QUANTUM WAVEGUIDES WITH CORNERS

MONIQUE DAUGE, YVON LAFRANCHE, NICOLAS RAYMOND

ABSTRACT. The simplest modeling of planar quantum waveguides is tiheHlet eigenproblem for the Laplace
operator in unbounded open sets which are uniformly thinne direction. Here we consider V-shaped guides.
Their spectral properties depend essentially on a solevgies, the opening of the V. The free energy band is a
semi-infinite interval bounded from below. As soon as the Kasflat, there are bound states below the free energy
band. There are a finite number of them, depending on the mgeiihis number tends to infinity as the opening
tends to0 (sharply bent V). In this situation, the eigenfunctions @amtrate and become self-similar. In contrast,
when the opening gets large (almost flat V), the eigenfunstgpread and enjoy a different self-similar structure.
We explain all these facts and illustrate them by numericaligtions.

INTRODUCTION

A guantum waveguide refer to nanoscale electronic devitte awivire or thin surface shape. In the first case,
one speaks of a quantum wire. The electronic density is lawugin to allow a modeling of the system by a
simple one-body Schrodinger operator with potential

Y — —AY+Vy o in RS

The structure of the device causes the potential to be veyg lautside and very small inside the device. As a
relevant approximation, we can consider that the poteistizéro in the device and infinite outside ; this can be
described by a Dirichlet operator

P — —Ay in @ and ¢ =0 on JN

where() is the open set filled by the device. We refer & fhere we can see, at least on the numerical
simulations, the analogy between a problem with a confinotgmgial and a Dirichlet condition.

These kinds of device are intended to drive electronic flukes their shape may capture some bound states,
i.e. eigenpairs of the Dirichlet problem:

—Ay =X in Q@ and =0 on 9.

The topic of this paper is two-dimensional wire shaped $times,i.e. structures which coincide with strips of
the formR ; x (0, «) outside a ball of centér and radiusk large enough. These structures can be calladar
waveguidesMore specifically, there are thent waveguideand thebroken waveguideBent waveguides have
a constant width around some central smooth curve, seedFigand the central curve of a broken waveguide
is a broken line, see Figu

Due to the semi-infinite strips contained in such wavegutaespectrum of the LaplacianA with Dirichlet
conditions is not discrete: It contains a semi-infinite im& of the form[u, +o00) which is the energy band
where electronic transport can occur. The presence ofalésspectrum at lower energy levels is not obvious,
but nevertheless, frequent.

A remarkable result by Duclos and Exnéf] (and generalized ind]) tells us that if the mid-line of a planar
waveguide is smooth and straight outside a compact settlieem exists bound states as soon as the line is not
straight everywhere. For broken guides, a similar resud)d11, 2]: There exist bound states as soon as the
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C <

FIGURE 1. Curved guide FIGURE 2. Broken guide

guide is not a straight strip. The question of the increasungber of such bound states for sharply bent broken
waveguides has been answeredih [

Before stating the main results of this paper, let us merditew other works involving broken waveguides
such as 15, 16]. It also turns out that our analysis leads to the investigaof triangles with a sharp angle
as in [L4] (see also4]). The generalization to dimension 3 of the broken strigesiin [L2] where a conical
waveguide is studied, whereas a Born-Oppenheimer apprsatiprogress in48].

In this paper, we revisit the results df,[5] and prove several other quantitative or qualitative proes
of the eigenpairs of planar broken waveguides. Here aredh&uots of the present work: In sectiGnwve
recall from the literature notions of unbounded self-aatjoiperators, discrete and essential spectrum, Rayleigh
quotients. After proving that the Rayleigh quotients arereasing functions of the opening andglef the
guide (sectiorB), we adapt the technique df][to give a self-contained proof of the existence of boundesta
(sectiond). We prove that the number of bound states is always finiteigh depending on the opening angle
(section5), that this number tends to infinity like the inverde! of the opening angle wheh— 0 (section?).
Concerning eigenvectors we prove that they satisfy an epametry property with respect to the symmetry
axis of the guide (sectio). Their decay along the semi-infinite straight parts of th&lg can be precisely
evaluated (sectio) and is stronger and stronger wheérdecreases. We perform numerical computations
by the finite element method, which clearly illustrate thdseay properties. When the opening gets small,
concentration and self-similarity appears, which can h@aded by a semi-classical analysis: We give some
overview of the asymptotic expansions established in dugrgbaper §]. We end this work by evaluations of
the numerical convergence of the algorithms used for ouefgiement computations (sectién

NOTATION. TheL? norm on an open sét will be denoted by - ||

1. UNBOUNDED SELFADJOINT OPERATORS

In this section we recall from the literature some defingiaand fundamental facts on unbounded self-
adjoint operators and their spectrum. We quote the startu@okl of Reed and Simors{), Chapter VIII] and,
for the readers who can read french, the book of Lévy-Bridf] (see in particular Chapter 10 on unbounded
operators).

Let H be a separable Hilbert space with scalar produci;. We will consider operatorsl defined on a
dense subspadg@om(A) of H called thedomain ofA. The adjointA* of A is the operator defined as follows:

(i) The domainDom(A*) is the space of the elementof H such that the form
Dom(A) 3 v+ (u, Av) g
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can be extended to a continuous formi@n
(i) Foranyu € Dom(A*), A*u is the unique element df provided by the Riesz theorem such that

(1) Vv € Dom(4), (A*uw,v)g = (u, Av)g
Definition 1.1. The operatord with domainDom(A) is saidself-adjointif A = A*, which means that
2 Dom(A*) = Dom(A) and Yu,v € Dom(A), (Au,v)g = (u, Av)g.

1.1. Operators in variational form. The operators that we will consider can be defined by vanatitormu-
lation. Let us introduce the general framework first. Let beig two separable Hilbert spacésandV with
continuous embedding &f into H and such thal’ is dense inH. Let b be an hermitian sesquilinear form on
Vv

b:V xV 3 (u,v) = blu,v) € C
which is assumed to be continuous and coercive: This meanshbre exist three real numbersC and A
such that

3) vueV, cllullp < b(u,u) + Au,uyg < Cllullf; -
Let A be the operator defined frof into its duall’’ by the natural expression
YoeV, (Au,v)yg =b(u,v).

In other words, for all, € V, Au is the linear formw — b(u, v). Note that the operatot + A Id is associated
in the same way to the sesquilinear form

b+ A, VgV xV 3 (u,v) — blu,v) + Alu,v)g € C
which is strongly elliptic by 8). As a consequence of the Riesz theorem (or the more genaxaMilgram
theorem) there holds
4) A+ AId is anisomorphism froml” onto V.

This situation provides many examples of (unbounded) agjtfint operators. The following lemma is re-
lated to the Friedrichs’s lemnd. [23, Section 10.7].

Lemma 1.2. Let A be the operator associated with an hermitian sesquilineamfb coercive onl/. Let A be
the restriction of the operatad on the domain

Dom(A)={ueV: Auec H}.
ThenA is self-adjoint.
Proof. The operatord is symmetric becaudeis hermitian. Moreover we check immediately that
Yu,v € Dom(A), (Au,v)g = (u, Av)g = b(u,v).

In particular, we deducBom(A) C Dom(A*). Let us prove thaDom(A*) € Dom(A). Since the domain of
A and A* are unchanged by the addition &fld, and since

(A+AId)* = A* + ATd

we can consided + A Id instead ofA, or, in other words, usingdj, assume thadl is bijective.
Then we deduce that is an isomorphism fronbom(A) onto H: Indeed, A is injective becausel is
injective; If f € H, there exists, € V such thatdu = f, andu € Dom(A) by the very definition oDom(A).
Let w belong toDom(A*). This meanscf. (2), thatw € H andA*w = f € H. Let us prove that belongs
to Dom(A).
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SinceA is bijective there exista € Dom(A) such thatdu = f. We have
YoeV, blu,v)=(fv)g

and therefore

Vv € Dom(4), (u,Av)g = (w, Av)q.
Hence, asA is bijective, for allg € H, (u, g9)g = (w, g) . Finally u = w, which ends the proof. O
Exemple 1.3.Let 2 be an open set iR” anddp;, {2 a part of its boundary. On

V={pcH(Q): =0 on dpN}
we consider the bilinear form

bw,0") = [ F000 - V() dx
The operatord is equal to—A and it is self-adjoint ol = L2(Q) with domain
Dom(A)={ € V: Ay cL?Q) and 9,9 =0 on IN\ Ip;Q}.

1.2. Discrete and essential spectrumLet A be an unbounded self-adjoint operatorfénvith domainDom(A).
We recall the following characterizations of its spectrafil), its essential spectrumss(A) and its discrete
spectrunugis(A):
e Spectrum:\ € o(A) if and only if (A — AId) is not invertible fromDom(A) onto H,
e Essential spectrumt € oess(A) if and only if (A — A1d) is not Fredholr from Dom(A) into H (see
[30, Chapter VI] and 23, Chapter 3]),
e Discrete spectrumgis(A) := o(A) \ Tess(A).

We list now several fundamental properties of essentialdisutete spectrum.
Lemma 1.4(Weyl criterion) We have\ € o..(A) if and only if there exists a sequenge,) € Dom(A) such
that ||u, |z = 1, (u,) has no subsequence convergingdrand (A — A\1d)u,, T 0in H.
From this lemma, one can deduce (s&& Proposition 2.21 and Proposition 3.11)):
Lemma 1.5. The discrete spectrum is formed by isolated eigenvaluerit fnultiplicity.
Lemma 1.6. The essential spectrum is stable under any perturbatiorinisicompact fronbom(A) into H.

Exemple 1.7.Let A be the self-adjoint operator di associated with an hermitian sesquilinear férooercive
onV, cf. Lemmal.2 Let us assume thaf is compactly embedded iA. Then the spectrum o is discrete
and formed by a non-decreasing sequencef eigenvalues which tend teoc ask — +oo (see p3, Chapter
13]). Let(v;)r>1 be an associated orthonormal basis of eigenvectors:

Avk = VU, Vk > 1.

Then we have the following identities

(5) vue H, Jul} =" |(uv),
k>1
(6) VueV, blu,u)= Zuk|<u,vk>H|2,
k>1
@) Yu € Dom(A), [lAul} =Y v2|(u,u) |
k>1

Iwe recall that an operator is said to Bedholmif its kernel is finite dimensional, its range is closed anthvfinite codimension.
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Exemple 1.8.Let us defineﬁgir as the Dirichlet problem for the Laplace operatah on an open sé€d ¢ R",
cf. Examplel.3with dp; 2 = 99.
) If Qis boundedAgir has a purely discrete spectrum, which is an increasing segu# positive numbers.
(ii) Let us assume that there is a compact/setuch that

O\K= [J 9 (disjoint union)
7 finite
where(); is isometrically affine to a half-tubE; = (0, +oc) x w;, with w; bounded open set iR . Let 11;
be the first eigenvalue of the Dirichlet problem for the Lapl@perator-A onw;. Then, we have:

Uess(Agir) =Uj [:uj’ +OO) - [Injln Hjs +OO)'
The proof can be organized in two main steps. Firstly, foheawe construct Weyl sequences supported in
51; associated with any > p;, which proves thatress(AS") C [min; y15, +0c0). Secondly we apply Lemma
1.6with A = B — C whereA = AB" andB = A" + W, wherelV is a non negative and smooth potential

which is compactly supported and such that> min; ;.; on K. On one hand, sinc€' is compact, we get that
Oess(A) = 0ess(B). On the other hand, we notice that:

/ IVl dx + / Ww[2 dx > / IVl dx + min / 2 dx
Q Q Q J K

and, using the Poincaré inequality with respect to thestrarsal variable in each strip;:

Vi||? dx > / Vi||? dx > /u-1/12dx2minu-/ 2.
JA 3 [ I ez 30l i |

We infer that:
[ IVl x| WioR dxz ming, | (ol ax
Q Q J Q
The min-max principle provides thaif o(5B) > min; p1; S0 thatinf oess(B) > min; 115, and finally we get
inf oess(A) > min ;.
J

For an example of this technique, we refer for instances{@®gction 3.1]. Let us notice that the Persson’s
theorem provides a direct proof (se®] and [L3, Appendix B]).
The same formula holds even if the boundary condition@m K are mixed Dirichlet-Neumann.

1.3. Rayleigh quotients. We recall now the definition of the Rayleigh quotients of d-a€joint operatorA
(see 3, Proposition 6.17 and 13.1)).

Definition 1.9. The Rayleigh quotients associated to the self-adjointaiperl on H of domainDom(A) are
defined for all positive natural numbgiby

Au,u
Aj = inf sup Q
u,...,u;€EDom(A)  uelu,...,uj) <uau>H
independent
Here[ui, ..., u;] denotes the subspace generated byjtinelependent vectors,, . . ., u;.

The following statement gives the relation between Raplgjgotients and eigenvalues.

Theorem 1.10. Let A be a self-adjoint operator of domabom(A). We assume that is semi-bounded from
below, i.e., there exist& € R such that

Vu € Dom(A), (Au,u)g + Alu,u)g > 0.
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We sety = min oess(A). Then the Rayleigh quotients of A form a non-decreasing sequence and there holds
(i) If \; <, itis an eigenvalue ofl,
(i) If Xj >, then); =,
(iif) The j-th eigenvalue< ~ of A (if exists) coincides with ;.
Lemma 1.11. Let A be the self-adjoint operator off associated with an hermitian sesquilinear fobrooer-
cive onV/, cf. Lemmal.2 Then the Rayleigh quotients dfare equal to

. b(u,u

Aj = inf sup () .
Ul,...,u; €V ue[ul,...,uj} ('LL,'LL>H
independent

Corollary 1.12. Let A and A be the self-adjoint operators dif and H associated with the hermitian sesquilin-
ear formsb andb coercive on// andV/, respectively. We assume that

HcH, VcV, buu)>buu)YuecV.
Let\; and 5\]- be the Rayleigh quotients associateddt@and A4, respectively. Then
Vi>1, A

Exemple 1.13(Conforming Galerkin projection)This consists in choosing a finite dimensional subspace
of V, which also defines a subspaceff andb = b. The Rayleigh quotients; are the eigenvalues of the
discrete operatod, and they are larger than the Rayleigh quotientsf A.

Exemple 1. 14(Monoton|C|ty of Dirichlet eigenvalues)Let 2 be an open subset @™ andQ) c Q. The
extension byo from € to (2 realizes a natural embedding Hf,(Q2) into H}(€2), and of L2(Q) into L2(1).
Then, with obvious notations:

Vi1, A(ARN) > A(A8N).

Remark1.15 (Non-monotonicity of Neumann eigenvalueZe Neumann problem consists in takifig ()

as variational space. The argument above does not work $ethere is no canonical embeddmgﬁ#(ﬁ)
into H'(£2). Moreover, the monotonicity with respect to the domain isng:

(i) Let us choosé&) bounded and connected, afch subset of with two connected components. Then
Al(Age“) = A2 (ANE“) =0 and A\ (ANY) =0, A(ANY) >

(ii) If we take two embedded intervals frands?, then explicit calculations show thay(Age“) > \j(ANeY).

Another nice and non trivial counter-example can be founith Wie de Gennes operator appearing in the
superconductivity theorgf. [8].

2. THE BROKEN GUIDE

Let us denote the Cartesian coordinateRiby x = (z1,22). The open set§) that we consider are
unbounded plane V-shaped sets. The question of interdst jgrésence and the properties of bound states for
the Laplace operatak = 97 + 9 with Dirichlet boundary conditions in sudh. We can assume without loss
of generality that our se® is normalized so that

e it has its non-convex corner at the origin= (0, 0),

e it is symmetric with respect to the, axis,
e its thickness is equal to.
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The sole remaining parameter is the opening of the V: We deopf < (0, 5) the half-opening and b2, the
associated broken guide, see FigBr&Ve have

_ 2. 7T
(8) Qy = {(ml,xg) eR*: zitanf < |xg| < <:E1 + sin@) tan@}.

Finally, like in Examplel.8, we specify theositiveDirichlet Laplacian by the notatioﬂ;g‘;. This operator is
an unbounded self-adjoint operator with domain

Dom(AQ)) = {4 € Hy(Q) : Ay € L2 ()}

L2

I

FIGURE 3. The broken guid€ (hered = ).

The boundary of2y is not smooth, it is polygonal. The presence of the non-commagner with vertex at
the origin is the reason for the domeﬁnm(Agg) to be distinct fromH? N HY (). Nevertheless this domain
can be precisely characterized as follows. Let us introghatar coordinatesp, ¢) centered at the origin, with
¢ = 0 coinciding with the upper patto = =1 tan # of the boundary of)y. Let xy be a smooth radial cutoff
function with support in the region; tan # < |z2| andx = 1 in a neighborhood of the origin. We introduce
the explicitsingular function

(©) Yaing 1,2) = x(p) ™/ sin T2 with w = 2(m — ).
Then there holds;f. the classical referenceg, 19:
(10) Dom(Ag,) = H? NHG(29) © [¢sing]

where[i)sing] denotes the space generated/ly, .

2.1. Essential spectrum.
Proposition 2.1. For any¢ € (0, 5) the essential spectrum of the operauilswgier coincides with1, 4+c0).

Proof. This proposition is a consequence of Exambl@ (ii): Outside a compact se)y is the union of two
strips isometric to(0, +00) x (0,7). Since the first eigenvalue efd2 on Hy(0, ) is 1, the proposition is
proved. O
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2.2. Symmetry. In our quest of bounded statés, ;) of AQ", i.e.

{—szw in Q,

(1) =0 on 09y

with A<1, ¥ #0,

we can reduce to the half-guidb; defined as (see Figur®

Qf = {(z1,22) € Qg : 22 > 0}, with the Dirichlet part of its boundaryp;, Q) = 999 N 00,
as we are going to explain now. Let us introdnggﬁ as the positive Laplacian with mixed Dirichlet-Neumann
conditions or(2;” with domain,cf. Examplel.3

Dom(Ag’g) ={p e HY(Q)): Ay e L*Q)), =0 on dp;Q and &y =0 on 5 = 0}.

Thenaess(AS“g'LX) coincides withgess(AB‘;). Concerning the discrete spectrum we have:
0

/{
0 7

Neumann

Qg

FIGURE 4. The waveguidé)y and the half—guidézj (hered = %).

Proposition 2.2. For anyé € (0, §), aais(Ag)) coincides withrgis(AY).
0

Proof. The proof relies on the fact théigief commutes with the symmetty : (1, z2) — (21, —x2).

(i) If (A, ¢) is an eigenpair oA}, the even extension afy to 2, defines an eigenfunction dfg'" associated
0

with the same eigenvalue Therefore we have the inclusion

Udis(Agng) C O'diS(AgDZLr).

(i) Conversely, let, ¢) be an eigenpair oAg with A < 1. Splitting+) into its odd and even parts>*® and
1" with respect tar,, we obtain:

T,Z) — ¢odd + ¢even’ A82r¢odd — /\ded and Ag;r¢even — /\weven.

We note that/°% satisfies the Dirichlet condition on the ling = 0, and*'*" the Neumann condition on the
same line. Let us check thatdd = 0. If it is not the case, this would mean thatis an eigenvalue for the
Dirichlet Laplacian on the half—wavegui@;. But, by monotonicity of the Dirichlet spectrum with the pest

to the domaingf. Examplel.14, we obtain that the spectrum @g is higher than the spectrum on the infinite
strip which coincides witl§2, whenz; > 0. This latter spectrum is equal f, +oc). Therefore the Dirichlet
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Laplacian on the half-waveguidé; cannot have an eigenvalue belowThus, we have necessarily®dd = 0

andy = ¢**" which is an eigenfunction cm(’\g“f associated with\. OJ
0

We take advantage of Propositi@r? for further proofs and for numerical simulations.

3. MONOTONICITY OF RAYLEIGH QUOTIENTS WITH RESPECT TO THE OPENING

From now on we consider the Rayleigh quotients associattddtine operatoﬁg“f, which we write in the
0
form, cf. Lemmal.11

| IV,
(12) Ai(0) = inf sup W
Y1,...¢; independent i (@), VE[Y1,.-¥;] | QF
P1,...,15=0 ON Op;p 0F

Those);(#) which are< 1 are all the eigenvalues (zﬁs'%‘e' sitting below its essential spectrum.

Proposition 3.1. For any integer;j > 1, the functiord — \;(6) defined in(12) is non-decreasing fron(0, 7)
into R,..

Proof. We cannot use directly Corollard.12because of the part of the boundary where Neumann conditions
are prescribed. Instead we introduce the opefi2gsésometric tij, see Figure,

0y = {(:E,g]) e (—ﬁﬂroo) % (0,7): §<Ftanf 7 if &e (—ﬁ,o)}.
0.1) s
L (—m,0) y=20

X
FIGURE 5. The reference half-guide := Q, ;.

The partaDirﬁg of the boundary carrying the Dirichlet condition is the uniof its horizontal parts. The
numbers)\; () can be equivalently defined by the Rayleigh quotieh on .
Let us now perform the change of variable:

r==ITtanf, y=7y,
so that the new integration domath := €, , is independent of. The bilinear gradient fornb on Qy is
transformed into the anisotropic forbp on the fixed sef):

(13) mwwﬂzéwﬁm%w%wwu@¢@wmﬂm
with associated form domain
(14) V= {y € HY(Q) : v = 0 on dp;, 2}

independent of.
The functiond — tan? § being increasing of0, %), we have

Vip €V, 6 — bg(¢,1)) non-decreasing o0, 7).
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We conclude thanks to Corollady12 O
Remark3.2 Using the perturbation theory, we also know that, forjal> 1, the functionf — \;(6) is
continuous with respect t6 € (0, g) Moreover, \; being simple (as the first eigenvalue of a Laplace-
Dirichlet problem), it is analytic because we are in theatittn of an analytic family of typéB) (see P1, p.
387 and 395]). In fact the numerical simulations lead tokhirat all the eigenvalues beloware simple and

thus analytic.

4. EXISTENCE OF DISCRETE SPECTRUM

We recall that the lower bound of the essential spectrume)()rjeratomg"iX is 1. Its first Rayleigh quotient
is given by,cf. (12), ’

. V]2
(15) A1(0) = inf T, £,
peH (@), w=0 on apyaf 1] o

In this section, we prove the following proposition:
Proposition 4.1. For any¢ < (0, 5), the first Rayleigh quotient; (9) is < 1.
This statement implies that; (9) is an eigenvalue oﬁg’“ﬁ (application of Theoreni.10), hence of the
0

Dirichlet LaplacianAg’" on the broken guide (Propositih2).
This statement was first establisheddh [Here we present a distinct, more synthetic proof, usiegiethod
of [6, p. 104-105].

Proof. For convenience, it is easier to work in the referenceset ﬁ,r/4 introduced in the previous section,
with the bilinear formby (13) and the form domai” (14). We are going to work with the shifted bilinear form

bo(w0") = b1 = [0 ey
which is associated with the quadratic form:

Qo(¥) = ba(, ).

Then the first Rayleigh quotient 6}'9 is equal to\; (/) — 1. To prove our statement, this is enough to construct
a functiony) € V such that:

Qo(¥) < 0.

This will be done by the construction of

(1) A sequence),, € V such the}tﬁg(zpn) — 0asn — oo,
(2) An element of V' such thaby(i,, ¢) is nonzero and independentof
The desired function will then be obtained as a suitable ¢oation i, + ¢. Let us give details now.

Step 1. In order to do that, we consider the Weyl sequence definddllag/s. Let y be a smooth cutoff
function equal ta for z < 0 and0 for z > 1. We let, forn € N\ {0}:

Xn(®) = X (%) and ¥y (z,y) = xn(z)siny.

Using the support of,,, we find tha@(g(ﬂ)n) is equal to

0 47 oo T
/ / (cos®y — sin? y) dy dx + / / (tan2 0(x,)? sin? y + x2(cos® y — sin® y)) dy dx.
—7J0 0o Jo
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Then, elementary computations provide:

T 0
/ (cos’y —sin’y)dy =0 and / / (cos? y — sin® y) dy dz = 0.
0 —m J0

Moreover, we have:

//tan Hxn sin ydydx<</ I (u \2 >7Ttan 9.

Hence we have proved th@rg(wn) tends to) asn — oo:

- 1
(16) Qo(tn) < % with Ky = </0 Ix (w)]? du> mtan? 6.

STEP 2. We introduce a smooth cutoff functiopof = supported in(—=,0). We consider a functiorf of
y € [0, 7] to be determined later and satisfyiffg0) = 0. We definep(x,y) = n(z)f(y). Fore > 0to be
chosen small enough, we introduce:

Vne(x,y) = Yn(2,y) +ed(z,y).
We have:
Qo(Pn.e) = Qo(thn) + 22 by(1hn, ) + £2Qu ().

Let us computég(zpn, ¢). We can write, thanks to considerations of support:

bo(n, 9) /_ ] / ) (cosyf(y) — sinyf(y)) dyda = /_ ] / ) (cos yf () dyda.

Using f(0) = 0, this leads to:

B 0
bg(wn,(b):/_ n(x)cos(z + ) f(x + 7) dz.

We choosef (y) = n(y — ) cos(y — =) and we find:

0
bo (Y, ) = —/ n*(x) cos?(x)dz = —T' < 0.

—T

This implies, using16):
~ K,
Q9(¢n,e) < 2—73 — 2l + D€2,

whereD = QQ(QS) is independent of andn. There existg > 0 such that:
—2Te 4 De? < —Te.

The angle) being fixed, we can tak&’ large enough so that
Ky T
— < — 57
2N — 2

from which we deduce thﬁg(qmﬁ) < —el'/2 < 0, which ends the proof of PropositighL O
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5. HNITE NUMBER OF EIGENVALUES BELOW THE ESSENTIAL SPECTRUM

For a self-adjoint operatod and a chosen real numbgmwe denote byV (A, \) the maximal index such
that thej-th Rayleigh quotient oA is < A. By extension of notation, if the operatdris defined by a coercive
hermitian formb on a form domairi/, and if @ denotes the associated quadratic f@pu) = b(u, u), we also
denote byV (@, \) the numberV (A, \). This is coherent with the fact that in this case the Raylejgbtients
can be defined directly bg, cf. Lemmal.1l

U
Aj = inf sup Q) .
u1,...,uj-€V ue[ul,...,uj} <U7U>H
independent

This section is devoted to the proof of the following propiosi:
Proposition 5.1. For any6 € (0, 3), N'(Ag", 1) is finite.
Thus in any casékgf; has a nonzero finite number of eigenvalues under its eskspéetrum.

Proof. For the proof of PropositioB.1we use a similar method a&7, Theorem 2.1].

Like for the proof of Propositiod.1, it is easier to work in the reference $eintroduced in sectiol, with
the bilinear formb, (13) and the form domai’ (14). The opening being fixed, we drop the indeXin the
notation of quadratic forms and write simply @she quadratic form associated wiit

Q) = bo(t, ) = /Q tan20 (0,0 + [0,0/2 d dy.

We recall that the form domaivi is the subspace af € H'(Q2) which satisfy the Dirichlet condition ofi;{2.
We want to prove that

N(Q,1) isfinite.
We consider &' partition of unity (o, x1) such that
Xo(x)? + x1(2)* = 1
with xo(z) = 1 forz < 1 andxo(z) = 0forz > 2. ForR > 0 and/ € {0, 1}, we introduce:
xe.r(®) = xo(R™ ).
Thanks to the IMS formula (see for instand@)[ we can split the quadratic form as:
17) Q) = Qx0.r¥) + Qx1.rY) — Ix0,r¥I35 — X1 rVI -
We can write
Xo.r(@)° + XL R(@)F = R2Wr(z) with Wr(x) = [xo(R™'2)]* + [xi(R™ o).

Then
X1 + X R0 = /Q R2Wg(a) 2 de dy
(18) :/ﬁR_2WR(x)(|XO,R7/)|2+|X1,R¢|2)dxdy-

Let us introduce the subsets ©f
Oor={(z,y) €Q:2<2R} and Oy p={(z,y) €Q:z> R}
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and the associated form domains
Vo= {gb € Hl(OO,R) : ¢=0o0n aDirfz N o0y r and on {2R} x (0,7r)}
Vi = Hy(O1 R).
We define the two quadratic fornig, r andQ r by
(190 Qur(¢) = / tan® 010,¢|* + |0,0|> — R-*Wg(z)|¢[* dzdy for eV £=0,1.

Ou.r
As a consequence 0f7) and (L8) we find
(20) Q(Y) = Qo,r(x0,rY) + Qur(X1,RY) VY V.

Let us prove

Lemma 5.2. We have:
N(Q,1) < N(Qo,r, 1) + N(Q1,r,1).
Proof. We recall the formula for thg-th Rayleigh quotient of):
Aj = inf sup % .
GEGL veE [l
The idea is now to give a lower bound fdy. Let us introduce:
7. { V — Vo x Wy
1LY = (xorY, x1.rY)-

As (xo,r, x1,r) 1S @ partition of the unity,7 is injective. In particular, we notice that : V. — J(V) is
bijective so that we have:

Aj = - il}fv s ﬁ;ﬁ@
230 e e W
_ i < Qo,r(x0,rY) + Q1,r(X1,RY)
= 3 3
FCIW) weg 1(p) Ix0.r Y115 =+ [Ix1, Y11
Qo,r(Y0) + Q1,r(¢1)

= inf sup .
FCIWV) ounrer 1Yol , + 1101ll5,
dim F'=j ’ ’

As J(V) C Vi x Vq, we deduce by an application of Corollakyl2

21) N> inf sup QO,R(;/JO) + Ql,Rglbl) i,
Z&V%X:‘gl (Yo, 1)EF ||7/)0||(907R + ||7;Z)1||(917R

Let A,  be the self-adjoint operator with domadom(A, ) associated with the coercive bilinear form corre-
sponding to the quadratic for@, r onV,. We see that; in (21) is the j-th Rayleigh quotient of the diagonal
self-adjoint operatorl g

A 0 . :
( (O),R Al,R> with domain Dom(Ag r) x Dom(A; g).
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The Rayleigh quotients ofl, r are associated with the quadratic fopa r for ¢ = 0,1. Thusy; is the j-th
element of the ordered set

{M(Qo,r), k> 13 U{Ae(Q1,R), k > 1}.
Lemmab.2follows. O

The operatord r is elliptic on a bounded open set, hence has a compact resoMeerefore we get:
Lemma 5.3. For all R > 0, N(Qo.r, 1) is finite.

To achieve the proof of Propositidnl, it remains to establish the following lemma:
Lemma 5.4. There existsRy > 0 such that, forR > Ry, N (Q1,r, 1) is finite.

Proof. For all ¢ € V1, we write:
¢ =1po + 11 ¢,
where

(22) Myp(z,y) = P(x)siny with &(x) = /07T ¢(z,y)sinydy

is the projection on the first eigenvector-ed; on H(0, 7), andIl; = Id — IT,. We have, for alk > 0:

Q1,r(¢) = Q1,r(Ilgp) + Q1,r(I110) — 2/@ R2Wg(z) ¢ I ¢ dz dy
(23) |

> Q1,r(Ilp9) + Q1,r(I11¢) — 6_1/

R Wa(@)[ oo dedy —¢ [ R™*Walo)|Ihof* dody
Ol,R OLR

Since the second eigenvalue-ef2 on H{ (0, ) is 4, we have:

/ 10,1 6[2 dz dy > 4|TL 6|, -
O1r ’

Denoting byM the maximum ofi¥/ (which is independent aR), and using 19) we deduce
Q1r(Ih¢) > (4— MR™?)|L¢[5, , -
Combining this with 23) where we take = 1, and with the definitionZ2) of 11, we find

Qur(9) > qr(®) + (4 = 2MR?)|Li¢|3, .,
where

qr(®) = / tan” 0|0, ®|? + |®|* — R2Wg(x)|®|* dz
R
> / tan® 0|0, ®[* + |®> — R> M1 5/ |®| da.
R

We choosek = /M so that(4 — 2M R~2) = 2,
(24) Q1,r(¢) > Gr(®) + 2L o3, .,

where now

(25) r(®) = [ tan 610, 8 + (1 - Lian)|0f do
R

and then
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Let ar denote the 1D operator associated with the quadratic §grnirrom @4)-(25), we deduce that thgth
Rayleigh quotient of4; r admits as lower bound theth Rayleigh quotient of the diagonal operator:

ar 0
0 2Id

N(QI,R> 1) < N(dR? 1)

Finally, the eigenvalues: 1 of ar can be computed explicitly and this is an elementary exetoisleduce that
N (qr, 1) is finite. O

so that we find:

This concludes the proof of Propositiénl OJ

6. DECAY OF EIGENVECTORS AT INFINITY— COMPUTATIONS FOR LARGE ANGLES

6.1. Decay at infinity. In order to study theoretical properties of eigenvectoﬂﬁedoperatoAB‘Qr correspond-

ing to eigenvalues below, we use the equivalent configuration Qp introduced in sectioB, see also Figure
6. The eigenvalues: 1 of Ag'; are the same as thoseztsg"X (with Dirichlet conditions on the horizontal parts
0

of the boundary oﬁg) and the eigenvectors are isometric. The main result ofsiesion is a quasi-optimal
decay in the straight pa0, +cc) x (0, 7) of the set)y asz — oc.

(0,7)

<
Il
3

L ( U 0) |

Z ° tanf’

<
Il
(@]

FIGURE 6. The half-guide?, (hered = 7).

Proposition 6.1. Let6 < (0, 7). Lety be an eigenvector QLS'%“X associated with an eigenvalue< 1. Then
0
for all e > 0 the following integral is finite:

(26) /0 h /0 " AHVTE9) (i, G + [V(E, §)|) dE i < oo,

Proof. We give here an elementary proof based on the representdtipas solution of the Dirichlet problem
in the half-stripX := R x (0,7)

—AYp =\ in X,
(27) W(E,0) =0, P(&,7) =0  Vi>0,
v(0,9) =g vy € (0, )
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whereg is the trace of) on the segmerit, see Figures. Sincew belongs toH! (%), its trace ord¥. belongs
to H'/2. Because of the zero trace on the lides: 0 andj = «, we find thaty belongs to the smaller space
HE/?(T), which is the interpolation space of indéxetweent}(I") andL?(T"), cf. [24].

We expandy) on the eigenvector basis of the operata?, self-adjoint onH? N H}(0, 7). Its normalized
eigenvectors are

ve(g) = \/g sinkj with eigenvalue v, = k2.

We expand; in this basis:

= gen(i), whereg, = [ g(@)on(i)

k>1
Interpolating betweerbj and @), we find

HQH HL/2(T Zkgk

k>1
We can easily solve2(f) by separation of variables. We find
(28) =3 e VEA g u(g).

k>1

The estimate of) in (26) is then trivial. Let us prove now the estimatedf). We use thaE,f21 kg,% is finite

so that we can write:
~ o~ -7 2_ ~
0s0(2,7) = — 3 VE2 = X e ™VF A g ().

k>1
We have:
P VI 903, §) = — Y V2 = AP VIVE) o5 g ()
k>1
leading to the.? estimate:
/ / ‘e ’\581/):13@/|d:13dy—2/ 22 (VI-A-VET-3) e % g2 di
k>1
(Zkgk> sup/ ke~ 2 IVEI1 o =2ed dz,
=1 k>1

wherey = y()\) > 0 is a constant, uniform with respect ko> 1. Using the change of variablés— V% z,
we can see that the integrals

/+OO ke 28+ VRZT)
0

are uniformly bounded as — oo, which ends the proof of the estimated@fy in (26). The estimate of;1) is
similar. O

2The spaceHl/Q( I') is the subspace & '/?(T") spanned by the functionssuch that

R
/0 o —g) W<
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Remark6.2 Under the conditions of Propositidhl, we have also a sharp glodat® estimate
eVl oo 5,y < 00

To prove this we use again the representatit)) and the fact that the traggeis more regular thaHl/Q( ). In
fact, as a consequence of the characterizati® ¢f the domain of the operatakg'e', the tracegy belongs to
H;(T') and, therefore, the subn, ., &2 g} is finite by ). Then, we have:

QEVI=X (F Z E(VIZA-VEZ=X )

k>1

9k vk (7)-

Taking absolute values, we get:
/ /
1’\/1 ‘w [Z‘gk’ <\/g<2k_2>1 Z(ZkQ‘ng)l 2.
k>1 k>1 E>1

Remark6.3. The estimated6) can also be proved with a general method due to Agmon (seestance 1J).

6.2. Computations for large angles. Whend — 7, A\;(0) tends tol, see P]. The representatior2g) shows
that in such a situation, the behavior of the associatedeggory is dominated by its first term, proportional

to
o~ TVI=X

sin(g).

- Artificial boundary

(—71'\/5,0)

FIGURE 7. The model half-guid€) := Qj;/‘l.

In order to compute such an eigenpair by a finite element rdetive have to be careful and take large
enough domains — we simply put Dirichlet conditions on aifieidl boundary far enough from the corners
of the guide. Our computations are performed in the modéidwatie () := Q;FM for the scaled operator
(29) %Ly = —25sin%0 92 — 2cos?0 O?
equivalent to—A in Q(‘; through the variable change

w=x1V2sinf and v = xz3v2cosb.

We use a Galerkin discretization by finite elements in a tatedt subset df? with Dirichlet condition on the
artificial boundary, see Figuié According to Corollaryl.12, cf. also Example&.13and1.14 the eigenvalues
A;Pt(e) of the discretized problem are larger than the Rayleighignotst);(0) of .. When the discretization

gets finer and the computational domain, Iargé'?f(e) tends to);(0) for j = 1,2, ...
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0 =0.5000%7/2  APH(0) = 0.92934

0=05983*71/2  APHO) = 0.96897

0=06889x71/2  AP(H) = 0.98844

FIGURE 8. Computations for moderately large angles. Plots of tts¢ éigenvectors in the
physical domain (rotated b). Numerical value of the corresponding eigenvalyé?).

For the values o considered in this sectiod > 7), the numerical evidence is that the discrete spectrum of
%y has only one element; (#). The numerical effect of this is the convergence tf all other computational
eigenvalues\:™ (9) for j = 2,3,...

The computations represented in Fig@are performed with the artificial boundary set at the abaciss
u = 5mv/2. The plots are mapped back to the corresponding physicakitoby a postprocessing of the
numerical results.

The computations in Figuri@are performed with the artificial boundary set at the abagiss 107v/2. The
plots use the computational domain because the corresmpptisical domains would be too much elongated
to be represented.

7. ACCUMULATION OF EIGENPAIRS FOR SMALL ANGLES

When# tends ta0, there is more and more room for eigenvectors between thedweers of the guide.
For any rectangular bog contained in2y like in Figure 10, by the monotonicity of Dirichlet eigenvalues
(Examplel.13, we know that for any

Aj(0) < A;(B)
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, , /

0 = 0.7022 /2 0 = 0.8538 * /2 0 = 0.9702 % /2
APE(0) = 0.9903037 AP (0) = 0.9994215 APE(0) = 0.9999998

FIGURE 9. Computations for very large angles with the mesh M4L (SgarE 17). Plots in
the computational domaif.

I

FIGURE 10. The waveguid€), and a Dirichlet box3 inside.

where);(6) are the Rayleigh quotients mgg and\;(B) the Dirichlet eigenvalues of. We chooseé3 in the
form of a rectangle bounded by the vertical lings= —aw andx; = 0, and the horizontal linesy = +/4.
Thusa andg satisfy,cf. (8)

1

"sind

aec (0 ), pBm=(—asinf+1)

s
cosf’
The eigenvalues of the Dirichlet problemfihare

k2 0?

i T
We look for the eigenvalues; (5) less tharl. Thereforex has to be chosen 1. Thusf < (1—sin#)/ cos 6 <
1 for any#. As a consequende = 1 and the eigenvalues;(B) less tharl are necessarily of the form

k. le{1,2,...}.

1 52
cos2 6 ﬁ
4(1 —asinf)? a2’

We optimize3: The minimum of);(5) is obtained for such that

sin @ cos® 6 252 _0
2(1 —asinf)3 a3



20 MONIQUE DAUGE, YVON LAFRANCHE, NICOLAS RAYMOND

‘aﬂ

APH(0) = 0.32783

-

AP (0) = 0.40217
-_ .

APE(0) = 0.47230
-_— e

APH(0) = 0.54181
-_ 9

AP (0) = 0.61194
-_—.9 R

APH(0) = 0.68328
. kX B} B

AP () = 0.75607
e B8 ER BN &
AFE(0) = 0.83040
-_—-’hh
AFH(0) = 0.90610
3 EF B B | :
APE(6) = 0.98195
FIGURE 11. Computations fof = 0.0226 * /2 ~ 2° with the mesh M64S (see Figui®).

Numerical values of the 10 eigenvalugg#) < 1. Plots of the associated eigenvectors in the
physical domain.

Since we are interested in the behaviofas 0, we take without asymptotic loss

a = 413213 in=1/3 ¢

which provides

1 cos” f 1/3:2/3 . 2/3
Aj(B) = 1<(1 73205 sl )2 +4/°5%/° ¢in 0> )

As a consequence, as soon as the qua#tity: 4'/3j2/3 sin?/3 6 is less that the first root of the equation

(2=t



QUANTUM WAVEGUIDES WITH CORNERS 21

i.e.for Z < 0.4679, we have);(B) < 1 and, hence);(¢) < 1. This implies that the maximal numbérsuch
that A\ ;(B) < 1 is greater than
0.4679%2 . 0.5 sin=' 0 ~ 0.1601 sin— " 0.

Therefore the number of eigenvaluesAa@‘gr less tharil tends to infinity (at least) liké ! asé tends ta0.
We present in Figuré1 the computations of the all eigenpairsztswgfgr for the angled = 0.0226 « 7/2. We
find 10 eigenvalues: 1. Note that for this anglé, the numerical value df.1601 sin~' 4 is 4.5103.

8. ASYMPTOTIC BEHAVIOR OF EIGENPAIRS FOR SMALL ANGLES

We present in Figure$2 and13 computations of the first eigenvector for smaller and smatdues of the
angled. We notice that the eigenvectors look similar, with the @ppace of a short scale in the horizontal
variable.

0 = 0.1482 x /2 0 =0.1032 * /2 0 = 0.0701 % 7/2
AP (0) = 0.56209 APH(0) = 0.48754 AP (0) = 0.42763

FIGURE 12. Computations for small angles. Plots in the computatidomains.

We perform in P] asymptotic expansions of the first eigenpairs at any ordér-a 0, using techniques of
semi-classical analysis (see for instangg, [L9] and also P6]). We briefly describe now some of the results
proved there.

Let us recall that the eigenvalugg(#) < 1 of our operatOIAgfgr coincide with those of the scaled operator

%Ly = —25in%0 92 — 2cos%0 &?

in the model half-guidé€2. The construction and validation of asymptotic expansionshe eigenpairs of#
rely on a Born-Oppenheimer approximation. Roughly, thissists of four steps:

(1) Definition of an operato.r:’fgBO in the horizontal variable: by replacing the operator in the vertical
variable_#;, := —2 cos26 92 in each sliceu = const. by its first eigenvalu&(u)

(2) Semi-classical analysis of the eigenpairsﬁf;?o asf — 0.

(3) Determination of a change of variablés, v) — (u,t) on Q in order to exhibit a tensor product
structure. Here appears the role of the limit operatgr asu ~ 0. Its first eigenvector is —
cos(v/2).

(4) Construction of expansions of eigenvectors in the navalkes.
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0 = 0.0416 /2 0 = 0.0270 * 7/2 0 =0.0112 % /2
APPH(0) = 0.37085 APPH(0) = 0.33845 APH(0) = 0.29766

FIGURE 13. Computations for very small angles. Plots in the contmral domaint.

STEP 1: Definition of Z2.
Let Z(u) be the intersection dR with the vertical line of abscissa
e Foru € (—mv/2,0), Z(u) = (0,u+7m/2). The operator#, has Neumann condition &tand Dirichlet

atu + m/2. Thus
2

A(u) = 2cos2) —
() 4(u + m/2)2
e Foru ¢ (0,+00), Z(u) = (u,u + 7/2). The operator4;, has Dirichlet conditions at both ends. Thus
A(u) = cos?6.

The Born-Oppenheimer operator is
PO = —25in%0 02 + A(u).

STEP 2: Semi-classical analysis of,5°.
The operator%Bo can be viewed as a 1D Schrodinger operator with potentidlhe potential has a well with
bottom atu = 0. The well is not smooth and has a triangular shape, see Figure

The behavior of the eigenpairs ﬁgBo asf — 0 is governed by the Taylor expansion of the potentiadt
the well bottomu = 0, i.e. by the tangent potentidl defined by

1 U

V(u) =cos?0{ 4 272
1, if w> 0.

if u <0,

The corresponding model problem is the problem of the behagh — 0 of the eigenpairs of the operator

—u, ifu<0
S, = —h20? “ !
g “{1, if w > 0.

The potential barrier o0, +o00) produces a Dirichlet condition at = 0 for the leading terms of the asymp-
totics: We are led to the Airy-type eigenvalue problem

(30) — W20 n — upn = Eph, on (—00,0),  with  4(0) = 0.
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— Function A
— Function V

FIGURE 14. The Born-Oppenheimer potentifland its left tangent at = 0 (herecos?d is
set tol).

The change of variables+— X = uh~2/3 transforms the above equation into the reverse Airy equatio
~0%0 — XU = pu¥ on (0,+00), with ¥(0)=0, (wherey=h"?/3E})

whose solutions can be easily exhibited: As we will see, therwaluesu, are the zeros of the reverse Airy
functionA(X) := Ai(—X), whereAi is the standard Airy function. The zerosfAform an increasing sequence
of positive numbers, which we denote by(j), j > 1.

Since—A"(X) — XA(X) = 0 we have for any € R

~-A"(X)— (X - E)A(X)=FEAX) ie. —A'"X+E)-—XA(X+E)=FAX+E).
If E=2za(j), thenA(X + E) vanishes afX = 0, hence

(zA( ), A(X + za(j ))) is an eigenpair

Conversely, all eigenpairs are of this form.

We deduce that the eigenvalues of probl&3f) @re £, = h2/3zA(j) and the associated eigenvectors are
Y(u) = A(uh™2/3 + 2p(5)).

Coming back to our operata%Bo, we prove inp] that its eigenvalues have asymptotic expansions of the
form

1 20%/325(
BO ~ A § : n/3
(1) A () 0501 " (dnva)2ls (47V/2) 2/3 n>39 -

where~>; BO are some real coefficients. The eigenvectors have expansigmowers ofd!/3, using the scale
uh~2/3 for u < 0 anduh~! for u > 0.

STEP 3: Tensorial structure aff.
On the left part of?, i.e. its triangular partTri in the half-planeu < 0, we perform a change of variables to
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transformTri into a square:

vTyV2
U—I—ﬂ'\/i.

On the right part of2, i.e. its strip part contained in the half-plame> 0, we perform a change of variables to
transform it into a horizontal strip:

(33) (u,v) = (u,7) € (0,+00) x (0,7V2), with 7=0v—uw.
This allows to work with the Taylor expansions of the tramsfed operator around = 0, on the left and on

(32) Tri 3 (u,v) — (u,t) € (—7v2,0) x (0,7V2), with =

u
t T T
(R L.
FIGURE 15. The model waveguide and the change of variables.
the right. The operatartg_ = —20? appears on the left with Dirichlet condition &t= 1 and Neumann at
t = 0. Its first eigenvector igos % associated with the eigenval%e The operatorp, = —20? appears on

the right with Dirichlet condition at = 0, 1.

STEP 4. Asymptotics of the eigenpairs ofj.

The projection on the eigenvector cos % appears naturally at the first step of the expansion (thiggtion is
sometimes called Feshbach or Grushin projection) andWeBo. A complete asymptotics for eigenpairs
can be constructed, and in a further step, validated. Asudtreg¢) has an expansion similar @0(9), with
different coefficients fon > 3:

1 26%325(4)
(34) A;(0) 0=0 4 T a2 (4m/2)2/3 +nz>3 R

where~;,, are some real coefficients. In Figuté we display the functiongd  2/7)%/3 s X;(0) for j =
1,2 (computed by finite elements) and their linear approxinmagf — 0, corresponding to the two-term

approximation ing4), i.e. (6 x 2/7)%/3 '—> (Z;/\jf?z(fg

In the reference domaifi, the elgenvectors a4 have a multiscale expansion in powersdéf3. On the
left side, there are two scales, the ultra-short s¢abe!, v) and the short scal@:6~2/3,v), on the right side
there is only the ultra-short scale. The asymptotics is daieid by its first term, which is

A<92% - zA(l)) cos% .
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0.8

0.6

0.4r

o 1st computed eigenvalue
o 2d computed eigenvalue

0.2

Essential spectrum 1
Linear approximation of 1st eigenvalue
Linear approximation of 2d eigenvalue

0 L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIGURE 16. The eigenvalues; and)\, as functions off * 2/7)%/3.
This structure explains the results seen in Figli243.

9. CONVERGENCE OF THE FINITE ELEMENT METHOD

We now present some aspects of the computation processeth& the numerical results shown in the
previous sections.

As described in the sectioh 2, the eigenvalue problem write®jy = Ay in the domainQ2 with homoge-
neous Dirichlet conditions on its boundary, except on thezbatal segment where Neumann conditions are
set, see identity29) and Figure7. The associate bilinear form is

b(, ¢ = / 2sin? 0(9y1) Dy )') 4 2 cos? (0,1 8,0") du dv
Q
defined on the corresponding form domain
V={ypcH(Q): ¢ =00ndp;}.
The eigenvalue problem writes in variational form: find remre) € V' and such that
VeV, b, YY) = MY ) )

By Galerkin projection on a finite dimension subsp&gg of V/, this problem can be rewritten as the general-
ized eigenvalue problem: find the eigenpdiksw) such thatSw = AMw, whereS and M are the stiffness
and mass matrices associated with a b@gis . .., ¥ ) of Viys:

S = (b(\l’j,\l’k)) LQ(Q)>1S]‘7I¢§N.

The computation process consists of two main steps: finsigasfinite element method that leads to the two
matricesS and M, and second, using an algorithm to compute the eigenpaithelfollowing two sections, we
focus on the algorithm for the computation of the eigenpaind then on the influence of the choice of meshes
and polynomial degrees in the finite element method.

. and M = ((\I@-,\If@
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All the computations have been done in double precisiomhrastic, on a iMac computer (4 GB memory,
3.06 GHz Intel Core 2 Duo processor).

9.1. Computation of the eigenpairs. We have first written a program using the Fortran 77 finite eletm
library “Melina” [ 25], which also provides a routine to compute eigenpairs dfsgametric eigenvalue prob-
lems. This routine uses an algorithm based on subspacatdter. We calMel this method.

We have also written another program using the C++ versioefrevious library, called “Melina++".
The computation of the eigenpairs have been made using tihdwesvn package ARPACK++17]. We call
Arp this method. We thus were able to reproduce the resultsraatavith theMel method, which is a cross
validation of both methods.

Here, we compare the computation of the eigenpairs withvileeniethods. For this purpose, in both cases,
we fix the parameters governing the finite element part: pafation degree 6 at Gauss-Lobatto points, quad-
rature rule of degree 13.

We have selected two test configurations:

e “large angle” configurationd = 0.9702 /2, 4 eigenvalues computed, mesh M4L with 656 triangles
(see Figurel7), leading to matrices of size 123292325;

e “small angle” configuration:d = 0.0226 x /2, 12 eigenvalues computed, mesh M64S with 6144
triangles (see Figurg), leading to matrices of size 11126%11265.

Although the internal algorithms of the two methods areadéht, the parameters governing the computation
of the eigenvalues are the same: a tolerantt&at controls the end of the iteration process, and the diifoan
N, Of the subspaces involved in the subspace iteratioiNgs is at least equal tav,, + 1, where N, is
the number of desired eigenvalues. WeN&t, vary betweerl0 and70 and ran the programs fer= 107",

n = 4,5,6,7, while recording the number of iterations and the CPU timeded. The CPU time of the finite
element part, i.e. the computation of the matriseand M, does not depend on these parameters. It appears
on the graphs aSPUef.

The results are gathered on Figurefor the “large angle” configuration and on Figu2@ for the “small
angle” configuration. We can observe that the number oftitera decreases ds;,;, increases. A horizontal
line at the beginning of the first two graphs indicates a ademputation (no convergence after the chosen
maximal number of iterations). For the values tested, tmamaters does not play a significant role on the
number of iterations, nor really on the CPU time (althougthoés on the residual). Since the algorithms used
in the two methods are not the same, the number of iteratiansat be compared directly. They are mainly a
good indicator of the computation process behavior.

It is also worth to notice that the memory requirements iaseeas the subspace dimensidy, increases.
This parameter is difficult to handle since it is problem defsnt. These graphs suggest that there is no critical
value: it can be chosen large enough to ensure computatisuctteed, but not too large, mainly because of
memory considerations.

The CPU graphs of tharp method seem a bit chaotic: both algorithms need an initigtiorevhich is chosen
as a random vector by default. From our experience, we cathaathis method is more sensible to this initial
vector than theMel method. Finally, these graphs show clearly thatAlng method is more efficient than the
Mel method.

Remarkd.1 We are interested in the smallest eigenvalues of the proSlem- A\ M w. Both method#\rp and

Mel provide an option to choose in which end of the spectrum thaedbeigenvalues are to be searched. Let
us mention that these algorithms perform better at comgukia largest eigenvalues in general (this is due to
the fact that they are ultimately based on the power methodjur case, this is typical and computation nearly
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FIGURE 18. Mesh M64S for small angle, 6144 triangles.
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MA4L, 6 = 0.9702 * W2, N = 12325, CPUef=2's, Arp MA4L, 6 =0.9702 * w2, N = 12325, CPUef = 1 s, Mel
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FIGURE 19. Comparison of the behavior of the methods for the larggegh= 0.9702 x 7 /2.
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FIGURE 20. Comparison of the behavior of the methods for the smallesth= 0.0226 * 7 /2.

always fails if the algorithms are asked to compute the swailigenvalues of this problem. For example, with
ARPACK, we can observe the following behavior:

e in the “large angle” configuration, far= 10~* and N, = 17 or 45, the computation fails ;

e in the “small angle” configuration, for = 10~* and Ny, = 27 or 43, the computation fails ; if we
change the mesh to a coarser one (M16S) with 384 trianglegdimputation fails fofVg,, = 27 and
succeeds foNg,, = 43 with a CPU time of 236 sec.
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Thus, the correct strategy is to compute the largest eifigewaf the eigenvalue problemw = vSw and
retrieve the wanted eigenvalugdy inversion f = 1/v and the eigenvectors are the same). All the computa-
tions presented here have been carried on using this strafegonclude this remark, let us mention that the
computation that took 236 sec. with the wrong strategy,g4#@ké7 sec. with the right one.

9.2. Influence of meshes and polynomial degrees in the finite elememethod. We now choose the small
angled = 0.0226 * 7/2 and fix the parameters governing the computation of the eijees: ¢ = 1076,
Nsup = 25, Nya = 10, since there ar@0 eigenvalues< 1 as shown on Figurél.

We have built five nested meshes of the same computationahiddi called M4S, M8S (see Figural),
M16S, M32S (see Figur2) and M64S (see Figur#8). The numbem in the name (MS) is the number
of segments of the subdivision of the horizontal (and valtiboundary of(2. It indicates the characteristic
diameterh of the triangles, which is halved from a mesh to the next onthénlist. Thus, the number of
triangles is multiplied by 4 from a mesh to the next one.

We have computed the 10 eigenvaluessfer 10~® using the finest mesh M64S and considered the first and
last eigenvalues obtained as reference values. We dereotett\e* and A7,

For each mesh, we let the interpolation degre@ry from 1 to 6, while recording the differencpg — A\Ff|
and|\1o — A& | obtained for each degree. The results are gathered on RgurBach point on the graphs
correspond to the result of a computation. Points corredipgrno the same mesh have been linked together
by a line to make the graphs more readable ; the correspouigigigee is written below. The graphs show the
convergence of the first and last computed eigenvalues:

e with respect to the interpolation degree for a given mesh ;
e with respect to the mesh, for a given degree.

The numbetV of degrees of freedom (d.o.f.) of the problem, which is thetision of the matrices, is roughly
proportional to(kn)?, which explains the choice of the abscissg,,(N)/2. The precision attained is about
one order of magnitude better for the first eigenvalyehan for the last oneqy. For the first eigenvalue and
the coarser meshes, we observe a kind of super convergeanite femall degrees, then a linear convergence.
The convergence tends to be linear as the mesh becomes fime¢heHast eigenvalug,, the convergence is
mainly linear.

FIGURE 21. Meshes M4S (24 triangles) and M8S (96 triangles).
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FIGURE 22. Meshes M16S (384 triangles) and M32S (1536 triangles).
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FIGURE 23. Convergence towardg ~ 0.32783 and Ao ~ 0.98195.

This phenomenon of super convergence is due to a sort ofigekhich takes place in coarser meshes: such
meshes with low degrele are not able to capture the fine scale structure of the eigeorge(see in Figuré3
representations of the first eigenvector in the computatidomain for small angles).

The average rate of convergence with respeditbis twice the rate of convergence with respechian
accordance with a well-known convergence result in finiggnants B1]. Typically the rate isl in A and2 in
k~!. These somewnhat low rates are due to the singularity at geramt corner of). This singularity comes
from the Laplace singularitydj, and ford = 0.0226 * /2, the singularity exponerj is ~ 0.5057.

Nevertheless, all our computations are accurate enouglspéayg clearly the asymptotic behavior of the
eigenpairs in the small angle and large angle limits, seer&itp.
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