Towards Quantum-Resistant Cryptosystems from Supersingular Elliptic Curve Isogenies Post-Quantum Cryptography - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année : 2011

Towards Quantum-Resistant Cryptosystems from Supersingular Elliptic Curve Isogenies Post-Quantum Cryptography

David Jao
  • Fonction : Auteur

Résumé

We present new candidates for quantum-resistant public-key cryptosystems based on the conjectured difficulty of finding isogenies between supersingular elliptic curves. The main technical idea in our scheme is that we transmit the images of torsion bases under the isogeny in order to allow the two parties to arrive at a common shared key despite the noncommutativity of the endomorphism ring. Our work is motivated by the recent development of a subexponential-time quantum algorithm for constructing isogenies between ordinary elliptic curves. In the supersingular case, by contrast, the fastest known quantum attack remains exponential, since the noncommutativity of the endomorphism ring means that the approach used in the ordinary case does not apply. We give a precise formulation of the necessary computational assumption along with a discussion of its validity. In addition, we present implementation results showing that our protocols are multiple orders of magnitude faster than previous isogeny-based cryptosystems over ordinary curves.

Dates et versions

hal-00652846 , version 1 (16-12-2011)

Identifiants

Citer

David Jao, Luca de Feo. Towards Quantum-Resistant Cryptosystems from Supersingular Elliptic Curve Isogenies Post-Quantum Cryptography. Post-Quantum Cryptography, Nov 2011, Taipei, Taiwan. 19--34, posted-at = 2011-12-16 13:16:08, ⟨10.1007/978-3-642-25405-5_2⟩. ⟨hal-00652846⟩

Collections

CNRS UVSQ
280 Consultations
1 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More