The number of generations entirely visited for recurrent random walks on random environment

Abstract : In this paper we are interested in a random walk in a random environment on a super-critical Galton-Watson tree. We focus on the recurrent cases already studied by Y. Hu and Z. Shi and G. Faraud. We prove that the largest generation entirely visited by these walks behaves like log n and that the constant of normalization which differs from a case to another is function of the inverse of the constant of Biggins' law of large number for branching random walks.
Type de document :
Article dans une revue
Journal of Theoretical Probability, Springer, 2014, pp.518-538
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00652801
Contributeur : Pierre Debs <>
Soumis le : vendredi 16 décembre 2011 - 11:56:13
Dernière modification le : lundi 18 février 2019 - 17:12:07
Document(s) archivé(s) le : samedi 17 mars 2012 - 02:36:17

Fichiers

RWTree071211.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00652801, version 1
  • ARXIV : 1112.3797

Collections

Citation

Pierre Andreoletti, Pierre Debs. The number of generations entirely visited for recurrent random walks on random environment. Journal of Theoretical Probability, Springer, 2014, pp.518-538. 〈hal-00652801〉

Partager

Métriques

Consultations de la notice

254

Téléchargements de fichiers

91