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RISK HULL METHOD FOR SPECTRAL REGULARIZATION IN LINEAR
STATISTICAL INVERSE PROBLEMS

Clément MARTEAU1

Abstract. We consider in this paper the statistical linear inverse problem Y = Af + εξ where A
denotes a compact operator, ε a noise level and ξ a stochastic noise. The unknown function f has to
be recovered from the indirect measurement Y . We are interested in the following approach: given
a family of estimators, we want to select the best possible one. In this context, the unbiased risk
estimation (URE) method is rather popular. Nevertheless, it is also very unstable. Recently, Cavalier
and Golubev (2006) introduced the risk hull minimization (RHM) method. It significantly improves
the performances of the standard URE procedure. However, it only concerns projection rules. Using
recent developments on ordered processes, we prove in this paper that it can be extended to a large
class of linear estimators.
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1. Introduction

This paper is devoted to statistical linear inverse problems. We want to recover an unknown function
f from noisy and indirect measurements. Formally, consider H and K two Hilbert spaces and A : H → K a
compact operator. We observe:

Y = Af + εξ, (1.1)
where f belongs to H and εξ denotes some noise. This representation arises in many mathematical and physical
domains. In the numerical literature, the noise εξ is deterministic. For such a model, many recovering methods
have been proposed. For a survey, we mention for instance [13], [17], [14] or [26]. In the statistical literature,
one deals instead with stochastic perturbations. The Gaussian white noise model is the most used. The
representation (1.1) is equivalent to:

〈Y, g〉 = 〈Af, g〉+ ε〈ξ, g〉, ∀g ∈ K, (1.2)
where 〈ξ, g〉 ∼ N (0, ‖g‖2) and ε > 0. Given g1, g2 ∈ K, E〈ξ, g1〉〈ξ, g2〉 = 〈g1, g2〉. We refer to [18] for more
details concerning the Gaussian white noise. We assume throughout this paper that the noise level ε is known.

The singular value decomposition (SVD) setting provides a better understanding of the model (1.1). The
operator A?A is compact and selfadjoint. We denote by (b2k)k∈N the associated sequence of eigenvalues. The
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set of eigenfunctions (φk)k∈N is assumed to be orthonormal. Then define ψk = b−1
k Aφk, ∀k ∈ N. For all integer

k, the following equality holds: {
Aφk = bkψk,
A?ψk = bkφk.

(1.3)

The triple (bk, φk, ψk)k∈N is called the singular system for the operator A?A. The associated representation
matrix is diagonal. For all k ∈ N, set g = ψk in (1.2) and use (1.3) in order to obtain the sequence space model:

yk = bkθk + εξk, ∀k ∈ N, (1.4)

where θk = 〈f, φk〉. The ξk are i.i.d. standard Gaussian random variables since the set (ψk)k∈N is also orthonor-
mal. In the L2 sense, the function f and θ = (θk)k∈N represent the same mathematical object. The sequence
θ has to be recovered from the noisy observations (yk)k∈N. Since A?A is compact, bk → 0 as k → +∞. When
k is large, the estimation of θk is quite difficult: there is mainly noise in the observation yk. Remark that the
SVD can explicitly computed for a large class of inverse problems, e.g. tomography (see [20]), deconvolution
(see [19]) or Biophotonic imaging (see [4]).

In some sense, the best approximate solution f̂ minimizes the distance between the observation and the
image of the operator A. It corresponds to the least square solution and verifies f̂ = (A?A)−1A?Y . Since A?A

is compact, it is not continuously invertible. The solution f̂ will not be convenient: it does not necessarily
converge to f as ε→ 0. In order to solve (1.1), one may use instead:

f̂t = Φt(A?A)A?Y,

where Φt approximates the function x 7→ x−1 on the spectrum of A?A. This is a regularization method. The
parameter t is a regularization parameter. The performances of f̂t are related to the choice of t which is crucial
for both numerical and statistical approaches. Some examples are presented in Sections 2.1 and 3.2.

In the SVD setting, a regularization method Φt corresponds to a filter λ(t) = (λk(t))k∈N. It is a real sequence
with values in [0, 1]. The associated estimator is:

f̂t =
+∞∑
k=1

λk(t)b−1
k ykφk.

The quality of f̂t is measured via its quadratic risk:

R(θ, λ(t)) = Eθ‖f̂t − f‖2 =
+∞∑
k=1

(1− λk(t))2θ2k + ε2
+∞∑
k=1

λ2
k(t)b−2

k . (1.5)

The behavior of R(θ, λ(t)) depends on both the function f and the regularization approach, i.e. the filter λ and
the parameter t. For more details and some examples, we mention [15], [20], [11] or [12].

In this context, the unbiased risk estimation (URE) method is rather popular for choosing t since it does not
require a priori informations on the solution f . It has been studied for instance in [8]. However, this method
is rather unstable due to the ill-posedness of the problem. The risk hull minimization (RHM) method initiated
in [9] proposes to take into account the variability of the problem through the constrution of a risk hull. The
definition is detailed below.

Definition 1.1. Let Λ a family of filters. A deterministic term V (θ, λ) such that:

Eθ sup
λ∈Λ

[
‖f̂t − f‖2 − V (θ, λ)

]
≤ 0,
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is called a risk hull for Λ.

The principle of the RHM scheme is to minimize the hull, through an appropriate estimator, instead of the
quadratic risk. Specific phenomena are related to the Gaussian white noise model. They require particular ap-
proaches that may not be useful in numerical areas. The RHM method is a good example of such a procedure.
It provides answers to specific problems of the statistical model (1.2) and improves the standard URE approach.
The risk hull method has been developed for projection estimators. As proved in this paper, it can be extended
to a large class of linear estimators. This class contains for instance Tikhonov estimators or Landweber iterative
methods.

This paper is organized as follows. In Section 2, we present the RHM method and recall the main problems
related to the choice of the regularization parameter t through some well-known properties of Tikhonov esti-
mators. A risk hull for a wide family of spectral regularization schemes is constructed in Section 3. Section
4 contains the main results and the proofs are gathered in Section 5. Finally, Section 6 is devoted to ordered
processes. A reader not familiar with this topic is advised to read this part before being interested in the proofs.

2. The risk hull principle

Consider the following problem: given a function f and a set of estimators Λ, we want to select the best
possible one, i.e. that minimizes the quadratic risk. In most cases, the family Λ may be identified with a
regularization operator Φt indexed by t and a collection of parameters T . This collection may be finite or not.
We want to select the parameter t in an adaptive way, i.e. without using some unknown information on the
function f .

2.1. The Tikhonov estimator

In order to shed some light on this framework, we recall briefly some properties of the Tikhonov estimators.
Obviously, these estimators are well-known. However, some steps may be useful in the sequel. For a survey on
this procedure, both in the numerical and statistical domains, we mention for instance [14], [25], [6] or [5] for
non-linear inverse problems.

The Tikhonov estimation is rather intuitive. One wants to control both the regularity of our estimator f̃ and
the fitting of Af̃ with the data Y . Therefore, resolve the following optimization problem:

f̃t = arg min
f∈H

{‖Af − Y ‖2 + t−1‖f‖2a}, (2.1)

where t is a regularization parameter. For all f ∈ H and a ∈ R, ‖f‖a = ‖(AA?)−af‖. In some sense, (AA?)−a

is a differential operator. The parameter a is chosen a priori. It is related to the expected regularity of the
function f . In the literature, one often uses α instead of t−1. However, the notation (2.1) is consistent with
Sections 3-6.

The solution of (2.1) is:

f̃t = Φt(A?A)A?Y, with Φt(A?A) = (A?A+ t−1(La)?La)−1, and La = (AA?)−a. (2.2)

In the SVD representation, the Tikhonov estimator becomes:

f̃t =
+∞∑
k=1

λk(t)b−1
k ykφk, with λk(t) =

1
1 + t−1(b−2

k )1+2a
, ∀k ∈ N. (2.3)
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The choice of t is crucial and has a real impact on the performances of f̃t. It is a trade-off between the two
sums in the right hand side of (1.5). Assume for instance that the function f belongs to a ball Hµ

Q of radius Q:

f ∈ Hµ
Q =

{
g ∈ H : ‖(A?A)−µg‖2 ≤ Q

}
⇔ θ ∈ Θ(s,Q) =

{
ϑ :

+∞∑
k=1

b−4µ
k ϑ2

k ≤ Q

}
, (2.4)

for some µ > 0. In what follows, we note b1 . b2 when there exists C > 0 such that b1 ≤ Cb2. Using simple
algebra:

+∞∑
k=1

(1− λk(t))2θ2k . t−
2µ

(1+2a) , (2.5)

provided µ < 1 + 2a. For µ larger than 1 + 2a, gα cannot be optimally bounded. The Tikhonov estimator does
not attain the minimax rate of convergence on Hµ

Q. It is said to be underqualified. For the special case a = 0,
we obtain the well-known condition µ < 1. The term 1+2a is called qualification of the Tikhonov regularization
(see [14] or [6] for more details).

Now consider the second sum. Assume that the sequence of eigenvalues possesses a polynomial behavior:
(bk)k∈N ∼ (k−β)k∈N for some β > 0. The problem is said to be mildly ill-posed. Let n = nt ∈ N which will be
chosen later:

ε2
+∞∑
k=1

λk(t)2b−2
k = ε2

nt∑
k=1

λk(t)2b−2
k + ε2

∑
k>nt

λk(t)2b−2
k . ε2n2β+1

t + ε2t−2n−8βa−2β+1
t .

Using simple algebra, we obtain the following bound:

ε2
+∞∑
k=1

λk(t)2b−2
k . ε2t

2β+1
2β(1+2a) , setting nt = t

1
2β(1+2a) . (2.6)

Consider the parameter t0 that make the trade-off between (2.5) and (2.6). The associated estimator attains
the minimax rate of convergence on Hµ

Q for µ < 1 + 2a. The parameter t0 can easily be constructed with the a
priori knowledge of µ and Q.

2.2. The risk hull method

In a minimax sense, the optimal regularization parameter depends essentially on the regularity and on the
norm of f . Since these informations are in most cases unknown, the choice of t is somewhat difficult.

Several data driven regularization methods have been proposed. The unbiased risk estimation procedure is
rather popular. The principle is intuitive: given f and a set of estimators Λ (or equivalently a collection T
of regularization parameters), we want to select the best possible one, i.e. that minimizes the quadratic risk
R(θ, λ(t)) (see (1.5)). Since this quantity depends on the unknown function f , this estimator is not available.
It is called the oracle. However, we can construct an estimator U(y, λ(t)) of R(θ, λ(t)) and then, minimize
U(y, λ(t)) instead of R(θ, λ(t)). From (1.4) and (1.5), a natural estimator for R(θ, λ(t)) is:

U(y, λ(t)) =
+∞∑
k=1

{λ2
k(t)− 2λk(t)}(b−2

k y2
k − ε2b−2

k ) + ε2
+∞∑
k=1

λ2
k(t)b−2

k .

This method has been applied by [10] on the set of blockwise monotone estimator. In a model selection
context, [8] dealt with finite families of estimators. Sharp oracle inequalities have been obtained. However,
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numerical simulations are somewhat disappointing. This has been illustrated in [9] for the projection regu-
larization. The same phenomenon occurs for Tikhonov estimators. For ill-posed inverse problems, the URE
algorithm selects large regularization parameters when the oracle is typically small.

The instability of the URE procedure has already been discussed in the literature. In the last decades,
some authors were interested in the criterion U(y, λ(t)) + pen(t) where pen(t) → +∞ as t → +∞. A penalty
is introduced in the estimator of R(θ, λ(t)). This penalty is chosen in order to control the variability of the
problem. We expect that smaller parameters will be selected. Several penalizations have been proposed for
both direct and inverse problems. We mention for instance [1], [3], [16] or [22].

Other approaches leading to oracle inequalities in a more general context have been proposed. We do not
intend to present an exhaustive list. We mention for instance [11], [19] for threshold estimation or [2], [24]
concerning the Lepskij’s balancing principle.

The risk hull minimization method (also denoted RHM) initiated by [9] provides an interesting alternative.
Consider the simple example of projection filter (also called spectral cut-off): λk(t) = 1{k≤t}, for all k ∈ N.
Denote by θ̂t the related estimator. The loss is:

l(θ, λ(t)) = ‖θ̂t − θ‖2 =
∑
k>t

θ2k + ε2
t∑

k=1

b−2
k ξ2k.

Due to the ill-posedness of the problem, the variance of l(θ, t) is very large and explodes with t. However, this
variability is neglected in the URE procedure. Indeed, we deal with R(θ, λ(t)) = Eθl(θ, λ(t)). In order to take
account of this variability, one may look after a risk hull, i.e. a deterministic quantity V (θ, λ(t)) verifying:

Eθ sup
t
{l(θ, λ(t))− V (θ, λ(t))} ≤ 0.

Then, we estimate and minimize V (θ, λ(t)) instead of R(θ, λ(t)). The challenge is to find an explicit hull. It
should not be too large in order to provide a good quality of estimation although a small hull will not be
sufficiently stable. The hull V (θ, λ(t)) of [9] can be explicitly constructed. It is easily computable using for in-
stance Monte-Carlo approximations. The related performances are significantly better than the standard URE
procedure, both from a theoretical and numerical point of view. Note that the risk hull method leads in fact to
a penalized URE criterion where the penalty is explicitly computable.

However, the projection estimation is rather rough. There exist several regularization methods with better
performances. We may mention for instance the Tikhonov estimators presented in this section. The general-
ization of the RHM algorithm to a wide family of linear estimators may produce interesting results but is not
obvious. It requires in particular the control of the process:

η(t) = ε2
+∞∑
k=1

λ2
k(t)b−2

k (ξ2k − 1), t ≥ 0.

When dealing with projection procedures, η(t), t ≥ 0 can be controlled as a Wiener process. These objects have
been intensively studied and many results are available. In this paper, the assumptions concerning the sequence
(λk(t))k∈N are rather weak. In such a situation, we will see that the process η(t), t ≥ 0 is said to be ordered
and presents a different behavior compared to the well-known Wiener process. Some interesting properties have
been established in [21] and [7]. The generalization of the RHM algorithm requires advanced probabilistic tools,
gathered in Section 6.
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3. Risk hull

3.1. Assumptions and construction

Here and in the sequel, assume that Λ is a family of monotones filters indexed by a positive parameter t, i.e.
Λ = (λ(t))t∈T , where T ⊆ R+. Each filter λ(t) may be noted λ or identified with the regularization parameter t.
The meaning will be clear following the context. The associated linear estimator is denoted by θ̂t. For all k ∈ N,
the function t→ λk(t) is assumed to be monotone non-decreasing. We require some additional assumptions on
the family Λ.

Polynomial hypotheses. There exist C1, C2, C3, C4 positive constants and d > 0 independent of t and ε
such that:

maxk ε
2λ2

k(t)b−2
k√

σ2(t)
≤ C1t

−d/2, where σ2(t) = ε4
+∞∑
k=1

λ4
k(t)b−4

k , (3.1)

exp

[
−1

4

+∞∑
p=1

log

(
1 +

2s2ε4λ4
p(t)b

−4
p

σ2(t)

)]
≤
(

1 +
C2s

2

td

)−td

, ∀s ∈ R, (3.2)

and for all l ∈ N,

(C3t
d)−l/2+1 ≤

∣∣∣∣∣σ2(t)−l/2ε2l
+∞∑
p=1

λ2l
p (t)b−2l

p

∣∣∣∣∣ ≤ (C4t
d)−l/2+1. (3.3)

In some sense, the inequalities (3.1)-(3.3) generalize the polynomial hypotheses of [9]. Some examples of
regularization method satisfying (3.1)-(3.3) are presented in Section 3.2.

For all λ ∈ Λ, i.e. for all t ∈ T , introduce:

U0(t) = inf{u > 0 : Eη(t)1{η(t)>u} ≤ ε2}, with η(t) = ε2
+∞∑
k=1

λ2
k(t)b−2

k (ξ2k − 1). (3.4)

The term σ2(t) denotes the variance of the process η(t), t ≥ 0 up to some constant. This process is ordered:
see Section 6 for more details. In particular, the function σ2 is monotone non-decreasing. The following lemma
provides a lower bound for U0(t). This quantity will be useful in the following.

Lemma 3.1. Assume that (3.1)-(3.3) hold. There exists T0 > 0 independent of ε such that for all t > T0,

U0(λ(t)) = U0(t) ≥

√
2σ2(t) log

(
σ2(t)
2πε4

)
,

where σ2(t) is defined in (3.1).

A proof of this lemma is available in Section 5. We are now able to propose a risk hull. First introduce:

λ(t0) = λ0 = arg inf
λ∈Λ

R(θ, λ), (3.5)

where R(θ, λ) is the quadratic risk defined in (1.5). Hence, λ0 corresponds to the oracle filter for the family Λ.
For all x ∈ R+, define also:

ω(x) = sup
t∈T

sup
k
λ2

k(t)b−2
k 1{P+∞

l=1 λ2
l (t)b−2

l ≤x supl λ2
l (t)b−2

l }, (3.6)



TITLE WILL BE SET BY THE PUBLISHER 7

and,

LT = log2 S, with S =
maxt∈T supk b

−2
k λ2

k(t)
mint∈T supk b

−2
k λ2

k(t)
. (3.7)

These terms have been introduced in [8]. The function ω is explicitly computed in Section 3.2 for some particular
families of estimators. The quantity S provides an information on the homogeneity of T . For S < +∞, the
collection T may be identified with an interval [t1, tmax] and S is linked to the ratio tmax/t1.

Theorem 3.2. Assume that (3.1)-(3.3) hold. Then, there exist C?, C̄ > 0 such that, for all θ and α, γ > 0,

Vα(θ, λ(t)) = (1 + γ)

{
+∞∑
k=1

(1− λk(t))2θ2k + ε2
+∞∑
k=1

λ2
k(t)b−2

k + (1 + α)U0(λ(t))

}

+
C?ε2

α
+ C̄ε2γ−1LTω(γ−2LT ) + γR(θ, λ(t0)), (3.8)

is a risk hull, i.e.:

Eθ sup
t∈T

{
‖θ̂t − θ‖2 − Vα(θ, λ(t))

}
≤ 0.

The hull of [9] is constructed for projection estimators. Here, the main difference is contained in the residual
term C̄ε2γ−1LTω(γ−2LT ). The hull is somewhat less precise. This can be explained by the structure of the
stochastic processes involved in the loss. Indeed, when considering projection estimators, one essentially deals
with Wiener processes. These processes are well-known and may be easily controlled. In particular:

P

(
max
t≥0

[W (t)− γt] ≥ x

)
≤ exp(−2γx), ∀γ > 0 and x ∈ R+,

where W (t), t ≥ 0 denotes a Wiener process. The proof of Theorem 3.2 is based on the theory of ordered
processes summarized in Section 6 (see also [21] or [7]). These objects are well understood but more difficult to
control. At best, it is (at the moment) possible to prove that for all p ∈ N:

P

(
max
t≥0

[
ρ(t)− γΣ2(t)

]
≥ x

)
≤ Cpp

(γx)p
, ∀γ > 0 and x ∈ R+, (3.9)

for a given ordered process ρ(t), t ≥ 0 of variance Σ2(t). Here, C denotes a positive constant independent of
x. In light of the proofs of Theorem 3.2, it seems difficult to improve (3.9) in order to obtain an exponential
inequality as for the Wiener process.

3.2. Examples

In this section, we illustrate the polynomial hypotheses (3.1)-(3.3). Assume that the sequence (bk)k∈N
possesses a polynomial behavior, i.e. (bk)k∈N ∼ (k−β)k∈N for some positive parameter β. The degree of ill-
posedness β is assumed to be known.

We consider three different procedures: projection, Tikhonov and Landweber iterative methods.

EXAMPLE 1. (Projection estimators)
Obviously, Assumption (3.1)-(3.3) are satisfied for projection filters since the aim of this paper is to generalize [9].
Consider the set:

ΛProj =
{
λ = (λk(t))k∈N : ∀k ∈ N, λk = 1{k≤t}, t ∈ N

}
.

The projection estimator is also called spectral cut-off in the literature.
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Assumption (3.2) is verified in the proof of Lemma 1 of [9] with d = 1. Since (bk)k∈N ∼ (k−β)k∈N:

σ2(t) =
t∑

k=1

b−4
k ' t4β+1, and

+∞∑
p=1

λ2l
p (t)b−2l

p =
t∑

p=1

b−2l
p ' t2βl+1, ∀l ∈ N,

uniformly in t ∈ N. Therefore, (3.3) holds with d = 1. Then, remark that:

maxk λ
2
k(t)b−2

k√
σ2(t)

' t2β

t2β+1/2
= t−1/2.

[8] proved that ω(x) ' x2β for all x ∈ R+ and for some C > 0. This concludes Example 1.

EXAMPLE 2. (Tikhonov estimators)
We use the same notations of Section 2.1. Consider the family:

ΛTikh =
{
λ = (λk(t))k∈N : ∀k ∈ N, λk =

1
1 + t−1(b−2

k )(1+2a)
, t ∈ R+

}
.

It is possible to show:

σ2(t) = ε4
+∞∑
k=1

λ4
k(t)b−4

k ' ε4(td)4β+1 and
+∞∑
p=1

λl
p(t)b

−l
p ' (td)2βl+1,∀l ∈ N.

with d = 1/(2β(1+2a)) (see (2.6)). Hence, (3.3) holds. For all t, let nt defined in (2.6). For all k ∈ {nt/2, . . . , nt}:

λ2
kb
−2
k =

b−2
k

[1 + t−1(b−2
k )(1+a)]2

≥ Ck2β ≥ C
n2β

t

22β
.

Therefore, for all t ∈ R+ and s ∈ R,

exp

[
−1

4

+∞∑
l=1

log
(

1 +
2s2ε4λ4

l (t)b
−4
l

σ2(t)

)]
≤ exp

−1
4

nt∑
l=nt/2

log
(

1 +
2s2ε4λ4

l (t)b
−4
l

σ2(t)

) ,
≤ exp

−1
4

nt∑
l=nt/2

log

(
1 +

Cs2n4β
t

n4β+1
t

) ,
≤

(
1 +

C1s
2

nt

)−nt/8

=
(

1 +
C1s

2

td

)−td/8

. (3.10)

This prove (3.2). Finally, remark that:

maxk λ
2
k(t)b−2

k√
σ2(t)

'
λ2

nt
(t)b−2

nt√
σ2(t)

' n2β
t

n
2β+1/2
t

= t−d/2. (3.11)

Moreover, we can prove, using for instance (3.11), that ω(x) ≤ Cx2β for all x ∈ R+ and for some C > 0.
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EXAMPLE 3. (Iterated Tikhonov regularization)
This method presents an interesting alternative to the previous one. The qualification of the standard Tikhonov
estimator is 1 if we set a = 0 in (2.1). This can be enhanced using iterations. In the following, we refer to f̂j

as the iterated Tikhonov estimator of order j. Set f̂0 = 0. Given j ∈ N and f̂j−1, f̂j is defined as the unique
solution of:

(A?A+ t−1I)f̂j = A?T + t−1f̂j−1,

where I denotes the identity operator. In the SVD setting, the following representation arises:

f̂j =
+∞∑
k=1

λk(t)b−1
k ykφk, with λk(t) =

(t−1 + b2k)j − t−j

(t−1 + b2k)j
,∀k ∈ N.

The qualification corresponds to the number of iterations. It is possible to prove that maxk λ
2
k(t)b−2

k . n2β
t and

σ2(t) ≥ n4β+1
t , with nt = t−1/2β . Hence, (3.1) holds. Then, for all k ∈ {nt/2, . . . , nt},

λ2
k(t)b−2

k ≥
[
(1 + t−1b−2

k )j − t−jb−2j
k

]
b−2
k ≥ Cn2β

t ,

for some C > 0. Using the same algebra as in (3.10), one obtain (3.2). The proof of (3.3) and the bound of ω
essentially follows the same lines.

EXAMPLE 4. (Landweber iterative method)
This procedure is rather interesting from a numerical point of view since it does not require the inversion of an
operator. Consider the equation g = Af for some g ∈ K. It can be rewritten as follows:

f = f +A?(g −Af). (3.12)

The Landweber iterative method is constructed in the following way. Define f̂0 = 0. Then, for all t ∈ N, t ≥ 1,
set:

f̂t = f̂t−1 +A?(g −Af̂t−1). (3.13)
The number t of iterations plays the role of the regularization parameter. With the model (1.1), replace g by
Y . In the SVD setting, the Landweber iterative estimator is:

f̂t =
+∞∑
k=1

λk(t)b−1
k ykφk, with λk(t) = (1− (1− b2k)t), ∀k ∈ N.

The estimator f̂t is defined only if ‖A‖ ≤ 1 (i.e. maxk bk ≤ 1). Otherwise, the method can easily be modified
via the introduction of a relaxation parameter in (3.12). The qualification of the Landweber method is ∞, i.e.
there is no restriction on the regularity µ.

Using simple algebra, it is possible to prove that σ2(t) ' ε4(nt)4β+1 with nt = t1/2β and:

max
k

λ2
k(t)b−2

k = max
x∈(0,1)

(1− (1− x)t)2

x
,

≤ max
x∈(0,1)

s′(x), with s(x) = 1− (1− x)t,

= t

Hence, (3.1) holds with d = 1/2β. The proof of (3.2) and (3.3) follows essentially the same lines.
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For the sake of convenience, only four regularization schemes satisfying the polynomial hypotheses are pre-
sented in this paper. The families of estimators covered by these assumptions is certainly larger.

In order to conclude these examples, a few words on the ν-methods and the Pinsker estimators. These
filters are slightly different from the previous one since both the regularization parameter and the structure
of the estimator may depend on the regularity of the function f . For instance, a Pinsker filter is of the form
λP

k = (1 − cεak)+ for all k ∈ N, where both cε and (ak)k depend on the regularity of f . It is easy to prove
that assumptions (3.1)-(3.3) hold for a Pinsker type sequence of the form λk(t) = (1− t−1ka)+, for some fixed
a > 0. It is not so clear for (λP

k )k∈N. The same observation holds for the ν-methods. Nevertheless, it seems
that the behavior of these estimators is close to the examples presented in this section. Hence, the polynomial
hypotheses may certainly be modified in order to take into account these specificities.

4. Oracle efficiency

Following the risk hull principle, we estimate and minimize the hull Vα(θ, λ(t)) (introduced in (3.8)), instead
of R(θ, λ(t)). Remark that:

arg min
λ∈Λ

Vα(θ, λ) = arg min
t∈T

{
+∞∑
k=1

[
λ2

k(t)− 2λk(t)
]2
θ2k + ε2

+∞∑
k=1

λ2
k(t)b−2

k + (1 + α)U0(λ(t))

}
. (4.1)

For all α > 0, the right-hand side of (4.1) can be estimated by

Vα(y, λ(t)) =
+∞∑
k=1

[
λ2

k(t)− 2λk(t)
]
(b−2

k y2
k − ε2b−2

k ) + ε2
+∞∑
k=1

λ2
k(t)b−2

k + (1 + α)U0(λ(t)). (4.2)

Hence consider:
λ? = arg min

λ∈Λ
Vα(y, λ), (4.3)

and denote by θ? the associated estimator. This approach corresponds in fact to a penalized URE method. The
penalty (1 + α)U0(λ(t)) is explicitly computable via Monte-Carlo approximations. The performances of θ? are
summarized in the following theorem.

Theorem 4.1. Let θ? the estimator defined in (4.3) with α > 1. Assume that there exists a positive constant
CT such that, uniformly in t ∈ T :

+∞∑
k=1

λ2
k(t)b−4

k ≤ CT

+∞∑
k=1

λ4
k(t)b−4

k . (4.4)

Then, there exist B1, D1 and γ1 > 0 independent of ε, such that, for all λ ∈ Λ, (i.e. t ∈ T ) and 0 < γ < γ1,

Eθ‖θ? − θ‖2 ≤ (1 +B1γ)Rα(θ, λ(t)) +D1ε
2γ−1LTω(γ−2LT ) +

D1ε
2

(α− 1)
,

where LT is defined in (3.7) and

Rα(θ, λ(t)) =
+∞∑
k=1

(1− λk(t))2θ2k + ε2
+∞∑
k=1

λ2
k(t)b−2

k + (1 + α)U0(λ(t)). (4.5)

The proof is presented in Section 5. It is based on Theorem 3.2 and on the theory of ordered processes
(summarized in Section 6). Clearly, inequality (4.4) is verified for projection estimators. This is also the case
for Tikhonov estimators, provided a > 0, Tikhonov iterated procedure (j > 1) and for the Landweber iterative
method. The constant CT has a real impact on the quality of estimation. Indeed, the penalty controls the
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stochastic terms in the loss and in Vα(y, λ). For all λ ∈ Λ, the variance of these terms is of order ε4
∑

k λ
4
kb
−4
k

and ε4
∑

k λ
2
kb
−4
k , respectively. If CT is too large, the penalty is not sufficient for Vα(y, λ). The efficiency of θ?

will not necessarily be improved compared to the standard URE method.
In Theorem 2, we require α to be greater than 1. It seems that this condition is too restrictive. Indeed,

acceptable bounds for the risk are available for α < 1. This needs more precision in the proofs. The obtained
oracle inequality is not sharp: one cannot consider γ → 0 as ε→ 0 in this case. On the other hand, large choices
are related to a poor efficiency since Rα(θ, λ) will be significantly greater than the quadratic risk R(θ, λ). From
the proofs, it is possible to see that α has a small influence on the quality of estimation. In such a situation, a
choice of α close to 2 seems to be reasonable. We refer to [9] and [23] for a complete discussion concerning this
choice of α.

Several bounds in the proof of Theorem 4.1 are derived from the theory of ordered processes. These results
can easily be applied to the unbiased risk estimator, called θ̃ in the following.

Theorem 4.2. Assume that (3.1)-(3.3) and inequality (4.4) hold. Then, there exists B2, D2 and γ2 > 0
independent of ε, such that, for all λ ∈ Λ, (i.e. t ∈ T ) and 0 < γ < γ2,

Eθ‖θ̃ − θ‖2 ≤ (1 +B2γ)R(θ, λ(t)) +D2ε
2γ−1LTω(γ−2LT ),

where R(θ, λ(t)) and LT are defined in (1.5) and (3.7) respectively.

In the oracle inequality of [8], the term LT is of order logN where N denotes the size of the family Λ, i.e.
the number of considered parameters. Thanks to the theory of ordered processes, the oracle inequalities of
Theorems 4.1 and 4.2 are free of assumptions on the size of Λ. In particular, there is no theoretical price to pay
for considering large collection of estimators. Moreover, the obtained results concerns continuous intervals for
the regularization parameter of the form T = [tmin; tmax].

We have proved that the RHM method initiated by [9] can be enhanced by using more precise estimators like
Tikhonov or Landweber iterative methods. The principle of risk hull minimization is not restricted to projection
procedures. This generalization is mainly due to recent developments on ordered processes. Section 6 presents
the main lines of this theory. It contains important results from [21] and [7] and some additional lemmas useful
for the proofs of Theorems 3.2, 4.1 and 4.2.

Comparing different oracle inequalities in a transparent way is always a very difficult task. The constants
and residual terms are derived from successive upper bounds. Nevertheless, the URE method does not take
into account the variability of the problem. Hence, the RHM procedure may lead to better performances. The
differences between the URE and RHM procedures will be certainly significant for the cases where the variability
of the sequence space model is the most important, e.g. when the signal to noise ratio is small or the degree of
ill-posedness increases.

In order to conclude this paper, some words on the numerical implementation of the RHM method. The
term U0(λ(t)) may be approximated by using Monte-Carlo replications. In this case, the penalty will not be
exactly the same than in Theorems 3.2 and 4.1. This approximation is equivalent to a perturbation of α. From
proofs of Section 5, it is clear that a small variation in α does not affect the efficiency of θ?. Therefore, the
numerical approximation of (1 + α)U0(λ(t)) is pertinent from a theoretical point of view. Remark also that
the lower bound obtained in Lemma 3.1 and used in the most part of the proofs may be used for a numerical
implementation.

From a practical point of view, given a regularization scheme and an interval T for the parameter, finding
λ? may be a difficult task since (4.3) is a non-convex minimization problem. Remark that this inconvenience
occurs also for the URE method. A possible outcome is then to consider a finite grid T̃ and to construct
λ? on T̃ . From Theorems 4.1 and 4.2, no restriction occurs on the size of the grid. Hence, the limitations
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are only due to practical considerations (e.g. computer performances). In order to deal with continuous inter-
vals, an interesting alternative would be to develop and use a simulated annealing type algorithm for this setting.

5. Proofs

5.1. Proof of Lemma 3.1

The proof follows the same lines of [9]. We shall sometimes omit some technical steps since they have
already been developed.

Let η(t), t ≥ 0, the stochastic process defined in (3.4). For all t ∈ T , introduce:

K(t) =
η(t)√
2σ2(t)

and u1(t) =

√
log
(
σ2(t)
2πε4

)
. (5.1)

For all t ≥ 0, the function x 7→ EθK(t) 1{K(t)≥x} is monotone decreasing. In order to prove Lemma 3.1, it
suffices to show that:

EθK(t)1{K(t)≥u1(t)} ≥
ε2√

2σ2(t)
, (5.2)

at least for sufficiently large t. Using integration by part,

EθK(t)1{K(t)≥u1(t)} ≥ u1(t)P (K(t) ≥ u1(t)) +
∫ u1(t)+1

u1(t)

P (K(t) ≥ x)dx. (5.3)

First, study the characteristic function Υ of the process K(t), t ≥ 0. For all s ∈ R, using (3.2):

|Υt(s)| = |EeisK(t)| ≤ exp

[
−1

4

+∞∑
l=1

log
(

1 +
2s2ε4λ4

l (t)b
−4
l

σ2(t)

)]
≤
(

1 +
C1s

2

td

)−td

.

Setting x =
√
td/C1, we obtain:∫
|s|≥x

|Υs(t)|ds =
∫

x≤|s|≤
√

2C1/td

|Υs(t)|ds+
∫
√

2C1/td≤|s|
|Υs(t)|ds ≤ exp(−Ctd). (5.4)

Now consider the case |s| ≤
√
td/C1. Using a Taylor expansion:

Υt(s) = exp

[
−s

2

2
+

M−1∑
l=3

(−i)l2l/2Rl(t)sl

l
+O

(
CRM (t)2M/2sM

M

)]
,

where M ∈ N and for all l ∈ N:

Rl(t) = (σ2(t))−l/2ε2l
+∞∑
p=1

λ2l
p (t)b−2l

p .

The behavior of Rl(t), l ∈ N is controlled by (3.3). Expending Υt(s) exp(s2/2) into a Taylor series, construct
the following approximation of Υt(s):

ΥM
t (s) = exp

(
− t

2

2

)[
1 + td

M−1∑
l=3

QM (l, t)
(
is√
td

)p
]
,



TITLE WILL BE SET BY THE PUBLISHER 13

where QM (l, t), l = 3 . . .M are function uniformly bounded in l and t. Therefore, the probability P (K(t) > x)
can be approximated by:

PM
t (x) = φ(x)− k√

2π

M−1∑
s=3

(−1)sQM (s, k)k−s/2 d
s−1

dxs−1
exp

(
−x

2

2

)
, (5.5)

where φ(x) denotes the repartition function of a standard Gaussian random variable at the point x. Using
Parseval identity, (5.4) and (5.5), we prove that:

|P (K(t) > x)− PM
t (x)| ≤ C

(td)M/2
, (5.6)

for some positive constant C: see [9] for more details. Then, using (5.1)-(5.6), integration by part and choosing
M large enough:

EK(t)1{K(t)≥u1(t)} ≥ u1(t)φ(u1(t)) +
∫ +∞

u1(t)

φ(x)dx

−
∫ +∞

u1(t)+1

φ(x)dx− (1 + u1(t)) max
u1(t)≤x≤u1(t)+1

|PM
t (x)− φ(x)| − Cu1(t)

(td)M/2
,

≥ 1√
2π
e−u1(t)

2/2−Ce−(u1(t)+1)2/2 − (1 + u1(t)) max
u1(t)≤x≤u1(t)+1

|PM
t (x)− φ(x)|− Cu1(t)

(td)M/2
,

≥ ε2√
σ2(t)

+ o

(
ε2√

2σ2(t)

)
, as t→ +∞.

Indeed, (3.1) and (5.1) provide u1(t) ' C
√

log(t) for some positive constant C > 0. Hence, (5.1) is satisfied.
This concludes the proof of Lemma 1.

�

5.2. Proof of Theorem 3.2

Remark that:

Eθ sup
λ∈Λ

{
‖θ̂λ − θ‖2 − Vα(θ, λ)

}
= Eθ sup

λ∈Λ

[
+∞∑
k=1

(λkb
−1
k yk − θk)2 − Vα(θ, λ)

]
,

= Eθ

[
+∞∑
k=1

(1− λ̄k)2θ2k + ε2
+∞∑
k=1

λ̄2
kb
−2
k ξ2k + 2

+∞∑
k=1

(λ̄k − 1)λ̄kθkεb
−1
k ξk − Vα(θ, λ̄)

]
,

with,

λ̄ = λ(t̄) = arg sup
λ∈Λ

{
‖θ̂λ − θ‖2 − Vα(θ, λ)

}
.
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Use the following decomposition:

2Eθ

+∞∑
k=1

(λ̄k − 1)λ̄kθkεb
−1
k ξk = 2Eθ

+∞∑
k=1

{
λ̄2

k − λ̄k

}
θkεb

−1
k ξk,

= Eθ

+∞∑
k=1

λ̄2
kθkεb

−1
k ξk + Eθ

+∞∑
k=1

{λ̄2
k − 2λ̄k}θkεb

−1
k ξk,

= Eθ

+∞∑
k=1

λ̄2
kθkεb

−1
k ξk + Eθ

+∞∑
k=1

(1− λ̄k)2θkεb
−1
k ξk.

Corollary 6.5 in Section 6 provides, for all γ > 0:

2Eθ

+∞∑
k=1

(λ̄k − 1)λ̄kθkεb
−1
k ξk ≤ γEθR(θ, λ̄) + γR(θ, λ0) + Cε2γ−1LTω(γ−2LT ),

for some constant C > 0. Therefore,

Eθ sup
λ∈Λ

{‖θ̂λ − θ‖2 − Vα(θ, λ)}

≤ Eθ sup
λ∈Λ

[
(1 + γ)

+∞∑
k=1

(1− λ2
k)θ2k + ε2

+∞∑
k=1

λ2
kb
−2
k ξ2k + γε2

+∞∑
k=1

λ2
kb
−2
k

+Cγ−1ε2LTω(γ−2LT ) + γR(θ, λ0)− Vα(θ, λ)
]
, (5.7)

≤ E sup
λ∈Λ

[
ε2

+∞∑
k=1

λ2
kb
−2
k (ξ2k − 1)− (1 + γ)(1 + α)U0(λ)− C?ε2

α

]
,

≤ E sup
λ∈Λ

[
ε2

+∞∑
k=1

λ2
kb
−2
k (ξ2k − 1)− (1 + α)U0(λ)

]
− C?ε2

α
. (5.8)

Let σ2(t) and η(t), t > 0 the quantities defined in (3.1) and (3.4), respectively. Recall that the function
t 7→ σ2(t) is monotone non-decreasing since it denotes the variance of the ordered process η(t), t ≥ 0 up to some
constant. Without loss of generality, we consider that T =]0; +∞[ and σ2(t) → +∞ as t → +∞. Let (ts)s∈N
be a grid in R which will be chosen later. Using Lemma 3.1, it is easy to see that:

E sup
λ∈Λ

[
ε2

+∞∑
k=1

λ2
kb
−2
k (ξ2k − 1)− (1 + α)U0(λ)

]

≤
+∞∑
s=0

E sup
t∈[ts,ts+1]

[
η(t)− (1 + α)

√
2σ2(t) log(Cε−4σ2(t))

]
+
,

for some positive constant C. For all x ∈ R, the notation x+ denotes the positive part of x, i.e. x+ = x 1{x>0}.
Let s ∈ N be fixed:

E sup
t∈[ts,ts+1]

[
η(t)− (1 + α)

√
2σ2(t) log(Cε−4σ2(t))

]
+

= E sup
t∈[ts,ts+1]

[
η(ts)− η(ts) + η(t)− (1 + α)

√
2σ2(t) log(Cε−4σ2(t))

]
+
,

≤ E
[
η(ts)− (1 + α)

√
2σ2(ts) log(Cε−4σ2(ts)) + E(ts)

]
+
, (5.9)
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where, for all s ∈ N,
E(ts) = sup

t∈[ts,ts+1]

{η(t)− η(ts)} . (5.10)

Since the variables η(ts) and E(ts) are not independent, the same method as [9] cannot be applied. Instead,
remark that for all 0 < µ < 1, using (5.9),

E sup
t∈[ts,ts+1]

[
η(t)− (1 + α)

√
2σ2(t) log(Cε−4σ2(t))

]
+
,

≤
∫ +∞

Bs

P (η(ts) + E(ts) ≥ x)dx,

≤
∫ +∞

Bs

P (η(ts) ≥ µx)dx+
∫ +∞

Bs

P (E(ts) ≥ (1− µ)x)dx = A1 +A2, (5.11)

with,

Bs = (1 + α)
√

2σ2(ts) log(Cε−4σ2(ts)), ∀s ∈ N. (5.12)

We are first interested in the study of A2. For all p > 1, using a Markov inequality,

A2 =
∫ +∞

Bs

P (E(ts) ≥ (1− µ)x)dx =
∫ +∞

Bs

P

(
sup

t∈[ts,ts+1]

{η(t)− η(ts)} ≥ (1− µ)x

)
dx,

≤ 1
(1− µ)p

∫ +∞

Bs

E supt∈[ts,ts+1] |η(t)− η(ts)|p

xp
dx,

=
1

(1− µ)p
E sup

t∈[ts,ts+1]

|η(t)− η(ts)|p
1

(p− 1)Bp−1
s

. (5.13)

The process η(t), t > 0 is ordered (see Section 6). By Lemma 6.3, there exists a positive constant C > 0
independent of ε and t, such that, for all p > 0:

E sup
t∈[ts,ts+1]

|η(t)− η(ts)|p ≤ Cppp(σ2(ts+1)− σ2(ts))p/2. (5.14)

Therefore, using (5.12)-(5.14), we obtain:

A2 ≤
(

C

(1− µ)(1 + α)

)p
pp

p− 1
(σ2(ts+1)− σ2(ts))p/2

[σ2(ts) log(Cε−4σ2(ts))](p−1)/2
. (5.15)

Now, choose the grid (ts)s∈N as follows:

σ2(ts) = ε4
(

1 +
1
sν

)s

, ∀s ∈ N, (5.16)

where ν ∈]3/4, 1[. This choice is a trade off between an exponential grid similar to [9] and polynomial grids
of [7]. Remark that:

σ2(ts+1)− σ2(ts) = ε4
(

1 +
1

(s+ 1)ν

)s+1

− ε4
(

1 +
1
sν

)s

≤ ε4
(

1 +
1
sν

)s 1
sν
. (5.17)
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Moreover, for all s ∈ N, using Taylor formula,

log(Cε−4σ2(ts)) = s

[
log(C1/s) + log

(
1 +

1
sν

)]
≥ s log

(
1 +

1
sν

)
≥ Cs1−ν . (5.18)

Hence, (5.15)-(5.18) yield:

A2 ≤ ε2
[

C

(1− µ)(1 + α)

]p
pp

p− 1
(s−ν)p/2(1 + s−ν)sp/2

(1 + s−ν)s(p−1)/2(s1−ν)(p−1)/2
,

= ε2
[

C

(1− µ)(1 + α)

]p
pp

p− 1
(1 + s−ν)s/2

(sν)p/2(s1−ν)(p−1)/2
,

= ε2
[

C

(1− µ)(1 + α)

]p
pp

p− 1
s(1−ν)/2 × (1 + s−ν)s/2

sp/2
.

For all s ∈ N, with simple algebra,

(1 + s−ν)sν

= exp{sν log(1 + s−ν)} ' exp(sν × s−ν) = O(1), as s→ +∞.

Therefore:

(1 + s−ν)s/2 = exp
{
s1−ν

2
log
(
(1 + s−ν)sν

)}
≤ Cs1−ν

,

for some positive constant C > 0. We eventually obtain:

A2 ≤ ε2g(µ, α)p s(1−ν)/2

p− 1
× pp

√
s

pC
s1−ν

, with g(µ, α) =
[

C

(1− µ)(1 + α)

]
. (5.19)

Now, choose the parameter p in a properly way. For example, set p = s1/4. Then:

A2 ≤ ε2s
1−ν
2 − 1

4 g(µ, α)s1/4
(
s1/4

s1/2

)s1/4

Cs1−ν

,

= ε2s
1
4−

ν
2 g(µ, α)s1/4

(s1/4)−s1/4
Cs1−ν

,

= ε2s
1
4−

ν
2 exp

{
s1/4 log(g(µ, α)) + s1−ν logC − s1/4 log(s1/4)

}
,

= ε2s
1
4−

ν
2 exp

{
s1/4

[
log(g(µ, α)) + s1−ν−1/4 logC − 1

4
log(s)

]}
.

It is then easy to see that, provided ν ∈]3/4, 1[,

log(g(µ, α)) + s1−ν−1/4 logC − 1
4

log(s) < 0,

at least for s large enough. Therefore, for all µ ∈ (0, 1):

A2 ≤ ε2Ce−s1/4
and

+∞∑
s=1

∫ +∞

Bs

P (E(ts) ≥ (1− µ)x)dx ≤ C?
1 ε

2, (5.20)

where C?
1 is a positive constant independent of ε.
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We are now interested in the study of A1 in inequality (5.11). For all δ > 0, using a Markov inequality:

A1 =
∫ +∞

Bs

P (η(ts) ≥ µx)dx,

=
∫ +∞

Bs

P (exp(δη(ts)) ≥ exp(δµx))dx,

≤
∫ +∞

Bs

E exp{δη(ts)}
exp{δµx}

dx =
1
δµ

E exp{δη(ts)}e−δµBs . (5.21)

Inequality (4.14) of [9] yields:

E exp{δη(ts)} ≤ exp

{
δ2σ2(ts) + 4δ3

+∞∑
k=1

ε6λk(ts)6b−6
k

(1− 2δλ2
k(ts)b−2

k )+

}
. (5.22)

Setting,

δ =

√
log(Cε−4σ2(ts))

2σ2(ts)
, (5.23)

we obtain,

A1 ≤ Cµ−1

√
2σ2(ts)

log(Cε−4σ2(ts))
exp

{
1
2

log(Cε−4σ2(ts))
}
× e−µ(1+α) log(Cε−4σ2(ts)),

≤ Cµ−1ε2

√
1

log(Cε−4σ2(ts))
exp

{
−[µ(1 + α)− 1] log(Cε−4σ2(ts))

}
.

Indeed, using (3.1)-(3.3) and (5.23):

δ3
+∞∑
k=1

λ6
k(ts)b−6

k

(1− 2δλ2
k(ts)b−2

k )+
→ 0, as s→ +∞.

With (5.16) and (5.18), we eventually obtain:

+∞∑
s=1

∫ +∞

Bs

P (η(ts) ≥ µx)dx ≤
+∞∑
s=1

Cε2

s(1−ν)/2

[
e−s log(1+s−ν)

]µ(1+α)−1

,

≤
+∞∑
s=1

Cε2

s(1−ν)/2
exp{−C(µ(1 + α)− 1)s1−ν} ≤ C?

2 ε
2

α
, (5.24)

setting for example µ = (1 + α/2)/(1 + α). Therefore,

E sup
λ∈Λ

[
ε2

+∞∑
k=1

λ2
kb
−2
k (ξ2k − 1)− (1 + α)U0(λ)

]
≤ C?ε2

α
. (5.25)

Theorem 3.2 is obtained using (5.8) and (5.25).

�
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5.3. Proof of Theorem 4.1

Let µ > 0. By Theorem 3.2, Vµ(θ, λ) is a risk hull. Therefore,

Eθ‖θ? − θ‖2 ≤ EθVµ(θ, λ?). (5.26)

Moreover, (4.3) provides that, ∀λ ∈ Λ,

EθVα(y, λ?) ≤ EθVα(y, λ). (5.27)

We will combine inequalities (5.26) and (5.27). First, rewrite Vα(y, λ?) in terms of Vµ(θ, λ?). By simple algebra:

Vα(y, λ?) =
+∞∑
k=1

{
(λ?

k)2 − 2λ?
k

}
(b−2

k y2
k − ε2b−2

k ) + ε2
+∞∑
k=1

(λ?
k)2b−2

k + (1 + α)U0(λ?),

=
+∞∑
k=1

{
(1− λ?

k)2θ2k + ε2(λ?
k)2b−2

k

}
+ (1 + µ)U0(λ?) + (α− µ)U0(λ?),

+2
+∞∑
k=1

{
(λ?

k)2 − 2λ?
k

}
θkεb

−1
k ξk +

+∞∑
k=1

{
(λ?

k)2 − 2λ?
k

}
ε2b−2

k (ξ2k − 1)− ‖θ‖2,

= Rµ(θ, λ?) + (α− µ)U0(λ?)− ‖θ‖2

+2
+∞∑
k=1

{
(λ?

k)2 − 2λ?
k

}
θkεb

−1
k ξk +

+∞∑
k=1

{
(λ?

k)2 − 2λ?
k

}
ε2b−2

k (ξ2k − 1), (5.28)

where Rµ(θ, λ?) is defined in (4.5). Using (5.27) and (5.28), for all λ ∈ Λ,

EθRµ(θ, λ?) ≤ EθVα(y, λ)− (α− µ)EθU0(λ?) + ‖θ‖2

− 2Eθ

+∞∑
k=1

{
(λ?

k)2 − 2λ?
k

}
θkεb

−1
k ξk − Eθ

+∞∑
k=1

{
(λ?

k)2 − 2λ?
k

}
ε2b−2

k (ξ2k − 1). (5.29)

It is then easy to see that, for all λ ∈ Λ,

EθVα(y, λ) = Rα(θ, λ)− ‖θ‖2.

This yields:

EθRµ(θ, λ?) ≤ Rα(θ, λ)− 2Eθ

+∞∑
k=1

{
(λ?

k)2 − 2λ?
k

}
θkεb

−1
k ξk (5.30)

+Eθ

[
+∞∑
k=1

{
2λ?

k − (λ?
k)2
}
ε2b−2

k (ξ2k − 1)− (α− µ)U0(λ?)

]
.

In order to complete the proof, we bound the two last terms of (5.30). First use Corollary 6.5 in Section 6. For
all γ > 0 and for all λ ∈ Λ:

Eθ

+∞∑
k=1

{
(λ?

k)2 − 2λ?
k

}
θkεb

−1
k ξk = Eθ

+∞∑
k=1

(1− λ?
k)2θkεb

−1
k ξk

≥ −γEθR(θ, λ?)− γR(θ, λ)− Cγ−1ε2LTω(γ−2LT ) (5.31)
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Therefore, using (5.29)-(5.31), we obtain:

EθRµ(θ, λ?)

≤ (1 + γ)Rα(θ, λ) + γEθ

{
+∞∑
k=1

(1− λ?
k)2θ2k + ε2

+∞∑
k=1

(λ?
k)2b−2

k

}

+Cγ−1ε2LTω(γ−2LT ) + Eθ

[
+∞∑
k=1

{2λ?
k − (λ?

k)2}ε2b−2
k (ξ2k − 1)− (α− µ)U0(λ?)

]
,

= (1 + γ)Rα(θ, λ) + γEθ

{
+∞∑
k=1

(1− λ?
k)2θ2k + ε2

+∞∑
k=1

(λ?
k)2b−2

k ξ2k

}
+ Cγ−1ε2LTω(γ−2LT ),

+Eθ

[
+∞∑
k=1

{2λ?
k − (1 + γ)(λ?

k)2}ε2b−2
k (ξ2k − 1)− (α− µ)U0(λ?)

]
. (5.32)

Now, study the last term in the right-hand side of (5.32). It can be rearranged as follows:

Eθ

[
+∞∑
k=1

{
2λ?

k − (1 + γ)(λ?
k)2
}
ε2b−2

k (ξ2k − 1)− (α− µ)U0(λ?)

]
,

= Eθ

[
ε2

+∞∑
k=1

(1− γ)(λ?
k)2b−2

k (ξ2k − 1)− (α− µ)U0(λ?)

]

+2Eθ

+∞∑
k=1

{
λ?

k − (λ?
k)2
}
ε2b−2

k (ξ2k − 1) = T1 + T2.

We are first interested in T1. The bound of this term represents the gain on the traditional URE method.
Indeed, if the penalty is zero, only less precise bounds are available (see proof of Theorem 4.2). Remark that if
the constant CT is large, the term T1 will be negligible compared to T2. The efficiency will not be enhanced by
the RHM method. Here, using (5.25):

T1 = (1− γ)Eθ

[
ε2

+∞∑
k=1

(λ?
k)2b−2

k (ξ2k − 1)− (α− µ)
1− γ

U0(λ?)

]
≤ (1− γ)2Cε2

(α− µ+ γ − 1)+
. (5.33)

Then study the stochastic term T2:

T2 = 2ε2Eθ

+∞∑
k=1

λ?
kb
−2
k (ξ2k − 1)− 2ε2Eθ

+∞∑
k=1

(λ?
k)2b−2

k (ξ2k − 1). (5.34)
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For all λ ∈ Λ and B > 0, using Lemma 6.4, inequality (4.4) and the same technics of proof of Corollary 6.5 (see
Section 6) and (6.9):

2ε2Eθ

+∞∑
k=1

λ?
kb
−2
k (ξ2k − 1)

≤ C log2 S × Eθ

√√√√ε4
+∞∑
k=1

λ2
k(t?)b−4

k +
1√
S

√√√√ε4Eθ

+∞∑
k=1

λ2
k(t?)b−4

k ,

≤ C log2 S × ε2Eθ

√√√√sup
k∈N

(λ?
k)2b−2

k

+∞∑
k=1

λ2
k(t?)b−2

k + Cε2

√√√√Eθ sup
k∈N

(λ?
k)2b−2

k Eθ

+∞∑
k=1

λ2
k(t?)b−2

k ,

≤ γ

2
ε2Eθ

+∞∑
k=1

λ2
k(t?)b−2

k + Cε2γ−1 log2 S × Eθ sup
k∈N

(λ?
k)2b−2

k ,

≤ γε2Eθ

+∞∑
k=1

λ2
k(t?)b−2

k + Cε2γ−1LTω(γ−2LT ). (5.35)

Indeed, the process

ρ(t) = ε2
+∞∑
k=1

λk(t)b−2
k (ξ2k − 1), t ≥ 0,

is ordered. The same bound for the second term in the right hand side of (5.34) occurs since the process −η(t),
t ≥ 0 is also ordered. Using (3.8), (5.7) and (5.32)-(5.35), we eventually find:

(1− cγ)EθVµ(θ, λ?) ≤ (1 + γ)2Rα(θ, λ) + γEθ

[
+∞∑
k=1

(1− λ?
k)2θ2k + ε2

+∞∑
k=1

(λ?
k)2b−2

k ξ2k

]

+Cγ−1ε2LTω(γ−2LT ) +
C(1− γ2)ε2

(α− µ+ γ − 1)+
+
Cε2

µ
,

≤ (1 + γ)2Rα(θ, λ) + CγEθVµ(θ, λ?)

+Cγ−1ε2LTω(γ−2LT ) +
C(1− γ2)ε2

(α− µ+ γ − 1)+
+
Cε2

µ
, (5.36)

for some c > 0. Combining inequalities (5.26), (5.36), choosing γ < γ0 for some γ0, we eventually obtain:

Eθ‖θ? − θ‖2 ≤ EθVµ(θ, λ?),

≤
(

(1 + γ)2

1− cγ

)
Rα(θ, λ) +

Cε2

µ
+

(1− γ2)Cε2

(α− µ+ γ − 1)+
+ Cγ−1ε2LTω(γ−2LT ).

Set µ = γ in order to conclude the proof.

�
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5.4. Proof of Theorem 4.2

The proof essentially follows the same lines of Sections 5.2 and 5.3. Let γ > 0 be fixed and W (θ, λ)
defined by:

W (θ, λ(t)) = (1 + 2γ)

{
+∞∑
k=1

(1− λk(t))2θ2k + ε2
+∞∑
k=1

λ2
k(t)b−2

k

}
+C̃ε2γ−1LTω(γ−2LT ) + γR(θ, λ0), (5.37)

where C̃ denotes a positive constant independent of ε. First remark that using (5.7):

Eθ sup
λ∈Λ

{
‖θ̂λ − θ‖2 −W (θ, λ)

}
≤ Eθ sup

λ∈Λ

[
(1 + γ)

+∞∑
k=1

(1− λk)2θ2k + ε2
+∞∑
k=1

λ2
kb
−2
k ξ2k + γε2

+∞∑
k=1

λ2
kb
−2
k

+Cγ−1ε2ω(γ−2LT ) + γR(θ, λ0)−W (θ, λ)
]
,

= Eθ sup
t∈T

[
(1 + γ)

+∞∑
k=1

(1− λk(t))2θ2k + η(t) + (1 + γ)ε2
+∞∑
k=1

λ2
k(t)b−2

k

+Cγ−1ε2ω(γ−2LT ) + γR(θ, λ0)−W (θ, λ)
]
,

The process η(t), t ≥ 0 is ordered. Using (5.35):

Eθη(t̃) ≤ γε2Eθ

+∞∑
k=1

λ2
k(t̃)b−2

k + Cε2γ−1LTω(γ−2LT ),

for some positive constant C and γ > 0, with,

λ(t̃) = arg sup
t∈T

{
‖θ̂λ − θ‖2 −W (θ, λ)

}
.

This inequality can easily be derived from Lemma 6.4 and proof of Corollary 6.5. Hence:

Eθ sup
λ∈Λ

{
‖θ̂λ − θ‖2 −W (θ, λ)

}
≤ Eθ sup

λ∈Λ

[
(1 + γ)

+∞∑
k=1

(1− λ2
k)θ2k + (1 + 2γ)ε2

+∞∑
k=1

λ2
kb
−2
k

+Cγ−1ε2LTω(γ−2LT ) + γR(θ, λ0)−W (θ, λ)
]
≤ 0. (5.38)

Therefore, W (θ, λ) can also be considered as a risk hull. Hence, the traditional URE procedure is in some sense
a risk hull method. Nevertheless, the hull W (θ, λ) is rather rough compared to Vα(θ, λ). The variability of the
problem is neglected.

Using the same principle as in (5.26)-(5.32) and (5.38), we get:

EθR(θ, λ?) ≤ (1 + γ)R(θ, λ) + γEθR(θ, λ?) + Cγ−1ε2LTω(γ−2LT )

+Eθ

+∞∑
k=1

{2λ?
k − (λ?

k)2}ε2b−2
k (ξ2k − 1),

≤ (1 + γ)R(θ, λ) + 2γEθR(θ, λ?) + Cγ−1ε2LTω(γ−2LT ). (5.39)

Then use (5.39), (5.38) in order to conclude the proof.
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6. Ordered processes

The control of processes like, for instance:

η(t) =
+∞∑
k=1

ε2λ2
k(t)b−2

k (ξ2k − 1), t ≥ 0 or ρ(t) =
+∞∑
k=1

(1− λk(t))θkεb
−1
k ξk, t ≥ 0, (6.1)

is rather important for the construction of a data-driven parameter choice rule. These processes have a strong
influence on the behavior of the related estimators. For all t > 0, the sequence (λk(t))k∈N is assumed to be
monotone decreasing.

We will see in this section that they are embedded in a more general class: the ordered processes. These
stochastic objects have been introduced in [21] and are intensively studied in [7]. In this section we recall the
definition and present some results useful for the proofs of Theorems 3.2-4.2.

Definition 6.1. Let ζ(t), t ≥ 0 a separable random process with Eζ(t) = 0 and finite variance Σ2(t). It is
called ordered if for all t2 ≥ t1 ≥ 0,

Σ2(t2) ≥ Σ2(t1), and E[ζ(t2)− ζ(t1)]2 ≤ Σ2(t2)− Σ2(t1). (6.2)

The class of ordered processes is thus rather vast. In particular, it contains the well-known Wiener processes.

Proposition 6.2. The process η(t), t ≥ 0, defined in (6.1) is ordered.

PROOF. For all t ≥ 0,

Eη(t) = 0 and Σ2(t) = 2ε4
+∞∑
k=1

λ4
k(t)b−4

k = 2σ2(t).

Assume that for all k ∈ N, λk(t) → 1 as t → +∞ and let t1 ≤ t2 be fixed. Then Σ2(t1) ≤ Σ2(t2) since, for all
k ∈ N, λk(t1) ≤ λk(t2). Moreover,

Eη(t1)2 = E

[
+∞∑
k=1

ε2λ2
k(t1)b−2

k (ξ2k − 1)

]2

= ε4
+∞∑
k=1

λ4
k(t1)b−4

k E
[
(ξ2k − 1)2

]
,

≤
+∞∑
k=1

ε2λ2
k(t1)b−2

k ε2λ2
k(t2)b−2

k E
[
(ξ2k − 1)2

]
,

= E

[(
+∞∑
k=1

ε2λ2
k(t1)b−2

k (ξ2k − 1)

)
×

(
+∞∑
k=1

ε2λ2
k(t2)b−2

k (ξ2k − 1)

)]
= E[η(t1)η(t2)]. (6.3)

The property (6.2) is a consequence of (6.3). The process η is ordered.
�

The main characteristic of ordered processes is contained in the following lemma.

Lemma 6.3. Let ζ(t), t ≥ 0 an ordered process and suppose that there exists κ > 0 such that

ϕ(κ) = sup
t1,t2

E exp

{
κ

ζ(t1)− ζ(t2)√
E[ζ(t1)− ζ(t2)]2

}
< +∞. (6.4)

Then, there exists a constant C depending on κ such that, for all S, T > 0 and all p ≥ 1,

E sup
s,t∈[S,T ]

|ζ(t)− ζ(s)|p ≤ Cppp
√

Σ2(T )− Σ2(S)
p
. (6.5)
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This result is an extension of Lemma 1 of [7]. They consider the particular case S = 0. This lemma is rather
important. It may be useful in many situations. In particular, many processes encountered in the proofs of
Theorems 3.2 and 4.1 are ordered and satisfy (6.4). The proof follows essentially the same lines of [7].

The following result is a consequence of the previous lemma.

Lemma 6.4. Let ζ(t), t ≥ 0 be an ordered process satisfying (6.4) such that ζ(0) = 0 and t? measurable with
respect to ζ. Then there exists a positive constant C depending on κ and τ > 0 such that for all K > 1:

E|ζ(t?)| ≤ log2(K)EΣ(t?) + C

√
EΣ2(t?)
K

.

PROOF. First remark that:

E|ζ(t?)| = E|ζ(t?)|1{|ζ(t?)|≤(log K)2Σ(t?)} + E|ζ(t?)|1{|ζ(t?)|≥(log K)2Σ(t?)},

≤ (logK)2EΣ(t?) + E|ζ(t?)|1{|ζ(t?)|≥(log K)2Σ(t?)}. (6.6)

We can assume without loss of generality that Σ(t) → +∞ as t→ +∞. Let (tk)k∈N the real sequence verifying:

Σ(tk) = kd

√
EΣ2(t?)
K

, ∀k ∈ N, (6.7)

where d > 0 will be chosen later. Using Lemma 6.3,

E|ζ(t?)|1{|ζ(t?)|≥log2(K)Σ(t?)}

= E|ζ(t?)|1{|ζ(t?)|≥log2(K)Σ(t?)}1{t?<t1} + E|ζ(t?)|1{|ζ(t?)|≥log2(K)Σ(t?)}1{t?>t1},

≤ E sup
t<t1

|ζ(t)|+ E|ζ(t?)|1{|ζ(t?)|≥log2(K)Σ(t?)}1{t?>t1},

≤ Σ(t1) + E|ζ(t?)|1{|ζ(t?)|≥log2(K)Σ(t?)}1{t?>t1},

=

√
EΣ2(t?)
K

+ E|ζ(t?)|1{|ζ(t?)|≥log2(K)Σ(t?)}1{t?>t1}.

Let p ∈ N such that 1 < p < 2. Using Hölder inequality:

E|ζ(t?)|1{|ζ(t?)|≥log2(K)Σ(t?)}1{t?>t1}

=
+∞∑
k=1

E|ζ(t?)|1{|ζ(t?)|≥log2(K)Σ(t?)}1{t?∈[tk,tk+1]},

=
+∞∑
k=1

E
[
Σp(t?)

|ζ(t?)|
Σp(t?)

1{|ζ(t?)|≥log2(K)Σ(t?)}1{t?∈[tk,tk+1]}

]
,

≤
+∞∑
k=1

[EΣpr(t?)]1/r ×
[
E
|ζ(t?)|s

Σps(t?)
1{|ζ(t?)|≥log2(K)Σ(t?)}1{t?∈[tk,tk+1]}

]1/s

,

where r and s are such that r−1 + s−1 = 1. In the following, set r = 2/p and s = 2/(2− p). Such a choice leads
to:

E|ζ(t?)|1{|ζ(t?)|≥log2(K)Σ(t?)}1{t?>t1}

≤
√

EΣ2(t?)
p
×

+∞∑
k=1

[E supt∈[tk,tk+1]
|ζ(t)|s

Σps(tk)
1n

supt∈[tk,tk+1] |ζ(t)|≥log2(K)Σ(tk)
o]1/s

.
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Let q > 0 which will be chosen later. Using a Markov inequality and Lemma 6.3, we obtain:

E|ζ(t?)|1{|ζ(t?)|≥(log K)Σ(t?)}1{t?>t1}

≤
√

EΣ2(t?)
p
×

+∞∑
k=1

[
E supt∈[tk,tk+1]

|ζ(t)|s+q

Σps+q(tk)
× 1

(logK)2q

]1/s

,

≤
√

EΣ2(t?)
p
×

+∞∑
k=1

[
C(s+ q)(s+q)Σs+q(tk+1)

Σps+q(tk)
× 1

(logK)2q

]1/s

.

Now, use (6.7) in order to obtain:

E|ζ(t?)|1{|ζ(t?)|≥log2 KΣ(t?)}1{t?>t1}

≤
√

EΣ2(t?)
p
×

+∞∑
k=1

[
C(s+ q)(s+q)(k + 1)d(s+q)

√
EΣ2(t?)

s+q
K−(s+q)

kd(ps+q)
√

EΣ2(t?)
ps+q

K−(ps+q)
× 1

(logK)2q

]1/s

,

≤
√

EΣ2(t?)
p
×

+∞∑
k=1

[
C(s+ q)(s+q)2d(s+q)Ks(p−1)

kds(p−1)
√

EΣ2(t?)
s(p−1)

× 1
(logK)2q

]1/s

,

=

√
EΣ2(t?)

p√
EΣ2(t?)

p−1 ×
1
K
×

+∞∑
k=1

1
kd(p−1)

[
C(s+ q)(s+q)2d(s+q)Ksp

(logK)2q

]1/s

.

Setting for instance d = 2/(p− 1),

E|ζ(t?)|1{|ζ(t?)|≥log2(K)Σ(t?)}1{t?>t1} ≤ C

√
EΣ2(t?)
K

× qq/s2dqKp

(logK)2q/s
.

Recall that the parameter 1 < p < 2 is fixed. Set q = s logK. Therefore:

E|ζ(t?)|1{|ζ(t?)|≥log2(K)Σ(t?)}1{t?>t1}

≤ C

√
EΣ2(t?)
K

× Kp(logK)log K2d log K/s

(logK)2 log K
,

= C

√
EΣ2(t?)
K

×
(
ep2d

logK

)log K

≤ C

√
EΣ2(t?)
K

,

for some C > 0 independent of K. This concludes the proof of Lemma 6.4.
�

Corollary 6.5. Let t̂ > 0 measurable w.r.t. the sequence (ξk)k∈N and t0 the oracle defined in (3.5). For all
γ > 0, the following inequalities hold:

(i) Eθ

∣∣∣∣∣
+∞∑
k=1

λ2
k(t̂)θkεb

−1
k ξk

∣∣∣∣∣ ≤ γEθR(θ, λ̂) + γR(θ, λ0) + Cε2γ−1LTω(γ−2LT ),

(ii) Eθ

∣∣∣∣∣
+∞∑
k=1

(1− λk(t̂))2θkεb
−1
k ξk

∣∣∣∣∣ ≤ γEθR(θ, λ̂) + γR(θ, λ0) + Cε2γ−1LTω(γ−2LT ),

for some C > 0 independent of ε.
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PROOF. In a first time introduce:
∆ε[λ] = ε2 sup

k∈N
λ2

kb
−2
k , ∀λ ∈ Λ. (6.8)

First prove inequality (i). We have,

Eθ

+∞∑
k=1

λ2
k(t̂)θkεb

−1
k ξk = Eθ

+∞∑
k=1

{λ2
k(t̂)− λ2

k(t0)}θkεb
−1
k ξk,

where λ0 = λ(t0) is the oracle defined in (3.5). The process:

ρ(t) =
+∞∑
k=1

{λ2
k(t)− λ2

k(t0)}θkεb
−1
k ξk, t > 0,

is ordered on [t0; +∞[. Moreover, ρ̃(t) = ρ(t−1), t ≥ 0 is also ordered on [t−1
0 ; +∞[. Both processes satisfy (6.4)

for some κ > 0. Let S the term introduced in (3.7). Using Lemma 6.4 with K =
√
S:

Eθ

+∞∑
k=1

λ2
k(t̂)θkεb

−1
k ξk

≤ C log2(S).Eθ

√√√√+∞∑
k=1

{
λ2

k(t0)− λ2
k(t̂)

}2
θ2kε

2b−2
k +

C√
S

√√√√Eθ

+∞∑
k=1

{
λ2

k(t0)− λ2
k(t̂)

}2
θ2kε

2b−2
k ,

where C a positive constant independent of ε. Then, remark that the following inequality holds:

{λ2
k(t0)− λ2

k(t̂)}2 = [(1− λk(t̂))− (1− λk(t0))]2(λk(t̂) + λk(t0))2,

≤ 4
[(

1− λk(t̂)2 + (1− λk(t0)
)2] [

λ2
k(t0) + λ2

k(t̂)
]
.

For all γ > 0, using the elementary inequality 2ab ≤ γa2 + γ−1b2, we obtain:

Eθ

+∞∑
k=1

λ2
k(t̂)θkεb

−1
k ξk

≤ γEθ

+∞∑
k=1

(1− λ̂k)2θ2k +Dγ−1 log2(S).Eθ∆ε[λ̂] + γ

+∞∑
k=1

(1− λ0
k)2θ2k +Dγ−1 log2(S).∆ε[λ0],

for some positive constant D. With simple algebra, for all x > 0 and λ ∈ Λ:

Dγ−1 log2(S).∆ε[λ] = Dγ−1 log2(S).ε2 sup
k
λ2

kb
−2
k ,

≤ Dγ−1 log2(S).x−1ε2
+∞∑
k=1

λkb
−2
k +Dγ−1 log2(S).ε2ω(x), (6.9)

where the function ω is introduced in (3.6) and computed for some particular examples in Section 3.2. Then
set x = Dγ−2 log2 S in order to obtain (i).

The proof of (ii) exactly follows the same lines. It uses in particular Corollary 1 and inequality (34) of [8].
�
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