A. Ali and H. Kalisch, Energy balance for undular bores, Comptes Rendus M??canique, vol.338, issue.2, pp.67-70, 2010.
DOI : 10.1016/j.crme.2010.02.003

A. Ali and H. Kalisch, Mechanical Balance Laws for Boussinesq Models of Surface Water Waves, Journal of Nonlinear Science, vol.9, issue.3, pp.371-398, 2012.
DOI : 10.1007/s00332-011-9121-2

J. Bardet, C. E. Synolakis, H. L. Davies, F. Imamura, and E. A. , Landslide Tsunamis: Recent Findings and Research Directions, Pure and Applied Geophysics, vol.160, issue.10-11, pp.1793-1809, 2003.
DOI : 10.1007/s00024-003-2406-0

T. J. Barth, Aspects of unstructured grids and finite-volume solvers for the Euler and Navier-Stokes equations. Lecture series -van Karman Institute for Fluid Dynamics, pp.1-140, 1994.

T. J. Barth and M. Ohlberger, Encyclopedia of Computational Mechanics, Fundamentals, chapter, vol.1, issue.16, p.28, 2004.

G. K. Batchelor, An introduction to fluid dynamics, volume 61 of Cambridge mathematical library, 2000.

S. A. Beisel, L. B. Chubarov, D. Dutykh, G. Khakimzyanov, and N. Shokina, Simulation of surface waves generated by an underwater landslide in a bounded reservoir, Russian Journal of Numerical Analysis and Mathematical Modelling, vol.27, issue.6, pp.539-558, 2012.
DOI : 10.1515/rnam-2012-0031

S. A. Beisel, D. G. Khakimzyanov, and L. B. Chubarov, Surface wave modeling generated by an underwater landslide moving along a nonuniform slope, Computational Technologies, vol.15, issue.3 10, pp.39-51, 2010.

M. Bjørkavåg and H. Kalisch, Wave breaking in Boussinesq models for undular bores, Physics Letters A, vol.375, issue.14, pp.1570-1578, 2011.
DOI : 10.1016/j.physleta.2011.02.060

P. Bogacki and L. F. Shampine, A 3(2) pair of Runge - Kutta formulas, Applied Mathematics Letters, vol.2, issue.4, pp.321-325, 1989.
DOI : 10.1016/0893-9659(89)90079-7

J. L. Bona, M. Chen, and J. Saut, Boussinesq Equations and Other Systems for Small-Amplitude Long Waves in Nonlinear Dispersive Media. I: Derivation and Linear Theory, Journal of Nonlinear Science, vol.12, issue.4, pp.283-318, 2002.
DOI : 10.1007/s00332-002-0466-4

J. Boussinesq, Théorie de l'intumescence liquide appelée onde solitaire ou de translation se propageant dans un canal rectangulaire. Comptes Rendus de l'Académie des Sciences Sér, A-B, vol.72, issue.3, pp.755-759

R. Briganti, R. E. Musumeci, G. Bellotti, M. Brocchini, and E. Foti, BOUSSINESQ MODELLING OF BREAKING WAVES: DESCRIPTION OF TURBULENCE, Coastal Engineering 2004, p.7015, 2004.
DOI : 10.1142/9789812701916_0031

B. H. Choi, V. Kaistrenko, K. O. Kim, B. I. Min, and E. Pelinovsky, Rapid forecasting of tsunami runup heights from 2-D numerical simulations, Natural Hazards and Earth System Science, vol.11, issue.3, pp.707-714, 2011.
DOI : 10.5194/nhess-11-707-2011

L. B. Chubarov, S. Eletsky, Z. Fedotova, and G. S. Khakimzyanov, Simulation of surface waves generation by an underwater landslide, Russian Journal of Numerical Analysis and Mathematical Modelling, vol.20, issue.5, pp.425-437, 2005.
DOI : 10.1515/156939805775186668

L. B. Chubarov, G. S. Khakimzyanov, N. Yu, and . Shokina, Numerical Modelling of Surface Water Waves Arising Due to Movement of Underwater Landslide on Irregular Bottom Slope, Notes on Numerical Fluid Mechanics and Multidisciplinary Design: Computational Science and High Performance Computing IV, pp.75-91, 2011.
DOI : 10.1007/978-3-642-17770-5_7

M. D. Risio, G. Bellotti, A. Panizzo, and P. Girolamo, Three-dimensional experiments on landslide generated waves at a sloping coast, Coastal Engineering, vol.56, issue.5-6, pp.5-6659, 2004.
DOI : 10.1016/j.coastaleng.2009.01.009

I. Didenkulova, I. Nikolkina, E. Pelinovsky, and N. Zahibo, Tsunami waves generated by submarine landslides of variable volume: analytical solutions for a basin of variable depth, Natural Hazards and Earth System Science, vol.10, issue.11, pp.2407-2419, 2010.
DOI : 10.5194/nhess-10-2407-2010

I. Didenkulova and E. Pelinovsky, Run-up of long waves on a beach: The influence of the incident wave form, Oceanology, vol.48, issue.1, pp.1-6, 2008.
DOI : 10.1134/S0001437008010013

D. Dutykh and F. Dias, Energy of tsunami waves generated by bottom motion, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.205, issue.5743, pp.725-744, 2009.
DOI : 10.1126/science.1114576

URL : https://hal.archives-ouvertes.fr/hal-00311752

D. Dutykh, F. Dias, and Y. Kervella, Linear theory of wave generation by a moving bottom, Comptes Rendus Mathematique, vol.343, issue.7, pp.499-504, 2006.
DOI : 10.1016/j.crma.2006.09.016

URL : https://hal.archives-ouvertes.fr/hal-00114954

D. Dutykh, T. Katsaounis, and D. Mitsotakis, Dispersive wave runup on non-uniform shores, Finite Volumes for Complex Applications VI -Problems & Perspectives, pp.389-397, 2011.
DOI : 10.1007/978-3-642-20671-9_41

URL : https://hal.archives-ouvertes.fr/hal-00553762

D. Dutykh, T. Katsaounis, and D. Mitsotakis, Finite volume schemes for dispersive wave propagation and runup, Journal of Computational Physics, vol.230, issue.8, pp.3035-3061, 2011.
DOI : 10.1016/j.jcp.2011.01.003

URL : https://hal.archives-ouvertes.fr/hal-00472431

D. Dutykh, T. Katsaounis, and D. Mitsotakis, Finite volume methods for unidirectional dispersive wave models, International Journal for Numerical Methods in Fluids, vol.459, issue.6, pp.717-736, 2013.
DOI : 10.1002/fld.3681

URL : https://hal.archives-ouvertes.fr/hal-00538043

D. Dutykh, D. Mitsotakis, X. Gardeil, and F. Dias, On the use of the finite fault solution for tsunami generation problems, Theoretical and Computational Fluid Dynamics, vol.9, issue.22, pp.177-199, 201320.
DOI : 10.1007/s00162-011-0252-8

URL : https://hal.archives-ouvertes.fr/hal-00509384

J. Fenton, A ninth-order solution for the solitary wave, Journal of Fluid Mechanics, vol.26, issue.02, pp.257-271, 1972.
DOI : 10.1017/S002211207200014X

E. D. Fernández-nieto, F. Bouchut, D. Bresch, M. J. Castro-diaz, and A. Mangeney, A new Savage???Hutter type model for submarine avalanches and generated tsunami, Journal of Computational Physics, vol.227, issue.16, pp.7720-7754, 2008.
DOI : 10.1016/j.jcp.2008.04.039

M. Frigo and S. G. Johnson, The Design and Implementation of FFTW3, Proceedings of the IEEE, pp.216-231, 2005.
DOI : 10.1109/JPROC.2004.840301

H. M. Fritz, W. Kongko, A. Moore, B. Mcadoo, J. Goff et al., Extreme runup from the 17, p.12602, 2006.

D. R. Fuhrman and P. A. Madsen, Tsunami generation, propagation, and run-up with a high-order Boussinesq model, Coastal Engineering, vol.56, issue.7, pp.747-758, 2009.
DOI : 10.1016/j.coastaleng.2009.02.004

J. Ghidaglia, A. Kumbaro, and G. L. Coq, Une méthode volumes-finisàfinisà flux caractéristiques pour la résolution numérique des systèmes hyperboliques de lois de conservation. Comptes Rendus de l, Académie des Sciences I, vol.322, pp.981-988, 1996.

J. Ghidaglia, A. Kumbaro, and G. L. Coq, On the numerical solution to two fluid models via a cell centered finite volume method, European Journal of Mechanics - B/Fluids, vol.20, issue.6, pp.841-867, 2001.
DOI : 10.1016/S0997-7546(01)01150-5

S. T. Grilli, F. Dias, P. Guyenne, C. Fochesato, and F. Enet, PROGRESS IN FULLY NONLINEAR POTENTIAL FLOW MODELING OF 3D EXTREME OCEAN WAVES, Advances in Numerical Simulation of Nonlinear Water Waves, pp.75-128, 2010.
DOI : 10.1142/9789812836502_0003

S. T. Grilli, P. Guyenne, and F. Dias, A fully non-linear model for three-dimensional overturning waves over an arbitrary bottom, International Journal for Numerical Methods in Fluids, vol.20, issue.7, pp.829-867, 2001.
DOI : 10.1002/1097-0363(20010415)35:7<829::AID-FLD115>3.0.CO;2-2

S. T. Grilli and P. Watts, Modeling of waves generated by a moving submerged body. Applications to underwater landslides. Engineering Analysis with boundary elements, pp.645-656, 1999.

S. T. Grilli and P. Watts, Tsunami Generation by Submarine Mass Failure. I: Modeling, Experimental Validation, and Sensitivity Analyses, Journal of Waterway, Port, Coastal, and Ocean Engineering, vol.131, issue.6, pp.283-312, 2005.
DOI : 10.1061/(ASCE)0733-950X(2005)131:6(283)

R. Grimshaw, The solitary wave in water of variable depth. Part 2, Journal of Fluid Mechanics, vol.67, issue.03, pp.611-622, 1971.
DOI : 10.1017/S0022112071000739

J. Hammack, A note on tsunamis: their generation and propagation in an ocean of uniform depth, Journal of Fluid Mechanics, vol.51, issue.04, pp.769-799, 1973.
DOI : 10.1103/PhysRev.168.124

C. B. Harbitz, F. Lovholt, G. Pedersen, S. Glimsdal, and D. G. Masson, Mechanisms of tsunami generation by submarine landslides -a short review, Norwegian Journal of Geology, vol.86, issue.3, pp.255-264, 2006.

A. Harten, ENO schemes with subcell resolution, Journal of Computational Physics, vol.83, issue.1, pp.148-184, 1989.
DOI : 10.1016/0021-9991(89)90226-X

A. Harten and S. Osher, Uniformly High-Order Accurate Nonoscillatory Schemes. I, SIAM Journal on Numerical Analysis, vol.24, issue.2, pp.279-309, 1987.
DOI : 10.1137/0724022

URL : http://www.dtic.mil/get-tr-doc/pdf?AD=ADA158177

G. S. Khakimzyanov and N. Y. Shokina, Numerical modelling of surface water waves arising due to a movement of the underwater landslide on an irregular bottom, Computational technologies, vol.15, issue.1, pp.105-119, 2010.

N. E. Kolgan, Finite-difference schemes for computation of three dimensional solutions of gas dynamics and calculation of a flow over a body under an angle of attack, Uchenye Zapiski TsaGI [Sci. Notes Central Inst. Aerodyn], vol.6, issue.2, pp.1-6, 1975.

P. Lynett and P. L. Liu, A numerical study of submarine-landslide-generated waves and run-up, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.458, issue.2028, pp.2885-2910, 2002.
DOI : 10.1098/rspa.2002.0973

O. Nwogu, Alternative Form of Boussinesq Equations for Nearshore Wave Propagation, Journal of Waterway, Port, Coastal, and Ocean Engineering, vol.119, issue.6, pp.618-638, 1993.
DOI : 10.1061/(ASCE)0733-950X(1993)119:6(618)

E. A. Okal and C. E. Synolakis, A Theoretical Comparison of Tsunamis from Dislocations and Landslides, Pure and Applied Geophysics, vol.160, issue.10-11, pp.2177-2188, 2003.
DOI : 10.1007/s00024-003-2425-x

D. E. Pelinovsky and Y. A. Stepanyants, Convergence of Petviashvili's Iteration Method for Numerical Approximation of Stationary Solutions of Nonlinear Wave Equations, SIAM Journal on Numerical Analysis, vol.42, issue.3, pp.1110-1127, 2004.
DOI : 10.1137/S0036142902414232

E. Pelinovsky and A. Poplavsky, Simplified model of tsunami generation by submarine landslides, Physics and Chemistry of the Earth, vol.21, issue.1-2, pp.13-17, 1996.
DOI : 10.1016/S0079-1946(97)00003-7

D. H. Peregrine, Long waves on a beach, Journal of Fluid Mechanics, vol.13, issue.04, pp.815-827, 1967.
DOI : 10.1017/S0022112067002605

R. Poncet, C. Campbell, F. Dias, J. Locat, and D. Mosher, A Study of the Tsunami Effects of Two Landslides in the St. Lawrence Estuary, Submarine Mass Movements and Their Consequences, pp.755-764, 2010.
DOI : 10.1007/978-90-481-3071-9_61

D. B. Prior and J. M. Coleman, Submarine landslides: geometry and nomenclature, Zeitschrift für Geomorphologie, vol.23, issue.2, pp.415-426, 1979.

P. Sammarco and E. Renzi, Landslide tsunamis propagating along a plane beach, J. Fluid Mech, vol.598, issue.10, pp.107-119, 2008.

S. Seo and P. Renzi, Edge waves generated by the landslide on a sloping beach, Coastal Engineering, vol.73, issue.10, pp.133-150, 2013.
DOI : 10.1016/j.coastaleng.2012.10.008

L. F. Shampine and M. W. Reichelt, The MATLAB ODE Suite, SIAM Journal on Scientific Computing, vol.18, issue.1, pp.1-22, 1997.
DOI : 10.1137/S1064827594276424

URL : https://hal.archives-ouvertes.fr/hal-01333731

Y. I. Shokin, Z. Fedotova, G. S. Khakimzyanov, L. B. Chubarov, and S. A. Beisel, Modelling surface waves generated by a moving landslide with allowance for vertical flow structure, Russian Journal of Numerical Analysis and Mathematical Modelling, vol.22, issue.1, pp.63-85, 2007.
DOI : 10.1515/RNAM.2007.22.1.63

G. Söderlind, Digital filters in adaptive time-stepping, ACM Transactions on Mathematical Software, vol.29, issue.1, pp.1-26, 2003.
DOI : 10.1145/641876.641877

G. Söderlind and L. Wang, Adaptive time-stepping and computational stability, Journal of Computational and Applied Mathematics, vol.185, issue.2, pp.225-243, 2006.
DOI : 10.1016/j.cam.2005.03.008

S. Tadepalli and S. C. , Model for the Leading Waves of Tsunamis, Physical Review Letters, vol.77, issue.10, pp.2141-2144, 1996.
DOI : 10.1103/PhysRevLett.77.2141

S. Tinti and E. Bortolucci, Energy of Water Waves Induced by Submarine Landslides, Pure and Applied Geophysics, vol.157, issue.3, pp.281-318, 2000.
DOI : 10.1007/s000240050001

S. Tinti, E. Bortolucci, and C. Chiavettieri, Tsunami Excitation by Submarine Slides in Shallow-water Approximation, Pure and Applied Geophysics, vol.158, issue.4, pp.759-797, 2001.
DOI : 10.1007/PL00001203

B. Van-leer, Towards the Ultimate Conservative Difference Scheme, Journal of Computational Physics, vol.135, issue.2, pp.101-136, 1979.
DOI : 10.1006/jcph.1997.5704

B. Van-leer, Upwind and High-Resolution Methods for Compressible Flow: From Donor Cell to Residual-Distribution Schemes, 16th AIAA Computational Fluid Dynamics Conference, pp.192-206, 2006.
DOI : 10.2514/6.2003-3559

P. Watts, F. Imamura, and S. T. Grilli, Comparing model simulations of three benchmark tsunami generation cases, Science of Tsunami Hazards, vol.18, issue.2 4, pp.107-123, 2000.

P. Watts, S. T. Grilli, J. Kirby, G. J. Fryer, and D. R. Tappin, Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model, Natural Hazards and Earth System Science, vol.3, issue.5, pp.391-402, 2003.
DOI : 10.5194/nhess-3-391-2003

URL : https://hal.archives-ouvertes.fr/hal-00299049

G. B. Whitham, Linear and nonlinear waves, 1999.

T. Y. Wu, Generation of upstream advancing solitons by moving disturbances, Journal of Fluid Mechanics, vol.162, issue.-1, pp.75-99, 1987.
DOI : 10.1146/annurev.fl.12.010180.000303

Y. Xing and C. Shu, High order finite difference WENO schemes with the exact conservation property for the shallow water equations, Journal of Computational Physics, vol.208, issue.1, pp.206-227, 2005.
DOI : 10.1016/j.jcp.2005.02.006