Interactive Cell Injection Simulation Based on 3D Biomechanical Tensegrity Model

Hamid Ladjal, Jean-Luc Hanus and Antoine Ferreira

Abstract—To facilitate training of biological cell injection operations, we are developing an interactive virtual environment to simulate needle insertion into biological cells. A key challenge of deformable simulation is to satisfy the conflicting requirements of real-time interactivity and physical realism. This paper presents methodologies for dynamic modeling, visual/haptic display and model validation of cell injection. We first investigate the challenging issues in the modeling of the bio-mechanical properties of living cells. We propose a dynamic model to simulate cell deformation and puncture. The developed approach is based on the assumptions that the mechanical response of living cells is mainly determined by the cytoskeleton and that the cytoskeleton is organized as a tensegrity structure including microfilaments, microtubules and intermediate filaments. Equivalent microtubules struts are represented with a linear mass-tensor finite element model and equivalent microfilaments and intermediate filaments with viscoelastic Kelvin-Voigt elements. The virtual environment has been implemented with both graphic and haptic interfaces.

I. INTRODUCTION

Living cells are increasingly used in drug discovery, functional genomics and toxicology to name a few. In fact, biological cell micromanipulations are currently performed manually and efficiency is relatively low depending strongly on the experience of the operator. A review on the existing techniques for manipulating biological cells is presented in [6]. The intracytoplasmic sperm injection process (ICSI) results in low success rate and poor reproducibility [7], [8]. Knowledge of interactive forces during pipette insertion plays an important role in precise micro injection operation [29]. This knowledge can help to identify and model different tissue types and it can also provide feedback for precise control of robot-assisted insertion while reducing tissue deformation and needle deflection [1]. However, when manipulating deformable biological objects, force sensor measurement will provide only the local forces at the pipette puncture point which limits strongly the operator haptic rendering [32]. In order to learn, train and analyze basic cell injection procedures, most operators are aiming to use artificial cells because practicing on human oocyte has ethical concerns and potential risks. This work is intended to propose a 3D pseudo-haptic rendering of biological cells for injection assistance. Similar research on virtual reality environments platforms have been carried out at a macroscopic scale in surgery simulation and modeling of soft tissues [5], [9], [10], [21]. The needle punctures and passes through different tissue layers such as skin, muscle, fatty and connective tissue [33],[34]. By analogy to in – vivo intracytoplasmic sperm injection, similar boundary conditions occurs. The cell geometry and biomechanical tissue properties (biomembrane, cytoplasm, nucleus) are of major importance in simulation and modeling because these factors affect the amount of cell membrane deformation, needle deflection and interaction forces. It requires a nonlinear biomechanical cell model able to render in a realistic way the interactions between the needle and the cell. Knowing interaction forces and developing appropriate pipette deflection and tissue deformation models during pipette insertion are the key issues for accurate insertion. In this study, we first investigate the challenging issues in the modeling of the biomechanical properties of living cells. Then we propose a dynamic model, based on an equivalent cytoskeleton, to simulate cell deformation during puncture.

The developed approach is based on two main assumptions:

• the mechanical response of living cells is mainly determined by the cytoskeleton;
• the cytoskeleton is organised as a tensegrity structure including microfilaments, microtubules and intermediate filaments.

A simplified cytoskeleton is developed with microtubules struts represented with a linear mass-tensor finite element model and microfilaments and intermediate filaments with viscoelastic Kelvin-Voigt elements. Both graphic and haptic rendering are provided in real-time to the operator through a 3D virtual environment.

This paper is organized as follows. In Section II, we present an overview of the mechanical models for living cells

This work was funded by the Centre de Recherche en Biologie (CEB) of Baugy and supported by the Laboratoire de Biologie d’Aide à la Procréation of the Hôpitaux de Paris-Pitié Salpêtrière.

H. Ladjal, J.-L. Hanus and A. Ferreira are with the PRISME Institute, ENSI Bourges, University of Orléans, 18000 Bourges, France antoine.ferreira@ensi-bourges.fr

Fig. 1. Cytoskeleton and equivalent biomechanical tensegrity model
and the adopted tensegrity model for cell modeling. In Section III, we present the different deformation algorithms of soft tissue before to define a model for real-time simulation. In Section IV, we present the software architecture of the real-time 3D pseudo-haptic rendering simulation platform. In Section V, we present simulation results.

II. BIOMECHANICAL MODELS FOR BIOLOGICAL CELLS

A. Related Research

In this section, we review major biomechanical models of the living cells as shown in Fig. 2. The development of biological cell models able to simulate insertion forces such as the force peak, latency in the force changes, and separation of different forces such as stiffness and damping force is a challenging issue. The majority of the proposed models are mainly derived into three classes: continuum, energetic and structural approaches. The models belonging to the first class assumes the biological cell comprising materials with certain continuum material properties without any insights on molecular mechanical properties cortical shell liquid core models [2], solid models [3] or spherical biphasic models [4]. For further explanation on these models, the reader may refer to [16]. Their main advantages are their facility to compute the mechanical properties of cells and provides details on the distribution of stresses and strains induced on cells. However, this macroscopic continuum approach, which views "the cell has a tensed balloon filled with molasses or jello [14]", has its drawbacks since it is nor capable of accounting for the molecular deformations and interactions within the cell.

The second category of models takes into account the contributions of various cytoskeleton structures to the overall energy budget of cell during contraction. It is based on the percolation theory and polymer physics models at large deformations. The advantage of this model is its independence in the choice of its coordinate system and the particular details of the cytoskeleton architecture, because the energy is a scalar quantity. However, its implementation requires the assumption of large deformations of the cell.

The third class of models includes the tensegrity structures divided into two subclasses:spectrin-network model and cytoskeletal models for adherent cells. The former deals a specific microstructural network for spectrin cells at large deformations [14]. The cytoskeleton as the main structural component and attribute a central role to cytoskeleton contractile forces. Recently, a specific architectural model of the cytoskeletal framework (tensegrity) deserved wide attention. The tensegrity approach has described many aspects of cell deformability including non-linear features of cellular structural behavior [17][14]. These models view the cell as a network of microfilament, microtubule and actin, that distribute forces within the cell through a balance of compression and tension [16][14]. Recent studies show that the tensegrity structure used with viscoelastic elements as a model of the cytoskeleton allows an accurate analysis of living cells behavior [20].

In this study, we show that the micro/nanostructural behavior of an oocyte cell composed of multilayer material components such as the pellucida zona, the biomembrane and the cytoplasm cytoskeleton could be modeled by the tensegrity model coupled to a viscoelastic membrane (see Fig.3).

B. Tensegrity model

The overall structure of the tensegrity model is described as follows. The cytoskeleton is composed of an interconnected structure of various cross-linked and interlinked filamentous biopolymers that extends from the center to the cell surface (bio-membrane). Three major filamentous components compose the cytoskeleton, i.e. the actin microfilaments, microtubules and intermediate filaments,
are physically interlinked. The following section studies the mechanical properties and geometrical structure of the tensegrity model.

1) Mechanical Properties: Fig. 4 presents the mechanical characteristics of the filamentous components when exposed to shearing force. The results show that the actins and microtubules act as tendons with different rupture characteristics, i.e., high force-small displacement or small force-high displacement, respectively. Compared to actin and microtubule filaments, the intermediate filaments are contrasting. They behave as a stiff spring supporting important tension and stretching forces without mechanical rupture. They are well adapted to maintain the shape cell [31].

2) Geometry of the simplified tensegrity model: In our simulation, we choose a simplified tensegrity structure with six compressing struts (two in each orthogonal direction), these struts aggregate behavior of the microtubules, as viewed as beams as shown in Fig. 5. These struts are attached to 36 cable segments [2] :
- 12 cables representing the intermediate filaments which are connected to the parallel struts.
- 24 cables representing the actin microfilaments connected to the end points of each strut.

III. FINITE ELEMENT MODELING

A. Related work in FEM Simulation

Soft tissue modeling are usually derived using either mass-spring approach or Finite Element Method (FEM). Mass-spring models are less "physically based". They comprise a set of nodes connected by springs, with point masses attached at each node. Real time performance can be achieved with a limited number of nodes but the behavior is often unrealistic and can be unstable. The FEM approach produces more accurate results but requires high computational costs for real-time modeling. Much research effort has been concentrated on developing techniques to speed up the finite element computation of deformable tissues without lack of accuracy. In [22], the authors modeled the viscoelastic behavior of the tissue by assuming that the elastic deformation is linear. In [23], the authors introduce a robust adaptive method for simulating dynamic deformations of a viscoelastic object in real-time using an explicit finite-element method. The works presented in [24][25][26] use a deformable model based on finite element nonlinear mass-tensor formalism using Venant-Kirchoff elastic model for large displacements or Kelvin-Voigt viscoelastic element. In this study, we propose a hybrid model well adapted to the deformable microstructural geometry of the oocyte cell. The biomechanical model we used is a simplified cytoskeleton tensegrity structure where struts are modeled with linear elastic mass-tensor and cables with viscoelastic Kelvin-Voigt elements.

B. Formulation of finite element model "Linear elastic Mass Tensor model for Tensegrity model"

In this section, we introduce the fundamental concepts for description and measurement of the deformation using finite element. Firstly we introduce briefly the relation between stress tensor σ and strain tensor ε (Hooke’s law), then we present the model mass-tensor for tensegrity model.

1) Linear elastic model: The strain tensor characterizes the change in shape (or deformation) near a material point. For the large deformations this tensor called Green-Lagrange is spelt:

$$\mathbf{L} = \frac{1}{2} (\mathbf{\nabla} \mathbf{U} + \mathbf{\nabla} \mathbf{U}^T) + \mathbf{\nabla} \mathbf{U} \mathbf{\nabla} \mathbf{U}^T$$

(1)

For the small deformations, we can write the infinitesimal strain tensor:

$$\varepsilon = \frac{1}{2} (\mathbf{\nabla} \mathbf{U} + \mathbf{\nabla} \mathbf{U}^T)$$

(2)
The Cauchy stress tensor σ_i represents internal forces acting at a material point per unit area of the deformed solid. The Newton’s law of conservation of linear momentum becomes in terms of the Cauchy stress tensor:

$$\text{div}(\sigma) + f = \rho \ddot{u}$$

(3)

2) Hooke’s Law or “Hookean” materials: Define a relation between the stress tensor and the strain tensor. This law for isotropic material and for linear deformation can be written:

$$\sigma = \lambda tr(\varepsilon) I + 2\mu \varepsilon$$

(4)

where μ: shearing coefficient and λ: compression coefficient are the Lame’s constants.

3) Mass-Tensor finite element formulation: In this section we present different steps for the linear elastic mass-tensor model introduced by [22][25] and extended by [26]. In our work, the struts of tensegrity model are the volume object, these struts are meshed with 3D first order tetrahedral element Fig.6. The displacement field $U(x)$ is defined by a linear interpolation function of the displacement vectors at each vertex u_i of the 4 vertices of the tetrahedron T^k as follows: (5).

$$U(x) = \sum_{j=0}^{3} N^j(x) u^j$$

(5)

where $N^j(x)$ are linear interpolation functions; these shape functions are simply the tetrahedral barycenter coordinates.

Introducing P_i the coordinates of each tetrahedron vertex and the areas vector m_i, the general expression of displacement field in the tetrahedron T^k can be defined by:

$$U(x) = -\frac{1}{6V^T} \sum_{j=0}^{3} m_i^j (x-P^j) u^j$$

(6)

Finally, the force f^i applied to the summit i of a tetrahedron T^k is obtained as the partial derivative of the strain energy with respect to associated nodal displacement:

$$f^i = -\frac{\partial W}{\partial u^i} = \sum_{j=0}^{3} K^{ij} \dot{u}^j$$

(8)

where K^{ij}: are the elements stiffness matrix, these tensors depend on the rest geometry of the T^k and Lames coefficients:

$$K^{ij} = \frac{1}{36V^k} \left(\lambda (m^i \otimes m^j + m^j \otimes m^i + \mu m^i \cdot m^j) \right)$$

(9)

The equation (8) defines the force f^i for one tetrahedron T^k, but for global mesh, we must add the contribution by all adjacent tetrahedra of T^k, the resulting force F^i can be expressed as follows:

$$F^i_{\text{mesh}} = K^{ii} \dot{u}^i + \sum_{j \in O(P^i)} K^{ij} \dot{u}^j$$

(10)

K^{ii} and K^{ij} design respectively the sum of tensor K^{ii} associated with the tetrahedra adjacent to node i and with the tetrahedra adjacent to edge (i, j), $O(P^i)$ is the neighborhood of vertex P^i. These tensors, depending only on the rest geometry and Lames coefficients, are constant and can be pre-computed. It’s the essential advantage of the method of mass-tensor which makes it usable for real time application.

C. Cable behavior for the tensegrity structure

In this section, we present the description of the cable behavior about our tensegrity model (Fig.5). These cables are assumed to be have as viscoelastic mass-spring-damper. Each cable is modeled with two masses interconnected via spring and damper in parallel (Voigt-Kelvin model, Fig.7). In the local frame, the relation between the stress and the strain can be written as follows:

$$\sigma = E \varepsilon + \eta \dot{\varepsilon}$$

(11)

with $\sigma = \frac{F}{S}$ and $\varepsilon = \frac{l-\dot{l}}{\dot{l}}$, where F: is the applied load in the extremity of the cable, with l and \dot{l} and S are respectively the resting length of the cable, the initial length and the section of the cable. We replace these parameters in (11), we obtained:

$$F_{\text{local}} = \left(\frac{ES(l-\dot{l})}{\dot{l}} + \frac{\eta l}{\dot{l}} \right) \dot{\varepsilon}$$

(12)

In the global coordinates, for the tensegrity structure, we can expand this equation easily and obtained the force applied in each node by summing the forces contributed by all nodes connected (Fig.7), this equation can be written as follow:

$$F_{\text{cable}} = \sum_i \left(E S \left(\frac{P_{ij}}{L^i_j} - 1 \right) + \eta \left(\frac{v_{ij} P_{ij}}{L^i_j} \right) \right) \frac{P_{ij}}{P_{ij}}$$
therefore, these cables do not transmit the forces in compression, in this case we can introduce a Heavyside function:

\[
H(x) = \begin{cases}
0 & \text{si } x < 0 \\
1 & \text{si } x \geq 0
\end{cases}
\]

where:

\[
E_{cab} = \sum_j \left(H(|p_j| - l_{ij}) \left(ES \left[\frac{|p_{ij}|}{l_{ij}} - 1 \right] \right)
+ \eta \left(\frac{v_{ij} p_{ij}}{|p_{ij}| |p_{ij}|} \right) \right)
\]

The force applied to an extremity of the struts of the tensegrity structure, is the sum of the forces exerted by the struts and the cables (Fig. 7).

1) Dynamic Model For the Tensegrity model: We suppose that the mass of the cell is lumped at the vertex. The dynamic law of motion can be written for a vertex \(i \) as:

\[
M^i \ddot{U}^i + \gamma U^i = F^i
\]

where \(M^i \) is the mass and \(\gamma \) a numerical structural damping coefficient.

Many different techniques can be used to construct time integration computational algorithms. We choose a classical second order central finite difference scheme as a good compromise between simulation in real time and accuracy:

\[
OP^i(t+h) = K_1 (F^i(t) + K_2 OP^i(t) - K_3 OP^i(t-h))
\]

where \(h \) is the time step;

\[
K_1 = \frac{h^2}{M^i + \gamma h}, \\
K_2 = \frac{2M^i + \gamma h}{h^2}, \\
K_3 = \frac{M^i}{h^2}
\]

IV. A VIRTUAL ENVIRONMENT SYSTEM FOR CELL INJECTION TRAINING

A. System hardware and software

In a real time virtual reality based cell simulation system, the operator would be able to interact with the three-dimensional model of cell using his sense of vision as well...
TABLE I

MATERIAL PROPERTIES ASSIGNED TO THE CELLULAR COMPONENTS IN EACH MODEL.[18][19][27]

<table>
<thead>
<tr>
<th></th>
<th>Microfilaments</th>
<th>Microtubules</th>
<th>Intermediate filaments</th>
</tr>
</thead>
<tbody>
<tr>
<td>E (Pa)</td>
<td>2.6 × 10^9</td>
<td>1.2 × 10^9</td>
<td>0.3 ~ 0.4 × 10^9</td>
</tr>
<tr>
<td>ν</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>D (nm)</td>
<td>5 ~ 9</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>Section (nm2)</td>
<td>18</td>
<td>190</td>
<td>-</td>
</tr>
</tbody>
</table>

as actively manipulate using his sense of touch. Fig. 8 shows the description of the VR based real time cell injection trainer. Usually, real time graphics translates to an update rate of 30 Hz, stable haptic interaction requires as much higher update rate (1kHz). As soft biological tissues exhibit complex viscoelastic and nonlinear properties, the real time interaction imposes severe restrictions on the cell tensegrity model. A significant difficulty of using the finite element technique for real time simulation is that it is computationally costly. These mesh-based schemes also require an expensive numerical integration operation for the computation of the system stiffness matrices. For this reason we adopted the following computational procedure:

1) Off-line computation: The proposed computational architecture is composed of an off-line pre-calculation step. All the operations costly in time are realized during this step. The database contains all the models composing the biological cytoskeleton structure, i.e. the microtubules, filaments and actins components. The designer assembles the different components to form a tensegrity structure through a CAD MSC-software (MARC-ADAMS). The meshing of the tensegrity structure is then carried out through a dedicated 3D meshing software GID software. We adopted tetrahedron elements with fixed number of nodes (see section Fig.6). The mechanical and geometrical properties of the tensegrity structure are settled in Table I where E, ν and D are respectively the Young modulus, Poisson ratio and diameter for these filamentous of the cytoskeleton. Finally, we added to the initial structure some cable models connected at the extremities of the struts with given mechanical boundary properties (pre-stressed conditions). We initiated then off-line calculation of all tensors K_{ij} and we stocked the precalculated stiffness values.

2) On-line simulation: Since haptics and graphics have different update frequencies, we have implemented separate threads to update the loops. During the injection task, the contact between tool and cell must occur at a special set of points (nodal points). It results in an imposed displacement of the tensegrity structure at these loading nodes. Therefore, to prevent loss of resolution, the density of nodal points should be sufficiently high leading to an increase in the problem size. The collision detection module specifies the type of tool-tissue interaction. The tool in virtual environment can be modeled as a complex 3D object, composed of numerous surfaces, edges and vertices but it constitutes a challenging task. In our implementation, we have used a point-based representation of the pipette injector and have employed a simple ray-triangle intersection with local search technique [28]. The visual feedback is updated after each displacement calculation step and the haptic feedback is returned after each force calculation step.

V. SIMULATION

The mesh that has been used for the following simulations are shown in Fig.6. It is constituted by a non regular tetrahedron volume mesh composed of 1014 vertices and 1798 tetrahedra where all vertices are free and only three nodes are fixed (see Fig.10). In these figures, we show preliminary simulations of tensegrity deformation during biological cell injection. In this case, we tested two configurations. Firstly, the penetration axis of the micropipette is aligned with the tensegrity geometrical center. The force of the micropipette is applied to the center of one strut of the tensegrity model Fig.9. Secondly, the penetration axis of the micropipette is parallel to the first load but the applied loads are located in the extremity of the strut Fig.10. We can observe clearly the deformation of the tensegrity structure. These results shows also the influence of the penetration axis with respect to cell deformation when considering a complete model (biomembrane + cytoskeleton + cytoplasm). As illustration, the Fig.11 shows the nonlinear behavior of the cell deformation and punction. These results are in good agreement with the experimental results obtained on injected oocytes cells by J.D Desai in [29] and B.J. Nelson in [30].

Fig. 9. Configuration 1: The force of the micropipette is applied to the center of one strut.
that the topological deformation should use real time vertex reallocation of the meshing. We are planning to use an iterative relaxation algorithm which can adapt its mesh resolution during puncture of the cell membrane (generation of a hole when the pipette passes the bio-membrane). Third, the validity of the deformation and reaction force during injection procedures have not been verified. These different research goals are under investigation.

REFERENCES

