma|}}\right)\right]=\lim _{c \rightarrow 0} \frac{2}{\left(\sqrt{1+x c^{2}}+\sqrt{x c^{2}}\right)^{\pi / 2 c}+\left(\sqrt{1+x c^{2}}-\sqrt{x c^{2}}\right)^{\pi / 2 c}} . \tag{28}
\end{equation*}
$$

Let us now study:

$$
\begin{aligned}
\left(\sqrt{1+x c^{2}}+\sqrt{x c^{2}}\right)^{\pi / 2 c} & =\exp \left(\frac{\pi}{2 c} \log \left[1+\left(\sqrt{1+x c^{2}}-1\right)+\sqrt{x c^{2}}\right]\right) \\
& \sim \exp \left(\frac{\pi}{2 c}\left[c \sqrt{x}+\frac{x c^{2}}{2}\right]\right) \underset{c \rightarrow 0}{\longrightarrow} \exp \left(\frac{\pi \sqrt{x}}{2}\right)
\end{aligned}
$$

A similar calculation finally gives:

$$
\begin{equation*}
E\left[\sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{T_{1}^{|\gamma|}}} \exp \left(-\frac{x}{2 T_{1}^{|\gamma|}}\right)\right]=\frac{1}{\cosh \left(\frac{\pi}{2} \sqrt{x}\right)} \tag{29}
\end{equation*}
$$

a result which is in agreement with the law of $\beta_{T_{1}^{|\gamma|}}$, whose density is:

$$
\begin{equation*}
E\left[\frac{1}{\sqrt{2 \pi T_{1}^{|\gamma|}}} \exp \left(-\frac{y^{2}}{2 T_{1}^{|\gamma|}}\right)\right]=\frac{1}{2 \cosh \left(\frac{\pi}{2} y\right)} . \tag{30}
\end{equation*}
$$

Indeed, the law of $\beta_{T_{c}^{|\gamma|}}$ may be obtained from its characteristic function which is given by [ReY99], page 73:

$$
E\left[\exp \left(i \lambda \beta_{T_{c}^{|\gamma|}}\right)\right]=\frac{1}{\cosh (\lambda c)}
$$

It is well known that [Lev80, BiY87]:

$$
\begin{align*}
& E\left[\exp \left(i \lambda \beta_{T_{c}|\gamma|}\right)\right]=\frac{1}{\cosh (\lambda c)}=\frac{1}{\cosh \left(\pi \lambda \frac{c}{\pi}\right)}=\int_{-\infty}^{\infty} e^{i\left(\frac{\lambda c}{\pi}\right) y} \frac{1}{2 \pi} \frac{1}{\cosh \left(\frac{y}{2}\right)} d y \\
& \stackrel{x=\frac{c y}{\pi}}{=} \int_{-\infty}^{\infty} e^{i \lambda x} \frac{1}{2 \pi} \frac{\frac{\pi}{c}}{\cosh \left(\frac{x \pi}{2 c}\right)} d x=\int_{-\infty}^{\infty} e^{i \lambda x} \frac{1}{2 c} \frac{1}{\cosh \left(\frac{x \pi}{2 c}\right)} d x \tag{31}
\end{align*}
$$

So, the density $h_{-c, c}$ of $\beta_{T_{c}^{|\gamma|}}$ is:

$$
h_{-c, c}(y)=\left(\frac{1}{2 c}\right) \frac{1}{\cosh \left(\frac{y \pi}{2 c}\right)}=\left(\frac{1}{c}\right) \frac{1}{e^{\frac{y \pi}{2 c}}+e^{-\frac{y \pi}{2 c}}}
$$

and for $c=1$, we obtain (30).
We recall from Remark 3.2 that (see also [PiY03], where further results concerning the infinitely divisible distributions generated by some Lévy processes associated with the hyperbolic functions cosh, sinh and tanh can also be found):

$$
\begin{equation*}
E\left[\exp \left(-\frac{\lambda^{2}}{2} T_{c}^{|\gamma|}\right)\right]=\frac{1}{\cosh (\lambda c)} \tag{32}
\end{equation*}
$$

thus, for $c=1$ and $\lambda=\frac{\pi}{2} \sqrt{x}$, (29) now writes:

$$
\begin{equation*}
E\left[\sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{T_{1}^{|\gamma|}}} \exp \left(-\frac{x}{2 T_{1}^{|\gamma|}}\right)\right]=E\left[\exp \left(-\frac{x \pi^{2}}{8} T_{1}^{|\gamma|}\right)\right] \tag{33}
\end{equation*}
$$

a result which gives a probabilistic proof of the reciprocal relation in [BPY01] (using the notation of this article, Table 1, p.442):

$$
f_{C_{1}}(x)=\left(\frac{2}{\pi x}\right)^{3 / 2} f_{C_{1}}\left(\frac{4}{\pi^{2} x}\right) .
$$

References

[ADY97] L. Alili, D. Dufresne and M. Yor (1997). Sur l'identité de Bougerol pour les fonctionnelles exponentielles du mouvement Brownien avec drift. In Exponential Functionals and Principal Values related to Brownian Motion. A collection of research papers; Biblioteca de la Revista Matematica, Ibero-Americana, ed. M. Yor, 3-14.
[BeW94] J. Bertoin and W. Werner (1994). Asymptotic windings of planar Brownian motion revisited via the Ornstein-Uhlenbeck process. Sém. Prob. XXVIII, Lect. Notes in Mathematics, 1583, Springer, Berlin Heidelberg New York 138-152.
[BPY01] P. Biane, J. Pitman and M. Yor (2001). Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions. Bull. Amer. Math. Soc., 38, 435-465.
[BiY87] P. Biane and M. Yor (1987). Valeurs principales associées aux temps locaux browniens. Bull. Sci. Math., 111, 23-101.
[Bou83] Ph. Bougerol (1983). Exemples de théorèmes locaux sur les groupes résolubles. Ann. Inst. H. Poincaré, 19, 369-391.
[Bur77] D. Burkholder (1977). Exit times of Brownian Motion, Harmonic Majorization and Hardy Spaces. Adv. in Math., 26, 182-205.
[DoV12] R.A. Doney and S. Vakeroudis (2012). Windings of planar stable processes. In preparation.
[Duf00] D. Dufresne (2000). Laguerre Series for Asian and Other Options. Mathematical Finance, Vol. 10, No. 4, 407-428.
[Dur82] R. Durrett (1982). A new proof of Spitzer's result on the winding of 2-dimensional Brownian motion. Ann. Prob. 10, 244-246.
[ItMK65] K. Itô and H.P. McKean (1965). Diffusion Processes and their Sample Paths. Springer, Berlin Heidelberg New York.
[Lev80] D. Dugué (1980). Euvres de Paul Lévy, Vol. IV, Processus Stochastiques, Gauthier-Villars. 158 Random Functions: General Theory with Special Reference to Laplacian Random Functions by Paul Lévy.
[MaY05] H. Matsumoto and M. Yor (2005). Exponential functionals of Brownian motion, I: Probability laws at fixed time. Probab. Surveys Volume 2, 312-347.
[MeY82] P. Messulam and M. Yor (1982). On D. Williams' "pinching method" and some applications. J. London Math. Soc., 26, 348-364.
[PiY03] J.W. Pitman and M. Yor (2003). Infinitely divisible laws associated with hyperbolic functions. Canad. J. Math. 55, 292-330.
[ReY99] D. Revuz and M. Yor (1999). Continuous Martingales and Brownian Motion. 3rd ed., Springer, Berlin.
[Spi58] F. Spitzer (1958). Some theorems concerning two-dimensional Brownian Motion. Trans. Amer. Math. Soc. 87, 187-197.
[Vakth11] S. Vakeroudis (2011). Nombres de tours de certains processus stochastiques plans et applications à la rotation d'un polymère. (Windings of some planar Stochastic Processes and applications to the rotation of a polymer). PhD Dissertation, Université Pierre et Marie Curie (Paris VI), April 2011.
[Vak11] S. Vakeroudis (2011). On hitting times of the winding processes of planar Brownian motion and of Ornstein-Uhlenbeck processes, via Bougerol's identity. Teor. Veroyatnost. i Primenen.-SIAM Theory Probab. Appl., 56 (3), 566-591 (in TVP)
[VaY11] S. Vakeroudis and M. Yor (2011). Some infinite divisibility properties of the reciprocal of planar Brownian motion exit time from a cone. Submitted.
[Wil74] D. Williams (1974). A simple geometric proof of Spitzer's winding number formula for 2-dimensional Brownian motion. University College, Swansea. Unpublished.
[Yor80] M. Yor (1980). Loi de l'indice du lacet Brownien et Distribution de HartmanWatson. Z. Wahrsch. verw. Gebiete, 53, 71-95.
[Yor85] M. Yor (1985). Une décomposition asymptotique du nombre de tours du mouvement brownien complexe. [An asymptotic decomposition of the winding number of complex Brownian motion]. Colloquium in honor of Laurent Schwartz, Vol. 2 (Palaiseau, 1983). Astérisque No. 132 (1985), 103-126.
[Yor97] M. Yor (1997). Generalized meanders as limits of weighted Bessel processes, and an elementary proof of Spitzer's asymptotic result on Brownian windings. Studia Scient. Math. Hung. 33, 339-343.
[Yor01] M. Yor (2001). Exponential Functionals of Brownian Motion and Related Processes. Springer Finance. Springer-Verlag, Berlin.

[^0]: *Laboratoire de Probabilités et Modèles Aléatoires (LPMA) CNRS : UMR7599, Université Pierre et Marie Curie - Paris VI, Université Paris-Diderot - Paris VII, 4 Place Jussieu, 75252 Paris Cedex 05, France. E-mail: stavros.vakeroudis@etu.upmc.fr
 ${ }^{\dagger}$ Probability and Statistics Group, School of Mathematics, University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL, United Kingdom.
 ${ }^{\ddagger}$ Institut Universitaire de France, Paris, France. E-mail: yormarc@aol.com
 ${ }^{\S}$ When we simply write: Brownian motion, we always mean real-valued Brownian motion, starting from 0. For 2-dimensional Brownian motion, we indicate planar or complex BM.

