On Accuracy of Community Structure Discovery Algorithms

Abstract : Community structure discovery in complex networks is a quite challenging problem spanning many applications in various disciplines such as biology, social network and physics. Emerging from various approaches numerous algorithms have been proposed to tackle this problem. Nevertheless little attention has been devoted to compare their efficiency on realistic simulated data. To better understand their relative performances, we evaluate systematically eleven algorithms covering the main approaches. The Normalized Mutual Information (NMI) measure is used to assess the quality of the discovered community structure from controlled artificial networks with realistic topological properties. Results show that along with the network size, the average proportion of intra-community to inter-community links is the most influential parameter on performances. Overall, "Infomap" is the leading algorithm, followed by "Walktrap", "SpinGlass" and "Louvain" which also achieve good consistency.
Type de document :
Article dans une revue
Journal of Convergence Information Technology, 2011, 6 (11), pp.283, 292
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

Contributeur : Hocine Cherifi <>
Soumis le : samedi 17 décembre 2011 - 13:46:32
Dernière modification le : dimanche 18 décembre 2011 - 09:05:21
Document(s) archivé(s) le : dimanche 18 mars 2012 - 02:21:11


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00653084, version 1
  • ARXIV : 1112.4134



Günce Orman, Vincent Labatut, Hocine Cherifi. On Accuracy of Community Structure Discovery Algorithms. Journal of Convergence Information Technology, 2011, 6 (11), pp.283, 292. 〈hal-00653084〉



Consultations de
la notice


Téléchargements du document