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The number of generations entirely visited for recurrent

random walks on random environment

P. Andreoletti, P. Debs ∗

December 16, 2011

Abstract

In this paper we are interested in a random walk in a random environment on a
super-critical Galton-Watson tree. We focus on the recurrent cases already studied
by Y. Hu and Z. Shi [7], [6], G. Faraud, Y. Hu and Z. Shi [5], and G. Faraud [4]. We
prove that the largest generation entirely visited by these walks behaves like logn and
that the constant of normalization which differs from a case to another is function
of the inverse of the constant of Biggins’ law of large number for branching random
walks [1].

1 Introduction and results

First, let us define the process:
The environment E: Let T0 a N0-ary regular tree rooted at φ. For all vertices x ∈ T0

we associate a random vector (A(x1), A(x2), · · · , A(xNx), Nx) where Nx is a non-negative
integer bounded by N0. We assume that the sequence (A(x1), A(x2), · · · , A(xNx), Nx), x ∈
T0) is i.i.d. and that each vector has the same law as (A1, A2, · · · , AN , N), we also assume
that all Ai’s are independent of N . The sub-tree T = {x ∈ T0, N(x) 6= 0} is a Galton-
Watson tree (GW), so (x1, x2, · · · , xNx), are the Nx children of x, and we denote |x| the

generation of x. For all vertex x in T, we denote
←
x the parent of x, we also assume

that φ has a unique ancestor denoted
←
φ . The set of environments denoted E is the set

of all sequences (A(x1), A(x2), · · · , A(xNx), Nx), x ∈ T0), we denote by P the associated
probability measure, and by E the expectation.
A random walk on E ∈ E: we define a nearest neighbors random walk (Xn, n ∈ N,X0 = φ)
by its transition probabilities,

p(x, xi) = A(xi)/





Nx
∑

j=1

A(xj) + 1



 , p(x,
←
x) = 1−

Nx
∑

i=1

p(x, xi),

p(
←
φ, φ) = 1,
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note also that if Nx = 0, then p(x,
←
x) = 1. We denote by P

E the probability measure
associated to this walk, the whole system is described under the probability P which is the
semi-direct product of measures P and P

E .
General properties for the environment: Note that by construction the GW is locally
bounded, and we also add an ellipticity condition on the Ai’s,

P − a.s ∃ 0 < ε0 < 1, ∀i, ε0 ≤ Ai ≤ 1/ε0, (1.1)

so the moment-generating function ψ we define now, which contains the characteristics of
the environment, is defined for all t:

ψ(t) = logE

(

N
∑

i=1

Ati

)

.

These assumptions (for the Ai’s, 1/Ai’s and N), may be weaken by assuming exponential
moments for all of them instead of ellipticity, but we do not think that we could reach easily
the even weaker assumptions like in [5] for example. Nevertheless, we keep more generalist
proofs as often as possible.As mentioned in the abstract we assume that ψ(0) > 0 so our
Galton-Watson is super-critical, also that the random environment is non-degenerate.
The recurrence criteria: on a regular tree, they are first due to [9], in the present settings,
we refer to ([11]) and the first part of [4]. Let

χ := inf
t∈[0,1]

ψ(t),

then the walk is transient if and only if χ > 0. The recurrent case can be specified as
follows, if

χ < 0 (1.2)

then the walk is positive recurrent, to determine the other case, we have to take into
account the sign of

ψ′(1) = e−ψ(1)E

[

N
∑

i=1

Ai logAi

]

.

If

χ = 0 and ψ′(1) > 0, (1.3)

the walk is positive recurrent, whereas if

χ = 0 and ψ′(1) = 0, or (1.4)

χ = 0 and ψ′(1) < 0, (1.5)

the walk is null recurrent. In figure (1) we present the shape of ψ for each case, for the
last one (1.5) a constant appears naturally:

κ := inf{t > 1, ψ(t) = 0} ∈ (1,+∞].

Asymptotics for the largest visited generation X∗n: The asymptotic behavior of X∗n :=

2
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Case (1.3) and (1.4)

ψ(t)

0

Case (1.5)

ψ(t)

0

κ < +∞

κ =∞

ψ(t)

Case (1.2)

0

Figure 1: The recurrent cases

max1≤k≤n |Xk| is well known thanks to the works of Y. Hu and Z. Shi [6], [5] and G.
Faraud, Y. Hu and Z. Shi [7]. They prove that there is three main different behaviors, the
first one ([6]) says that the walk is very slow and will never reach a generation larger than
log n for an amount of time n, more pricisely

if (1.2) is realized then P a.s.−N , lim
n→+∞

max
0≤i≤n

|Xi|

log n
= C1,

where P a.s.−N means P almost surely on the set of non-extinction of the Galton Watson
tree. Note that in [6] a regular tree is considered but the result remains true with our
hypothesis. In [5] and [6], it is proven that

if (1.3) is realized then P a.s.−N , lim
n→+∞

max
0≤i≤n

|Xi|

(log n)3
= C2,

if (1.4) is realized then P a.s.−N , lim
n→+∞

max
0≤i≤n

|Xi|

(log n)3
= C3,

in this delicate case, there is still a slow movement, but they prove that the environment
allows enough regularity to let the walk escape until generation (log n)3. Note that in [7]
they work with a more general setting, a GW tree, weaker hypothesis of regularity than
ours, and succeed to determine C2 and C3. Finally, there is also a sub-diffusive case also
obtained in ([6]) :

if (1.5) is realized then P a.s.−N , lim
n→+∞

log max0≤i≤n |Xi|

log n
= 1−

1

min (κ, 2)
.

Note also that for large κ [4] shows the existence of a central limit theorem for this last case.

In this paper we are interested in the largest generation entirely visited by the walk, more
precisely we get the asymptotic behavior of

Rn := sup{k ≥ 1,∀|z| = k,L(z, n) ≥ 1},

with L the local time of X defined by L(z, n) :=
∑n

k=1 1Xk=z.
We also need the following constant of law of large number for branching random walks

:

J̃(a) := inf
t≥0

{ψ(−t)− at}, γ̃ := sup{a ∈ R, J̃(a) > 0}, (1.6)
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note that as χ ≤ 0, γ̃ > 0. Our main result shows that, contrary to X∗n, there is essentially
two cases:

Theorem 1.1 Assume (1.1), then if (1.2) or (1.3) or (1.4) are realized, P a.s.−N

lim
n→+∞

Rn
log n

=
1

γ̃
,

otherwise P a.s.−N

lim
n→+∞

Rn
log n

=
1

γ̃min(κ, 2)
.

So the largest generation entirely visited is far smaller than the largest generation visited
by these walks except for the slowest case (1.2). In fact there is no difference between the
first three cases (which are the slowest ones) and we see appear the characteristic constant
κ for the fourth one. In fact, if instead of stopping the walk at a deterministic time n we
stop it at n return time to the root, we have no longer any difference. More precisely, for
all i ≥ 1 let T iφ := inf{k > T i−1φ ,Xk = φ} the ith return time to φ, with T 0

φ = 0 and denote

R̃n := RTnφ then

Proposition 1.2 Assume (1.1), then P a.s.−N

lim
n→+∞

R̃n
log n

=
1

γ̃
.

This last fact shows that the difference for all the cases appears only in the behavior of
the local time at the root φ. In fact we only need the logarithm behavior of L at φ , it is
given by

Proposition 1.3 Assume (1.1), then if (1.2) or (1.3) or (1.4) are realized, P a.s.−N

lim
n→+∞

logL(φ, n)

log n
= 1,

otherwise P a.s.−N

lim
n→+∞

logL(φ, n)

log n
=

1

min(κ, 2)
.

(1.2) and (1.3) are obvious given recurrence positivity.
The rest of the paper is organized as follows, in Section 2, we prove the result for R̃n,

it is the upper bound that needs more attention. In Section 3 we move from R̃n to Rn,
also for the sake of completeness we add classical results in an appendix.

To study asymptotical behaviours associated to (Xn)n∈N, a quantity appears natu-
rally: the potential process V associated to the environment which is actually a branching
random walk. It is defined by V (φ) := 0 and

V (x) := −
∑

z∈Kφ,xK

logA(z), x ∈ T\{φ},

where Jφ, xK is the set of vertices on the shortest path connecting φ to x and Kφ, xK =
Jφ, xK\{φ}.
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2 Proof of Proposition 1.2

2.1 Lower bound

In this first section, we prove that P a.s.−N for n large enough

R̃n
log n

≥
1− ε

γ̃
=: c1. (2.1)

For this purpose, note that:

P
E
φ(R̃n < c1 log n) = P

E
φ





⋃

|z|=c1 logn

{L(z, T nφ ) = 0}



 = P
E
φ (An)

where An :=
⋃

|z|=c1 logn
{Tz > T nφ }. Note that for typographical simplicity, we do not

make any difference between a real number and its integer part. Thus, according to strong
Markov property:

P
E
φ(An) ≤

∑

|z|=c1 logn

P
E
φ(Tz > Tφ)

n ≤ Zc1 logn max
|z|=c1 logn

en log PEφ(Tz>Tφ)

with Zn := Card{|z| = n}, the number of vertices in the n-th generation. With E[Z1] =
E[N ] = eψ(0), the expected number of offspring at the first generation, it is a classical result
that Wn := Zn

enψ(0) is a positive martingale an consequently (Wn)n≥0 admits a.s. a limit

when n goes to infinity. So, there exists C(ω) and n0(ω) such that: ∀n ≥ n0(ω),
Zn

enψ(0) ≤

C(ω). Consequently ∀n ≥ n0(ω), noting that eψ(0)c1 logn = nc1ψ(0):

P
E
φ(An) ≤ C(ω)nc1ψ(0) max

|z|=c1 logn
en log(1−PEφ(Tz<Tφ)). (2.2)

As X is recurrent, PEφ(Tz < Tφ) tends to 0 when n goes to infinity and we have to study
the asymptotical behaviour of:

ℵn := max
|z|=c1 logn

e−nP
E
φ(Tz<Tφ) = max

|z|=c1 logn
e−np(φ,φz)P

E
φz

(Tz<Tφ),

where φz is the child of φ in Kφ, zK.
Recall that, thanks to the ellipticity conditions, ∀u ∈ T, e−V (u) = A(u) > ε0, formulas
(4.3) yields:

P
E
φz(Tz < Tφ) =

eV (φz)

∑

u∈Kφ,zK e
V (u)

≥ ε0
e−V (z)

|z|
= ε0

e−V (z)

c1 log n
, (2.3)

where V (z) = maxx∈Kφ,zK V (x). The ellipticity conditions ensure that there is a constant
K > 0, such that ∀z ∈ T, K < ε0p(φ,φz)/c1, then using 2.3:

ℵn ≤ max
|z|=c1 logn

e
−
nε0p(φ,φz)
c1 log n

e−V (z)

≤ e−
Kn
log n

e
−max|z|=c1 log n V (z)

. (2.4)

At this level, it remains to study V and we need the following:
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Lemma 2.1 Assume χ ≤ 0, there exists a constant a > 0 such that P a.s.−N for ℓ large
enough :

max
|z|=ℓ

V (z) ≤ γ̃ℓ

(

1 + a
log ℓ

ℓ

)

Let us postpone the proof of this lemma and finish the proof of (2.1): for n large enough,
the previous lemma implies:

max
|z|=c1 logn

V (z) ≤ γ̃c1 log n (1 + ε/2) ,

and one can write P a.s.−N for n large enough:

ℵn ≤ e−
Kn

1−c1 γ̃(1+
ε
2 )

logn ≤ e−
Kn

ε
2

log n . (2.5)

Finally formulas (2.2) and (2.5) give that P almost surely on the set of non-extinction
∑

P
E
φ(An) <∞, thus (2.1) is established using Borel-Cantelli Lemma.

Proof of lemma 2.1:

This result is classical and for the sake of completeness, we give some details below. Let
εℓ := alog ℓ/ℓ, using the Biggins identity (4.1), we easily obtain:

P

(

max
|z|=ℓ

V (z) ≥ γ̃ℓ(1 + εℓ)

)

= P
(

∪ℓj=1 ∪|z|=j {V (z) ≥ γ̃ℓ(1 + εℓ)}
)

≤
ℓ
∑

j=1

E





∑

|z|=j

1{V (z)≥γ̃ℓ(1+εℓ)}



 =

ℓ
∑

j=1

ejψ(1)E
(

eSj1{Sj≥γ̃ℓ(1+εℓ)}

)

.

For any b > 0, a simple partition of the event {Sj ≥ γ̃ℓ(1 + εℓ)} gives:

E
[

eSj1{Sj≥γℓ(1+εℓ)}

]

=

+∞
∑

r=0

E
[

eSj1{Sj∈[γ̃ℓ(1+εℓ)+br,γ̃ℓ(1+εℓ)+b(r+1)[}

]

≤
+∞
∑

r=0

eγ̃ℓ(1+εℓ)+b(r+1)
P (Sj ≥ γ̃ℓ(1 + εℓ) + br) .

The ellipticity condition gives eψ(−δ) = E[
∑

|x|=1 e
δV (x)] ≤

(

1
ε0

)δ
E[N ] <∞ for all δ ∈ R,

so according Biggins identity (4.2), E[e(1+δ)S1 ] < +∞. Thus, using Markov inequality and

the fact that (Si−Si−1, i ≥ 1) are i.i.d. random variables, ∀c > 0, P(Sj ≥ c) ≤ E[e(1+δ)S1 ]j

e(1+δ)c
.

Collecting the previous inequalities, and taking c = γ̃ℓ(1 + εℓ) + br:

P

(

max
|z|=ℓ

V (z) ≥ γ̃ℓ(1 + εℓ)

)

≤ eb−δγ̃ℓ(1+εℓ)
∑

r≥0

e−δrb
ℓ
∑

j=1

E[e(1+δ)S1 ]jeψ(1)j

=
eb

1− e−δb
e−δγ̃ℓ(1+εℓ)

ℓ
∑

j=1

eψ(−δ)j

=
eb

1− e−δb
eψ(−δ)

eψ(−δ) − 1
e−δγ̃ℓ(1+εℓ)

(

eψ(−δ)ℓ − 1
)

≤ Me−δγ̃ℓεℓeℓ(ψ(−δ)−δγ̃) =:M∆ℓ(δ), (2.6)
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for the first equality we use Biggins identity, for the second one the fact that for all δ > 0,
eψ(−δ) > eψ(0) > 1 and M is a positive constant.
Before going any further, according to the definitions of J̃ and γ̃ see (1.6), note that
J̃(γ̃) = 0. Indeed ψ, as a function of t, is convex moreover by hypothesis ψ(0) > 0 and
inft∈[0,1] ψ(t) ≤ 0, so it reaches its minimum for some t > 0, so J̃(0) = inft≥0 ψ(−t) > 0.
Moreover by hypothesis ψ(−t) is finite for every t > 0, and therefore for all t we can find
some a, large enough such that −∞ < J̃(a) ≤ ψ(−t) − ta < 0. Then the definition of γ̃
gives effectively that J̃(γ̃) = 0. We can now come back to ∆ℓ, we have two cases, either

• there exists t0 > 0 such that ψ(−t0)−t0γ̃ = 0. Then
∑

ℓ≥0∆ℓ(t0) =M
∑

ℓ≥0 e
−t0γ̃ℓεℓ <

∞, and we conclude with the Borel-Cantelli Lemma, or

• ψ(−t) ∼ γ̃t when t goes to infinity, note that by convexity of ψ, ψ(t)− γ̃t ≥ 0 for all
t. Then we can take δ = δℓ =

1
εℓ
, in this case ∆ℓ(δℓ) ∼ e−ℓγ̃ and we easily conclude

with Borel-Cantelli Lemma. �

2.2 Upper bound

In this section we prove that, for all ε > 0, P a.s.−N for all n large enough

R̃n
log n

≤ c2 :=
1 + ε

γ̃
. (2.7)

The strategy is the following, we first make a first cut in the tree close to the root at a
generation which depends on ε. We denote (zi, i ≤ Uε) the vertices of this generation of
the tree. We show that during the n return time to the root the local time at each of these
individuals is not much larger than n (Lemma 2.2). Then we make a second cut in the
tree at generation (1 + ε/2) log n. We select at this generation one descendant for each zi
called zi satisfying the property to have a large potential V (zi) (see 2.11). We prove that
the local times on these vertices during the return time to zi do not exceed a power of log n
almost surely (Lemma 2.3). We finally prove a last technical lemma (Lemma 2.5) which
shows that there are very few back and forth movements between zi and its descendant
zi. Finally, using the three Lemmata we can extract some parts of the trajectory of the
random walk (before the nth visit to the root) which are independent up to a translation

in time. Using this independence we finally prove that PE
(

R̃n
logn > c2

)

is summable which

leads to the result.

Let uε a positive integer that will be precised later. Let (zi, i ≤ Uε =: |Zuε |), the
individuals of generation uε. We first prove that before the nth visit to the root each
point at generation uε can not be visited many more times than n.

Lemma 2.2 Assuming (1.2), for all positive and increasing sequence of integers (hn, n ∈
N) with limn→+∞ hn = +∞, P a.s.−N for n large enough

P
E
φ





⋃

1≤j≤Uε

{

L(zj , T
n
φ ) ≥ hnn

}



 ≤ hn2
−n.
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Proof.

Let us denote
⋃

1≤j≤Uε
Āj the event in the previous probability. Let qzj > 0 and rzj > 0

two sequences that we define later. Using successively Markov inequality and the strong
Markov property:

P
E
φ(L(zj , T

n
φ ) ≥ rzjn) ≤ e−qzj rzjnEEφ

[

eqzjL(zj ,T
n
φ )
]

= e−qzj rzjn
(

E
E
φ

[

eqzjL(zj ,Tφ)
])n

. (2.8)

Let us denote wzj := P
E
zj(Tzj > Tφ), vzj := P

E
φ(Tφ > Tzj ). Assuming that for all j, eqzj (1−

wzj ) < 1:

E
V
φ

[

eqzjL(z,Tφ)
]

= 1− vzj + vzje
qzj

wzj
1− (1− wzj )e

qzj
= 1 + vzj

eqzj − 1

1− (1− wzj )e
qzj
.

As for all j, 1 − wzj < 1 we can chose qzj = log(1 + wzj) which obviously satisfied
eqzj (1− wzj ) < 1, we obtain:

E
E
φ

[

eqzjL(z,Tφ)
]

= 1 +
vzj
wzj

. (2.9)

Replacing this expression in (2.8), as vzj ≤ 1:

P
E
φ(L(zj , T

n
φ ) ≥ rzjn) ≤

((

1

1 + wzj

)rzj
(

1 +
1

wzj

))n

, (2.10)

finally taking rzj = 2 log(1 + 1/wzj )/ log(1 +wzj ), we get

P
E
φ





⋃

1≤j≤Uε

{

L(zj , T
n
φ ) ≥ rzjn

}



 ≤ Uεmax
j≤Uε

P
E
φ(L(zj , T

n
φ ) ≥ rzjn) ≤ Uε2

−n.

To finish, we have to estimate rzj and so wzj = p(zj ,
←
z j)P

E
←
z j
(Tzj ≥ Tφ). By (4.4) we note

that wzj can be small if the potential from the root to zj decreases, but thanks to the
hypothesis of ellipticity, P a.s. wzj ≥ c′(ε0)

Uε , where c′ > 0 so P a.s. rzj ≤ c′′(ε0)
−2Uε

with c′′ > 0. By the ellipticity condition for N , P a.s. for n large enough rzj ≤ hn, and

Uε ≤ hn, so P
E
φ

(

⋃

1≤j≤Uε
Āj

)

≤ P
E
φ

(

⋃

1≤j≤Uε

{

L(zj , T
n
φ ) ≥ rzjn

})

≤ hn2
−n. �

In what follows, for simplicity, we denote z > x if Kx, zK 6= ∅, in other words x is an
ancestor of z.
Let (zi, i ≤ Uε) the individuals of generation an := (1+ ε/2) log n/γ̃ such that zi < zi and
satisfying that for all 1 ≤ i ≤ Uε:

V (zi)− V (
→
z i) ≥ γ̃an

(

1− b
log an
an

)

, max
u∈Kzj ,zjK

V (u)− V (zj) ≤ γ̃c log an, (2.11)

where
→
z j the descendant of zj on Kzj , zjK. We prove in Lemma 2.4 below that such points

exists almost surely. Define also

Kn = (log n)3+cγ̃/hnn.

We now prove that the probability for the local time, at each points zi until T
L(zj ,T

n
φ )

zj , to
be larger than nKn is rather small.
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Lemma 2.3 Assuming (1.2), there exists a constant c3 > 0 such that P a.s. − N for n
large enough

P
E
φ





⋃

1≤j≤Uε

{

L

(

zj, T
L(zj ,T

n
φ )

zj

)

≥ Knhnn

}



 ≤ e−
c3
4
(log n)2 .

Proof.

Let us denote
⋃

1≤j≤Uε
B̄j the event in the previous probability, from (2.8) and (2.9):

A := P
E
φ





⋃

1≤j≤Uε

{

B̄j,Aj

}



 ≤ Uε max
1≤j≤Uε

P
E
φ(L(zj , T

hnn
zj ) ≥ Knhnn),

≤ Uε max
1≤j≤Uε

(

(

1

1 + w̃zj

)Kn (

1 +
ṽzj
w̃zj

)

)nhn

,

where w̃zj := P
E
zj
(Tzj < Tzj ) and ṽzj := P

E
zj(Tzj > Tzj). Using Lemma 4.1 and the

hypothesis of ellipticity, P a.s.

ṽzj ≤ e
−(maxu∈Kzj,zjK V (u)−V (

→
z j)), w̃zj ≥

c′0
an
e
−(maxu∈Kzj,zjK V (u)−V (zj)),

with c′0 > 0. Note that for all 0 < c′ < 1, and x small enough (1 + x)−α ≤ (1 − c′αx),
taking c′ = 1/2, x = w̃j , and α = Kn, we get for all n large enough:

A ≤ Uε max
1≤j≤Uε

((

1−
w̃zj
2
Kn

)(

1 +
ṽzj
w̃zj

))hnn

≤ Uε max
1≤j≤Uε

(

1−
w̃zj
2
Kn +

ṽzj
w̃zj

)hnn

≤ Uε max
1≤j≤Uε

(

1−
c′0Kn

2an
e
−(maxu∈Kzj,zjK V (u)−V (zj)) +

an
c′0
e−(V (zj)−V (

→
z j))

)hnn

.

Now, assume for the moment that the sequence (zj , j ≤ Uε) we have defined in (2.11)
exists P a.s.−N , then P a.s.−N for n large enough

A ≤ Uε

(

1−
c′0
2

e−γ̃c log an

log n
Kn +

an
c′0
e−γ̃an+γ̃b log an)

)hnn

≤ Uε

(

1−
c′0
2

(log n)2

nhn
+

1

c′0

a1+γ̃bn

n(1+ε/2)

)hnn

≤ Uεe
−
c′′0
2
(log n)2 .

To finish just notice that PEφ

(

⋃

1≤j≤Uε
B̄j
)

≤ P
E
φ

(

⋃

1≤j≤Uε

{

B̄j,Aj

}

)

+P
E
φ

(

⋃

1≤j≤Uε
Āj

)

,

use Lemma 2.2 and the ellipticity condition for N . �

We are left to prove the following

Lemma 2.4 Assume 1.5 then there exist two constants b0 > 0 and c0 > 0 such that P
almost surely on the set of non extinction, for all l large enough

∃z, |z| = ℓ, V (z) ≥ γ̃ℓ

(

1− b0
log ℓ

ℓ

)

, V (z)− V (z) ≤ γ̃c0 log ℓ, (2.12)
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For all integer A > 0, let us denote (zi, 1 ≤ i ≤ UA) the individuals of the Anth generation,
then there exist two constants b > 0 and c > 0 such that P a.s.−N for all l large enough
and all i ≤ UA

∃zi, |zi| = ℓ, V (zi)− V (
→
z i) ≥ γ̃ℓ

(

1− b
log ℓ

ℓ

)

, max
u∈Kzj ,zjK

V (u)− V (zi) ≤ γ̃c log ℓ. (2.13)

Proof First note that the second part of the Lemma is a simple consequence of the first
part of the Lemma the ellipticity condition and the stationarity of the potential V . So if
we prove that there exists two constants a > 0 and b > 0 P almost surely on the set of
non extinction for n large enough:

{

max
|z|=ℓ

V (z) ≤ γ̃ℓ(1 + a log ℓ/ℓ); ∃z, |z| = ℓ, V (z) ≥ γ̃ℓ(1− b log ℓ/ℓ)

}

then we get the first part of the Lemma. We have already proven, in Lemma 2.1, that there
exists a constant a > 0 such that P -a.s. on the set of non extinction for ℓ large enough
max|z|=ℓ V (z) ≤ γ̃ℓ(1+a log ℓ/ℓ). So we just need that P -a.s. on the set of non extinction
for ℓ large enough ∃z, |z| = ℓ, V (z) ≥ γ̃ℓ(1 − b log ℓ/ℓ), for this we use the results of
[10], note that here we are interested in the maximum instead of the minimum so few

changes occur. Let F̃ (t) := E
[

∑

|x|=1 1V (x)≥t

]

, by independence of N and the increments

Ai, we have F̃ (t) =
∑+∞

j=1

∑j
i=1 P (N = j)P (− logAi ≥ t) and by hypothesis (1.1), for all

t ≥ − log(ε0), F̃ (t) = 0, therefore α̃ := sup{t, F̃ (t) > 0} is finite. In [10] there is two
theorems the first one and the remarks that follow concern the case with a finite α̃ and
F̃ (α̃) ≥ 1 and the second one the case F̃ (α̃) < 1 and a second hypothesis (E[N2] < +∞)
which is satisfied in our work. We use both theorems. Thanks to the hypothesis of
existence of ψ (again by the hypothesis of ellipticity), F̃ (γ̃) ≤ 1 and therefore F̃ (α̃) ≤ 1.

Indeed for all t > 0 F̃ (γ̃) ≤ E

[

∑

|z|=1 exp(t(V (z)− γ̃))
]

, which by taking the infimum

over all t > 0 in both part of the inequality leads to F̃ (γ̃) ≤ exp(J(γ̃)) = 1. Moreover if
F̃ (α̃) > 1, then we should have exp J̃(γ̃) > 1 which is absurd.
Theorem 1 of [10], says that there exists a constant c1 > 0, such that P almost surely on the
set of non-extinction max|x|=ℓ V (x)−Mℓ ≥ c1 log ℓ with Mℓ the median of max|x|=ℓ V (x),

moreover if F̃ (α̃) = 1, then Mℓ ≥ α̃ℓ− c′1 log ℓ, with c
′
1 > 0. So we only have to check that

α̃ = γ̃. This is an easy computation, indeed we note that

E





∑

|z|=1

et(V (z)−α̃)



 ≥ E





∑

|z|=1

et(V (z)−α̃)
1V (z)≥α̃



 ≥ E





∑

|z|=1

1V (z)≥α̃



 = 1,

taking the infimum over all t > 0, we get exp(J̃(α̃)) ≥ 1 and as J̃(a) decreases with a and
J̃(γ̃) = 0, we get γ̃ ≥ α̃. The other case is pretty similar, let ε > 0,

E





∑

|z|=1

et(V (z)−α̃(1+ε))



 = E





∑

|z|=1

et(V (z)−α̃(1+ε))
1V (z)≤α̃



+ E





∑

|z|=1

et(V (z)−α̃(1+ε))
1V (z)>α̃



 ,
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as for |z| = 1, V (z) ≤ − log ε0,, by definition of α̃ the last term is equal to 0, so we get

E





∑

|z|=1

et(V (z)−α̃(1+ε))



 ≤ e−tα̃εE





∑

|z|=1

1V (z)≤α̃



 ≤ e−tα̃εeψ(0)

taking the infimum over all t > 0, we get exp(J̃(α̃(1 + ε))) = 0, so γ̃ ≤ α̃(1 + ε).
For the case F̃ (α) < 1 we use Theorem 2 (b) in [10] note that it is the point where we use
the hypothesis of second moment for N , it gives that there exists a constant c2 such that
P almost surely max|x|=ℓ V (x) ≥ γ̃ℓ− c2 log n. �

We finally need a last technical Lemma which tells that, the numbers of back and forth
movement between zi and zi is small for all i.

Lemma 2.5 For all the recurrent cases, for all ε > 0, P a.s.−N for n large enough

P
E
φ





⋃

1≤j≤Uε







L(zj ,Tnφ )−1
∑

l=1

1L(zj ,T
l+1
zj

)−L(zj ,T
l
zj
)≥1 ≥ 8/ε









 ≤
1

n1+ε/4
. (2.14)

Proof.

Let us denote
⋃

1≤j≤Uε
C̄j, the event in the above probability. We have :

P
E
φ





⋃

1≤i≤Uε

{C̄j,Aj}



 ≤
∑

1≤i≤Uε

P
E
φ(Yhnn(i) ≥ 8/ε) (2.15)

where Yhnn(j) :=
∑hnn

l=1 1L(zj ,T
l+1
zj

)−L(zj ,T
l
zj
)≥1. By the strong Markov property Yhnn(j) is

a binomial with parameters hnn and ṽzj := P
E
zj(Tzj > Tzj ). As ṽzj ≤ e−(V (zj)−V (

→
zj)) , so

thanks to Lemma 2.4, P a.s.−N for all j ≤ Uε and all n large enough ṽzj ≤ e− logn(1+ε/4).
Moreover as we have no restriction for hn but the fact that it goes to infinity with n, we
can take it for example equal to log n, so we get that nhnṽzj ≤ log n/nε/4. We can now
use, for example, the result of [3], to get that P a.s. − N for all j ≤ Uε and all n large
enough

P
E
φ(Yhnn(j) ≥ 8/ε) ≤ e− logn/nε/4

(

log n

nε/4

)8/ε

+ 4
log n

n1+ε/2
,

and we conclude with P
E
φ

(

∪1≤j≤Uε C̄j
)

≤ P
E
φ

(

∪1≤j≤Uε

{

C̄j,Aj

})

+ P
E
φ

(

∪1≤j≤UεĀj

)

. �

Now we move to the proof of the upper bound for R̃n. Let Di :=
{

minz>zi L(z, T
n
φ ) ≥ 1

}

such that all z belongs to generation (1+ε) log n. We have
{

R̃n
logn > c2

}

⊂
⋂Uε
i=1Di. Let us

compute an upper bound of the probability P
E
(

∩Uεi=1{Ai,Bi, Ci,Di}
)

, where Ai, Bi, and

11



Ci have been defined in the previous Lemmata. We have

P
E

(

Uε
⋂

i=1

{Ai,Bi, Ci,Di}

)

=

Uε
∏

j=1

hnn−1
∑

kj=1

8/ε−1
∑

lj=0

Knhnn−1
∑

mj=lj

P
E

(

Uε
⋂

i=1

{

Di,L(zi, T
n
φ ) = ki,L(zi, T

ki
zi ) = mi,

ki−2
∑

l=1

1L(zi,T
l+1
zi

)6=L(zi,T
l
zi
) = li

})

.

In the following expression we add a sum over all the possible sequences (qi1, · · · , q
i
li
) of

the different time of excursions from zi to zi: for this we denote G
mi
i (qi1, · · · , q

i
li
) the event

that says that during the mi returns to zi, the walk will touch the point zi only between
the (qir − 1)nth and qirnth return time to zi for all r ≤ li.

P
E

(

Uε
⋂

i=1

{Ai,Bi, Ci,Di}

)

=

Uε
∏

j=1

hnn−1
∑

kj=1

8/ε−1
∑

lj=0

Knhnn−1
∑

mj=lj

∑

qj1,··· ,q
j
lj

P
E

(

Uε
⋂

i=1

{

Di,L(zi, T
n
φ ) = ki,L(zi, T

ki
zi ) = mi,G

mi
i (qi1, · · · , q

i
li)
}

)

.

Now on
{

Gmii (qi1, · · · , q
i
li
),L(zi, T

n
φ ) = ki,L(zi, T

kj
zi ) = mi

}

the event Di can be written

Di =

{

min
z>zi

(

li−1
∑

si=0

L(z, T
qisi+1−1
zi )− L(z, T

qisi
zi )

)

≥ 1

}

=

li−1
⋃

si=0

{

min
z>zi

(

L(z, T
qisi+1−1
zi )− L(z, T

qisi
zi )

)

≥ 1

}

=:

li−1
⋃

si=0

Hi(q
i
si).

We finally get

P
E

(

Uε
⋂

i=1

{

Di,L(zi, T
n
φ ) = ki,L(zi, T

ki
zi ) = mi,G

mi
i (qi1, · · · , q

i
li)
}

)

≤
Uε
∏

j=1

lj−1
∑

sj=0

P
E

(

Uε
⋂

i=1

{

H(qisi),L(zi, T
n
φ ) = ki,L(zi, T

ki
zi ) = mi,G

mi
i (qi1, · · · , q

i
li)
}

)

≤
Uε
∏

j=1

lj−1
∑

sj=0

P
E

(

Uε
⋂

i=1

{

H(qisi),L(zi, T
n
φ ) = ki,L(zi, T

ki
zi ) = mi, G̃i(q

i
si)
}

)

where G̃i(q
i
si) := {∀r, T

qisi+1−1
zi ≤ r ≤ T

qisi
zi , Xr > zi}. The next step is to make disappear

L(zi, T
n
φ ) = ki, and L(zi, T

ki
zi ) = mi carefully, we simply notice that

Uε
∏

j=1

hnn
∑

kj=1

P
E

(

Uε
⋂

i=1

{

H(qisi),L(zi, T
n
φ ) = ki,L(zi, T

ki
zi ) = mi, G̃i(qsi)

}

)

≤
Uε
∏

j=1

hnn
∑

kj=1

P
E

(

Uε
⋂

i=1

{

H(qisi),L(zi, T
n
φ ) = ki, G̃i(qsi)

}

)

= P
E

(

Uε
⋂

i=1

{

H(qisi), G̃i(qsi)
}

)

.
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We are now ready to apply the strong Markov property, indeed the (T
qis
zi , i ≤ Uε) can now

be ordered, and as they are stopping times recursively we finally get:

P
E

(

Uε
⋂

i=1

{

H(qisi), G̃i(qsi)
}

)

=

Uε
∏

i=1

P
E
zi

(

min
z>zi

L

(

z, T
qisi+1−1−q

i
si

zi

)

≥ 1

)

≤
Uε
∏

i=1

P
E
zi

(

min
z>zi

L
(

z, TKnhnnzi

)

≥ 1

)

.

We are left to get an upper bound for the probabilities in the above product, and also
to count the number of term we have in the previous product of sums. First about the

sums we notice that
∑8/ε

l1=0

∑Knhnn
m1=l1

∑

q11,··· ,q
1
l1

∑l1
s1=0 1 =

∑8/ε
l1=0

∑Knhnn
m1=l1

(m1

l1

)

(l1 + 1) ≤

(8/ε + 1)Knhnn
∑8/ε

l1=0

(Knhnn
l1

)

≤ (8/ε+ 1)2Knhnn(Knhnn)
8/ε, so finally

Uε
∏

j=1

8/ε
∑

lj=0

Knhnn
∑

mj=lj

∑

qj1,··· ,q
j
lj

lj
∑

sj=0

1 ≤
(

(8/ε + 1)2Knhnn(Knhnn)
8/ε
)Uε

∼ (Knhnn)
Uε(8/ε+1).

Using successively the strong Markov property, (4.4) and the hypothesis of ellipticity for
all z > zi:

P
E
zi

(

min
z>zi

L
(

z, TKnhnnzi

)

≥ 1

)

≤ P
E
zi

(

L
(

z, TKnhnnzi

)

≥ 1
)

= 1− P
E
zi

(

Tzi < Tz
)Knhnn

≤ 1−



1− p(zi,
→
z i)

1
∑

u∈Kzi,zK
eV (u)−V (

→
z i)





Knhnn

≤ 1− exp
(

−cKnhnne
−maxu∈Kzi,zK V (u)−V (

→
z i)
)

,

with c > 0. The stationarity of V gives the following equality in law with respect to P :
maxu∈Kzi,zK

V (u)−V (
→
z i) = max|z|= ε

2γ̃
logn V (z), moreover thanks to lemma 2.4, P a.s.−N

for all n large enough:

max
|z|= ε

2γ̃
logn

V (z) ≥ (1− ε)
ε

2
log n.

We finally get that P a.s.−N for all n large enough:

P
E
zi

(

min
z>zi

L
(

z, TKnhnnzi

)

≥ 1

)

≤
c′Knhnn

nε(1−ε)/2
,

implying

P
E

(

Uε
⋂

i=1

{

H(qisi), G̃i(qsi)
}

)

≤

(

c′Knhnn

nε(1−ε)/2

)Uε

.

Collecting all what we did above and replacing Knhnn by its value, yields that P a.s.−N
for n large enough

P
E

(

Uε
⋂

i=1

{Ai,Bi, Ci,Di}

)

≤ (Knhnn)
Uε(8/ε+2)

(

1

nε(1−ε)/2

)Uε

.
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From Kesten-Stigum theorem [8] (here the hypothesis that E(N log+N) < ∞ is trivially
satisfied), we know that P a.s. − N limε→0 Uε/e

ψ(0)uε = W where W a strictly positive,
finite random variable. In particular choosing uε = 1

eψ(0) log
1
ε2
P a.s. − N for all ε > 0

small enough 4/(1− ε)ε ≤ Uε ≤ 1/ε3, finally remember that Kn is given just after 2.11 so
we get P a.s.−N for n large enough

P
E

(

Uε
⋂

i=1

{Ai,Bi, Ci,Di}

)

≤
(log n)c

′′ε4

n2
,

with c′′ > 0. Finally collecting the result of the different Lemmata we get that P a.s.−N ,

P
E
(

R̃n
logn > c2

)

is summable, applying Borel-Cantelli Lemma we get 2.7.

3 Connexion between R̃n and Rn

3.1 Case ψ(1) = 0, ψ′(1) ≥ 0 or inf t∈[0,1]ψ(t) < 0

We have the following

Lemma 3.1 Assume 1.2 or 1.3 or 1.4, then for all ε > 0 P a.s.−N for all n large enough

R̃n1−ε ≤ Rn ≤ R̃n. (3.1)

Note that only the first inequality needs to be proven, moreover the case (1.2) and (1.3)
follows directly by the fact that the random walks are positive recurrent. In what follows
we will always assume that 1.4 is realised and for m ∈ N, we denote Tm := inf{k ≥
0, |Xk| = m} the hitting time of the generation m. The key-point is the following

Lemma 3.2 There exists a constant α > 0, such that P a.s.−N for all m large enough

A1(m) := {L(φ,Tm) ≥ exp ((mα)1/3(1− ε/4))}, and (3.2)

A2(m) := {Tm ≤ exp ((mα)1/3(1 + ε/2))} (3.3)

are realized.

From the above Lemma the proof of the first Lemma is straightforward, indeed for n large
enough on A2

L(φ, n) ≥ L

(

φ,T (log n)3

α(1+ε/2)3

)

,

therefore, for n large enough on A1 and A2

L(φ, n) ≥ exp(log n(1− ε/4)/(1 + ε/2)) ≥ n1−ε.

So we are left to prove Lemma 3.2, notice that it can be deduced from what is done in
[5], for completness we give some details here except the proof of the following delicate to
prove Lemma
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Lemma 3.3 ([5]) For all ε > 0 P a.s.−N for all m large enough

ρm ≤ exp(−m1/3α1/3(1− ε/8)), (3.4)

where ρm := Pφ(Tm < Tφ).

Proof of lemma 3.1 For A1(m), the strong Markov property gives PE (L(φ,Tm) ≥ k) =
(1− ρm)

k, then Lemma 3.3 yields that P a.s.−N for m large enough

P
E
(

L(φ,Tm) ≤ exp(m1/3α1/3(1− ε/4))
)

≤ exp(−m1/3α1/3ε/8), (3.5)

applying Borel-Cantelli Lemma leads to 3.2.
For A2(m), from U.A. Rozikov [12], EE [Tm] =

γm(φ)
ρm

, where γm(φ) is defined in the ap-

pendix. Lemma 4.2 and 3.3 imply the existence of a constant c′ > 0 such that P a.s.−N
for m large enough

E
E [Tm] ≤ c′m exp(m1/3α1/3(1 + ε/8)), (3.6)

the Markov inequality together with the above inequality yields that P a.s.−N P
E(Tm >

m1/3α1/3(1 + ε/4)) is summable and we conclude with Borel-Cantelli Lemma. �

Finally notice that by Lemma 3.1, (2.1) and (2.7), P a.s.−N for n large enough

1

γ̃
(1− ε)2 ≤

Rn
log n

≤
1

γ̃
(1 + ε) (3.7)

we get the Theorem for the first three cases by letting ε go to zero.

3.2 Case ψ(1) = 0, ψ′(1) < 0

Let us prove

Lemma 3.4 Under ψ(1) = 0, ψ′(1) < 0, we have for all ε > 0, P a.s.−N for all n large
enough

R̃nν′−ε ≤ Rn ≤ R̃nν′+ε ,

where ν ′ := 1/min(κ, 2).

To prove this Lemma we use the following results of [7] that can be extended to a super-
critical Galton Watson tree by using the same technics:

Proposition 3.5 ([7]) Under ψ(1) = 0, ψ′(1) < 0, we have for all ε > 0, P a.s.−N for
all m large enough

m−εE[βm(φ
1)] ≤ βm(φ

1) ≤ mεE[βm(φ
1)], (3.8)

where βm(φ
1) := P

E
φ1 [Tm ≤ Tφ]. Moreover if κ ∈ (2,+∞], E[βm(φ

1)] = O(1/m) and if

κ ∈ (1, 2] m−
1

κ−1
−ε ≤ E[βm(φ

1)] ≤ m−
1

κ−1
+ε. Also P a.s.−N for all n large enough

Tnν(1−ε) ≤ n ≤ Tnν(1+ε) , (3.9)

with ν := 1− 1/min{κ, 2}.
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Proof of lemma 3.4 First notice that thanks to the second part of the above propo-
sition, P a.s.−N for all n large enough

L(φ,Tnν(1−ε)) ≤ L(φ, n) ≤ L(φ,Tnν(1+ε)). (3.10)

The upper bound we study the asymptotic of L(φ,Tm) for largem, using Markov inequality
we have

P
E
(

L(φ,Tm) ≥ m2ε/E[βm(φ
1)]
)

≤
(1− ρm)E[βm(φ

1)]

ρmm2ε
. (3.11)

By definition ρm =
∑N(φ)

i=1 p(φ, φ(i))βm(φ
i), then by using the fact that the βm(φ

(i)) are
i.d. with mean E[βm(φ

1)], the hypothesis of ellipticity and the first part of the above
Proposition we get that there exist positive constants c1 > 0 and c2 > 0 such that P a.s.−
N c1E[βm(φ

1)]m−ε ≤ ρm ≤ c2E[βm(φ
1)]mε, so P a.s.−N for n large enough

pm := P
E

(

L(φ,Tm) ≥
m2ε

E[βm(φ1)]

)

≤
1

mε
. (3.12)

We deduce from that the convergence of the sum
∑

ℓ pℓ2/ε , therefore according to Borel

Cantelli Lemma P a.s. − N for all l large enough L(φ,T
ℓ
2
ε
) ≤ ℓ

2
ε
2ε/E

[

β
ℓ
2
ε
(φ1)

]

. Taking

(ℓ − 1)2/ε ≤ m ≤ ℓ2/ε in such a way that for ℓ large enough ℓ2/ε ≤ m1+ε, we get by
using the fact that L(φ, Tℓ) is increasing in ℓ and βℓ decreasing in ℓ, that P a.s. − N
for all m large enough L(φ,Tm) ≤ m3ε/E[βm1+ε (φ1)]. Finally P a.s. − N for all n large
enough L(φ,Tnν(1+ε)) ≤ n4νε/E[βn(1+3ε)ν (φ1)]. Now, distinguishing the two cases we get

for κ ∈ (1, 2], P a.s.−N for n large enough, L(φ,Tnν(1+ε)) ≤ n
1
κ
+c0ε, and for κ ∈ (2,+∞],

L(φ,Tnν(1+ε)) ≤ n
1
2
+c′0ε where c0 and c′0 are two positive constant. Collecting this result

and the right-hand side of 3.10 gives the upper bound.
The lower bound, let (λm,m) a positive sequence decreasing to zero whenm goes to infinity.
First notice that

E
E
[

e−λmL(φ,Tm)
]

=
ρm

1− e−λm(1− ρm)
,

therefore for m large enough and by taking λm = mερm we get E
E
[

e−λmL(φ,Tm)
]

≤

2ρm/(λm + ρm) ≤ 2m−ε. We obtain that E
E
[

∑

ℓ e
−λmℓL(φ,Tmℓ)

]

is finite, for the sub-

sequence mℓ = ⌊ℓ2/ε⌋, therefore P a.s.−N for all ℓ large enough λmℓL (φ,Tmℓ) ≥ 1, then
it is clear that for all m ∈ [mℓ,mℓ+1], λmℓL (φ,Tm) ≥ 1. Moreover using the estimates
of ρ. just above (3.12) and of E[βm(φ

1)], P a.s. − N for all ℓ large enough and for all
m ∈ [mℓ,mℓ+1], 1/λmℓ ≥ 1/(mc3ελm), with c3 > 0 a well chosen constant. Therefore for
some positive constant c4, P a.s.−N for n large enough L (φ,Tm) ≥

1
mc4ε

1
E[βm(φ1)]

. Then

we separate the two cases and use the left hand side of (3.10) to get the lower bound. �

Lemma 3.4 together with Proposition 1.2 yields the theorem for this last case.
Finally note that Proposition 1.3 is a simple consequence of Lemma 3.2 and proof of lemma
3.4.

16



4 Appendix

In this appendix, for completness, we describe and sketch the proof of some classical
results. Given a vertex x ∈ T, we denote x0 := φ, . . . , xn := x the vertices on Jφ, xK with
|xi| = i for all 0 ≤ i ≤ n.

4.1 Biggins-Kyprianou identities

For any n ≥ 1 and any mesurable function F : Rn × R
n → [0,+∞), Biggins-Kyprianou

identity is given by

E





∑

|x|=n

e−V (x)−ψ(1)nF (V (xi), 1 ≤ i ≤ n)



 = E[F (Si, 1 ≤ i ≤ n)] (4.1)

where (Si − Si−1)i≥1, are i.i.d. random vectors, and the distribution of S1 is determined
by :

E[f(S1)] = E





∑

|x|=1

e−V (x)−ψ(1)f(V (x))



 , (4.2)

for any measurable function f : R → [0,+∞). A proof can be found in [2], see also [13].

4.2 Classical results about birth and death chains

Lemma 4.1 For x′ ∈ Jφ, xK:

P
E
x′x
(Tx < Tx′) =

eV (x′x)

∑

z∈Kx′,xK e
V (z)

, (4.3)

P
E
←
x
(Tx′ < Tx) =

eV (x)

∑

z∈Kx′,xK e
V (z)

. (4.4)

where x′x is the only children of x′ in Jx′, xK.

Proof: Let (σn)n≥0 the family of stopping times defined by σn = inf{k > σn−1,Xk ∈
Jφ, xK,Xk 6= Xσn−1} and define Zn = Xσn for n ≥ 0. (Zn)n≥0 is a birth and death Markov
chain on Jφ, xK with transition probabilities given by:

pxi := P
E(Zn+1 = xi+1|Zn = xi) =

A(xi+1)

1 +A(xi+1)
,

qxi := P
E(Zn+1 = xi−1|Zn = xi) =

1

1 +A(xi+1)
,

∀1 ≤ i ≤ n− 1 and pφ = qx = 1, indeed

pxi = P
E
xi(Xσ1 = xi+1) =

∑

ℓ≥0

P
E
xi(XT ℓxi+1 = xi+1,∀m < ℓ,XTmxi+1 /∈ Jφ, xK)

=
∑

ℓ≥0

p(xi, xi+1)P
E
xi(X1 /∈ Jφ, xK)ℓ =

p(xi, xi+1)

1− PExi(X1 /∈ Jφ, xK)
=

p(xi, xi+1)

1−
∑

k 6=j p(xi, x
(k)
i )

=
A(xi+1)

1 +A(xi+1)
.
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Let us introduce:

ξ0 := 1, ξℓ :=
ℓ
∏

k=1

qk
pk
, ℓ ≥ 1,

and consider f : N → R given by f(φ) = 0 and for 1 ≤ k ≤ n, f(xk) =
∑k−1

ℓ=0 ξℓ. Easily
we can see that (f(Zk))k≥0 is a martingale. With τi = inf{m ≥, 0, Zm = xi} and for
1 ≤ i < j < k, according to the optional stopping time Theorem, for 1 ≤ i < j < k :

f(xj) = E
E
xj [f(Xτi∧τk)] = f(xi)P

E
xj (τi < τk) + f(xk)[1 − P

E
xj(τi < τk)]

⇔ P
E
xj(τi < τk) =

∑j−1
ℓ=i ξℓ

∑k−1
ℓ=i ξℓ

=

∑

z∈Kxi,xjK
eV (z)

∑

z∈Kxi,xkK e
V (z)

recalling that V (x) = −
∑

z∈Kφ,xK logA(z), x ∈ T\{∅}. Since {τx < τx′} = {Tx < Tx′}

conditionnaly on {X0 = x′x}, thus formula 4.3 is proved. �

4.3 About (γn, n)

Let us define:

γn(x) :=











0 if |x| = n,
1/p(x,←x )+

∑Nx
i=1A(x

i)γn(xi)

1+
∑Nx
i=1A(x

i)βn(xi)
, if 1 ≤ |x| < n,

∑N
i=1 p(φ, φi)γn(φi), if x = φ .

(4.5)

where βn := P
E
x(Tn < T←

x
).

Lemma 4.2 Assuming ψ(1) = 0:

sup
n≥1

γn(φ)

n
< +∞,P.a.s. (4.6)

This result is already proved in the case of a b-ary tree (see for instance [6]). Here, we
treat the case of a Galton-Watson tree.
Proof:

First, observe that for all 2 ≤ k ≤ n :

γn(φ) ≤ K
k−1
∑

j=1

∑

|x|=j

∏

y∈Kφ;xK

A(y) +
∑

|x|=k





∏

y∈Kφ;xK

A(y)



 γn(x) (4.7)

where K is a constant satisfying ∀x ∈ T, p(x,
←
x)−1 ≤ K. The existence of K is provided

by assumptions 1.1.
As p(φ, φi) ≤ A(φi), ∀1 ≤ i ≤ N , we deduce from (4.5):

γn(φ) ≤
N
∑

i=1

A(φi)γn(φ
i), (4.8)

18



and note that formula (4.5) implies :

γn(x) ≤ K +

Nx
∑

i=1

A(xi)γn(x
i),∀1 ≤ |x| ≤ n. (4.9)

Then from (4.8) and (4.9), we deduce formula (4.7) for k = 2:

γn(φ) ≤
N
∑

i=1

A(φi)(K +

Nφi
∑

j=1

A(φi,j)γn(φ
i,j) = K

N
∑

i=1

A(φi) +

N
∑

i=1

Nφi
∑

j=1

A(φi)A(φi,j)γn(φ
i,j)

= K
∑

|x|=1

∏

y∈Kφ;xK

A(y) +
∑

|x|=2





∏

y∈Kφ;xK

A(y)



 γn(x)

Assume that (4.7) is true for one k ≥ 2 , we prove that it still true for k + 1. Using again
(4.9):

γn(φ) ≤ K
k−1
∑

j=1

∑

|x|=j

∏

y∈Kφ;xK

A(y) +
∑

|x|=k





∏

y∈Kφ;xK

A(y)





(

K +
Nx
∑

i=1

A(xi)γn(x
i)

)

≤ K

k
∑

j=1

∑

|x|=j

∏

y∈Kφ;xK

A(y) +
∑

|x|=k+1





∏

y∈Kφ;xK

A(y)



 γn(x)

Applying formula (4.7) to k = n and recalling that γn(x) = 0 for |x| = n :

γn(φ) ≤ K
n−1
∑

j=1

∑

|x|=j

∏

y∈Kφ;xK

A(y) = K
n−1
∑

j=1

Mj , (4.10)

where Mj :=
∑

|x|=j

∏

Kφ;xKA(y). (Mj)j≥1 is a positive Fj-martingale with M0 = 1 and

Fj := σ{(A(x1), · · · , A(xNx), Nx) : |x| ≤ j, x ∈ T}:

• obviously we have positivity and for all j ≥ 0, Mj ∈ Fj ;

• for all x ∈ T , as (A(x1), · · · , A(xNx), Nx) is equal in law to the vector (A1, · · · , AN , N):

E[Mj+1|Fj ] =MjE[
N
∑

i=1

Ai],

and we conclude with M0 = E[
∑N

i=1Ai] = 1, since ψ(1) = 0.

Consequently, there exists an almost sure limit for (Mj)j≥0 which implies that supjMj <
∞ almost surely.
Thus, (4.10) implying γn(φ)

n ≤ K supjMj , the proof is complete. �
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