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Abstract

We obtain some integrability properties and some limit Theorems for the exit
time from a cone of a planar Brownian motion, and we check that our computations

are correct via Bougerol’s identity.
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1 Introduction

We consider a standard planar Brownian motion? (Zy = Xy +1iY;, t > 0), starting from
xo + 10,29 > 0, where (X;,t > 0) and (Y;,t > 0) are two independent linear Brownian
motions, starting respectively from xy and 0.

As is well known [[tMK65], since g # 0, (Z;, ¢t > 0) does not visit a.s. the point 0 but
keeps winding around 0 infinitely often. In particular, the continuous winding process
0; = Im( ! dZ:) t > 0 is well defined. A scaling argument shows that we may assume

0 Z,
xo = 1, without loss of generality, since, with obvious notation:

(Zt(“’,t > 0) (aw) (xoz((j}x%),t > 0) . (1)
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$When we simply write: Brownian motion, we always mean real-valued Brownian motion, starting

from 0. For 2-dimensional Brownian motion, we indicate planar or complex BM.



Thus, from now on, we shall take o = 1.
Furthermore, there is the skew product representation:

1 |Z|+'9‘/tdzs—<ﬁ +iv) 2)
Og t Zt— 0 Zs - U Z’Yu u:Ht:ft ds 9

PR

where (8, + 7y, u > 0) is another planar Brownian motion starting from log 1 + 0 = 0.
Thus, the Bessel clock H plays a key role in many aspects of the study of the winding
number process (0;,t > 0) (see e.g. [Yor80]).

Rewriting (2) as:

log |Zi| = Bu,; Ok = va,, (3)

we easily obtain that the two o-fields o{|Z;|,t > 0} and o{fB,,u > 0} are identical,
whereas (7,,u > 0) is independent from (|Z;|,t > 0).

We shall also use Bougerol’s celebrated identity in law [Bou83, ADY97| and [Yor01] (p.
200), which may be written as:

(law

for fixed ¢, sinh(f;) aw) BAt(B) (4)

where (8,,u > 0) is 1-dimensional BM, A,(8) = [ dsexp(26,) and (By,v > 0) is
another BM, independent of (3,,u > 0). For the random times T = inf{t : |0;| = c},

and T\ = inf{t : || = ¢}, (¢ > 0) by using the skew-product representation (3) of
planar Brownian motion [ReY99], we obtain:

T
T = Ap(B) = /0 dsexp(283,) = H* . (5)

u:TcM

Moreover, it has been recently shown that, Bougerol’s identity applied with the random
time 7" instead of ¢ in (4) yields the following [Vak11]:

Proposition 1.1 The distribution of T is characterized by its Gauss-Laplace trans-

form:
2¢? x 1
L 7Tczjc\€| exp <_ 2Tc€|> = 1+ T x(pm@j)v (6)
Jor every x > 0, with m = -, and:
2

=V1+z£+x. (7)

D =ty @

The remainder of this article is organized as follows: in Section 2 we study some inte-
grability properties for the exit times from a cone; more precisely we obtain some new
results concerning the negative moments of T and of T? = inf{t : 0, = c}. In Section 3
we state and prove some limit Theorems for these random times for ¢ — 0 and for ¢ — oo
followed by several generalizations (for extensions of these works to more general planar
processes, see e.g. [DoV12]). We use these results in order to obtain (see Remark 3.4) a

2



new simple non-computational proof of Spitzer’s celebrated asymptotic Theorem [Spi5§|,
which states that:

2 aw
et ¢ )) Cl ) (8)
logt =~ t—oo

with C} denoting a standard Cauchy variable (for other proofs, see also e.g. [Wil74,
Dur82, MeY82, BeW94, Yor97, Vakl11]). Finally, in Section 4 we use the Gauss-Laplace
transform (6) which is equivalent to Bougerol’s identity (4) in order to check our results.

2 Integrability Properties

Concerning the moments of T, C‘GI, we have the following (a more extended discussion is
found in e.g. [MaY05]):

Theorem 2.1 For every ¢ > 0, 7! enjoys the following integrability properties:

(i) forp>0, F [(Ty')p} < 00, if and only if p < 1.
(ii) for anyp <0, E [(T(;‘GI)I)} < 0.

Corollary 2.2 For 0 < ¢ < d, the random times T, , = inf{t : ; ¢ (—d,c)}, T and
TY satisfy the inequality:

U P (9)
Thus, their negative moments satisfy:

1

<F|—
Proofs of Theorem 2.1 and of Corollary 2.2
(i) The original proof is given by Spitzer [Spi58|, followed later by many authors [Wil74,
Bur77, MeY82, Dur82, Yor85|. See also [ReY99] Ex. 2.21/page 196.

(ii) In order to obtain this result, we might use the representation TV = A together

forp>0, E {@} <FE < 00. (10)

C

_
(de,t:)p

with a recurrence formula for the negative moments of A; [Duf00|, Theorem 4.2, p. 417
(in fact, Dufresne also considers AW = f(f ds exp(2fs + 2us), but we only need to take

i = 0 for our purpose, and we note A; = A§°’) [Vakth11]. However, we can also obtain
this result by simply remarking that the RHS of the Gauss-Laplace transform (6) in
Proposition 1.1 is an infinitely differentiable function in 0 (see also [VaY11]), thus:

1

W

Now, Corollary 2.2 follows immediately from Theorem 2.1 (ii). ]

< 00, for every p > 0. (11)
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3 Limit Theorems for Tcw|

3.1 Limit Theorems for TC|9|, as ¢c— 0 and ¢ -

The skew-product representation of planar Brownian motion allows to prove the three
following asymptotic results for T,

Proposition 3.1 a) For ¢ — 0, we have:

0_12 T &l (12)
b) For ¢ — oo, we have:
! log (T)") oy 2|8 - (13)
¢ 00 |
c¢) Fore — 0, we have:
giz (Tc@e - Tf") i—? exp (%TCM) T, (14)

where ' stands for a real Brownian motion, independent from y, and Tf/ =inf{t: v, =1}

Proof of Proposition 3.1:
We rely upon (5) for the three proofs. By using the scaling property of BM, we obtain:

Czjc‘e| = ATCM (6) (lg) Au(ﬁ)

u:cQTlM
thus:
ol
1 (law) h
chw‘ = /o dv exp (2¢B,) . (15)
a) For ¢ — 0, the RHS of (15) converges to TIM, thus we obtain part a) of the Proposition.

b) For ¢ — oo, taking logarithms on both sides of (15) and dividing by ¢, on the LHS we
obtain % log (Tcwl) — %logc and on the RHS:

! ! ! 1/e
- log (/ dv exp (20&)) = log </ dv exp (20&)) ,
0 0

which, from the classical Laplace argument: | f|l,"— || f|lo, converges for ¢ — oo, to-
wards:

(law)
2 sup (By) =" 2(Blpp-

USTIM



This proves part b) of the Proposition.
c)

. i 11
T -1 = / du exp (20,) = / dv exp (%Tcw) exp (2 <6v+TCM - 5TCM>>
0

TCM

-1l
— oo (26,) [ dv exp (2B,). (16)
© 0
where <Bs =0, i By = 0) is a BM independent of s

We study now Tchc‘ =T —TD! the first hitting time of the level c+¢ from ||, starting
from ¢. Thus, we define: p, = |v,|, starting also from c. Thus, p, = ¢+ &, + L,, where
(05,5 > 0) is a BM and (Ls, s > 0) is the local time of p at 0. Thus:

Tc@'% = inf{u>0:p,=c+e}=inf{u>0:9,+ L, =¢}
P 2inf {v >0: 1(5%2 + ELWQ = 1} : (17)
5 5
From Skorokhod’s Lemma [ReY99:
L, =sup ((—c—0d,)VO0)

y<u
we deduce:
1 y=c2c 1
—Lye2 = sup ((—c—0,)VO0) "= sup | |—c—e=bp2) VO] =0. (18)
19 y<ve2 o<v 19
Hence, with 7' denoting a new BM independent from =, (16) writes:
52T;’/
Tc‘ile ~ T = exp (25%‘”‘) / dv exp (2B,) . (19)
0
Thus, dividing both sides of (19) by €2 and making ¢ — 0, we obtain part c) of the
Proposition. |

Remark 3.2 The asymptotic result c¢) in Proposition 3.1 may also be obtained in a

straightforward manner from (16) by analytic computations. Indeed, using the Laplace

transform of the first hz’ttz’ng time of a fized level by the absolute value of a linear Brownian
2

motion E [e‘ATTbM] = Cosh()\b (see e.g. Proposition 3.7, p 71 in Revuz and Yor [ReY99]),

we have that for 0 < c < b, and A > 0:

E [e‘é(TbV—Tc”)} — 722238‘3 (20)

Using now b = c + ¢, for every € > 0, the latter equals:

COSh(%) e—=0  _

cosh (2(c+¢))

The result follows now by remarking that e~ is the Laplace transform (for the argument

A\2/2) of the first hitting time of 1 by a linear Brownian motion v, independent from .



3.2 Generalizations

Obviously we can obtain several variants of Proposition 3.1, by studying 7%, ,., 0 <
a,b < oo, for ¢ — 0 or ¢ — 0o, and a, b fixed. We define 77, . = inf{t : v, ¢ (—d,c)} and
we have:

(law)
o % log (bec,ac) H—o)o 2|B|ij7a
In particular, we can take b = oo, hence:

Corollary 3.3 a) For ¢ — 0, we have:

1 g (law) y
R (21)
b) For ¢ — oo, we have:
1 (law) (law)
P log (ch) H—0>02|5‘T3 ="2|Cul, (22)

where (Cy,a > 0) is a standard Cauchy process.

Remark 3.4 (Yet another proof of Spitzer’s Theorem)
Taking a = 1, from Corollary 3.3(b), we can obtain yet another proof of Spitzer’s cele-

brated asymptotic Theorem stated in (8). Indeed, (22) can be equivalently stated as:
0 (law)
P (logT! < cx) — P (2|C4] < z). (23)
c—00

Now, the LHS of (23) equals:

P(logT! <cx) = P(T! <exp(cz)) =P ( sup 6, > c)

u<exp(cz)
logt
= P (lbespen| > ¢) = P {161 > —= ), (24)
with t = exp(cx). Thus, because |Ci] (faw) |C17, (23) now writes:
logt (aw 2
for every x > 0 given, P (|9t| > ﬁ) il—>) P (\Cl| > —) , (25)
€T —00 T

which yields precisely Spitzer’s Theorem (8).



3.3 Speed of convergence

We can easily improve upon Proposition 3.1 by studying the speed of convergence of the
distribution of c% T/ towards that of Tlhl, ie.:

Proposition 3.5 For any function ¢ € C?, with compact support,

s (ol ()] -l )] e (ar) ()G o) (o) o

Proof of Proposition 3.5:
We develop exp (2¢f3,), for ¢ — 0, up to the second order term, i.e.:

e*Pr =1+ 2¢B, + 2682 +

More precisely, we develop up to the second order term, and we obtain:

o (B)] = plo ([ aewenn)

= Elo (TP') + ¢’ (TP‘) /le (2¢8, +26°67) dv]
0

1l 2
1 h
—|—§E o (TP‘) 402< ﬁvdv> + c®o(c).
0

2
We then remark that F [fot ﬁvdv] =0, F [fot ﬁgdv] =t?/2 and F {(fot ﬁvdv> ] = t3/3,
thus we obtain (26). |

4 Checks via Bougerol’s identity

So far, we have not made use of Bougerol’s identity (4), which helps us to characterize the

distribution of 7. [Vak11]. In this Subsection, we verify that writing the Gauss-Laplace
transform in (6) as:

1

\f\/ﬁ ( 2;'29) :\/ﬁw’”(

xc?), (27)

with m = 7/(2¢), we find asymptotically for ¢ — 0 the Gauss-Laplace transform of T,
Indeed, from (27), for ¢ — 0, we obtain:

= l 2 .
\/7\/ Th < TM) <0 (\/ 1+ xc2 + Ve >7r/26 + (\/1 + xc? — a:02>7r/26
(28)



Let us now study:

(mw@)”% = o (golog [L+ (VIFad 1) + Vadd))

us xc? T/ T
~ exp <% [Cﬁ+ 7]) ;;exp <T\/_) .

A similar calculation finally gives:

1
|V (o) | =t v

a result which is in agreement with the law of

JostE whose density is:

1 2 1
fonTl 2T cosh (5)
Indeed, the law of 3, may be obtained from its characteristic function which is given
by [ReY99|, page 73:

1

E [exp(i)\ﬁTcm)] = cosh (00

It is well known that [Lev80, BiY87]:

1 1 o0 - Ac 1 1
E[ A } = = = G-~ d
exp(i BTC‘”‘) cosh(Ac)  cosh(mA€) /Ooe 2 cosh(¥) Y
= e L z /Oo ire 1 1
/_Ooe 2m cosh (%) ! —ooe 2¢ cosh () “. (D)

So, the density h_.. of By

1 1 1 1
h_ce = =\~ ym T
() (20) cosh(%%) <c) ez +e

and for ¢ = 1, we obtain (30).

We recall from Remark 3.2 that (see also [PiY03|, where further results concerning the
infinitely divisible distributions generated by some Lévy processes associated with the
hyperbolic functions cosh, sinh and tanh can also be found):

E [exp <—%T’Y)] Wl@@) : (32)

thus, for ¢ = 1 and A = 7/, (29) now writes:

\/7\/TT ( 2T'”'> :E{eXp <_%7T2le)}’ (33)

| is:




a result which gives a probabilistic proof of the reciprocal relation in [BPYO01] (using the
notation of this article, Table 1, p.442):

= (2)" 1 ().
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