One dimensional Fokker-Planck reduced dynamics of decision making models in Computational Neuroscience

Abstract : We study a Fokker-Planck equation modelling the firing rates of two interacting populations of neurons. This model arises in computational neuroscience when considering, for example, bistable visual perception problems and is based on a stochastic Wilson-Cowan system of differential equations. In a previous work, the slow-fast behavior of the solution of the Fokker-Planck equation has been highlighted. Our aim is to demonstrate that the complexity of the model can be drastically reduced using this slow-fast structure. In fact, we can derive a one-dimensional Fokker-Planck equation that describes the evolution of the solution along the so-called slow manifold. This permits to have a direct efficient determination of the equilibrium state and its effective potential, and thus to investigate its dependencies with respect to various parameters of the model. It also allows to obtain information about the time escaping behavior. The results obtained for the reduced 1D equation are validated with those of the original 2D equation both for equilibrium and transient behavior.
Type de document :
Article dans une revue
Communications in Mathematical Sciences, International Press, 2013, pp.523-540. 〈10.4310/CMS.2013.v11.n2.a10〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00652759
Contributeur : Simona Mancini <>
Soumis le : vendredi 16 décembre 2011 - 11:03:39
Dernière modification le : jeudi 3 mai 2018 - 15:32:06
Document(s) archivé(s) le : vendredi 16 novembre 2012 - 15:46:20

Fichiers

slow-fast6.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

José Antonio Carrillo, Stéphane Cordier, Simona Mancini. One dimensional Fokker-Planck reduced dynamics of decision making models in Computational Neuroscience. Communications in Mathematical Sciences, International Press, 2013, pp.523-540. 〈10.4310/CMS.2013.v11.n2.a10〉. 〈hal-00652759〉

Partager

Métriques

Consultations de la notice

312

Téléchargements de fichiers

135