EVALUATION OF PERFORMANCE MEASURES FOR CLASSIFIERS COMPARISON

Abstract : The selection of the best classification algorithm for a given dataset is a very widespread problem, occuring each time one has to choose a classifier to solve a real-world problem. It is also a complex task with many important methodological decisions to make. Among those, one of the most crucial is the choice of an appropriate measure in order to properly assess the classification performance and rank the algorithms. In this article, we focus on this specific task. We present the most popular measures and compare their behavior through discrimination plots. We then discuss their properties from a more theoretical perspective. It turns out several of them are equivalent for classifiers comparison purposes. Futhermore. they can also lead to interpretation problems. Among the numerous measures proposed over the years, it appears that the classical overall success rate and marginal rates are the more suitable for classifier comparison task.
Type de document :
Article dans une revue
Ubiquitous Computing and Communication Journal, UBICC publishers, 2011, 6, pp.21, 34
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00653071
Contributeur : Hocine Cherifi <>
Soumis le : samedi 17 décembre 2011 - 09:55:24
Dernière modification le : dimanche 18 décembre 2011 - 09:02:52
Document(s) archivé(s) le : dimanche 18 mars 2012 - 02:20:41

Fichier

CherifiLabatutb2011.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00653071, version 1
  • ARXIV : 1112.4133

Collections

Citation

Vincent Labatut, Hocine Cherifi. EVALUATION OF PERFORMANCE MEASURES FOR CLASSIFIERS COMPARISON. Ubiquitous Computing and Communication Journal, UBICC publishers, 2011, 6, pp.21, 34. <hal-00653071>

Partager

Métriques

Consultations de
la notice

164

Téléchargements du document

102