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Abstract— Visual localization and mapping for mobile robots
has been achieved with a large variety of methods. Among
them, topological navigation using vision has the advantage of
offering a scalable representation, and of relying on a common
and affordable sensor. In previous work, we developed such an
incremental and real-time topological mapping and localization
solution, without using any metrical information, and by relying
on a Bayesian visual loop-closure detection algorithm. In this
paper, we propose an extension of this work by integrating
metrical information from robot odometry in the topological
map, so as to obtain a globally consistent environment model.
Also, we demonstrate the performance of our system on the
global localization task, where the robot has to determine its
position in a map acquired beforehand.

I. INTRODUCTION

Over the last years, vision in robotics has become more
and more important, due to the remarkable characteristics
of the vision systems available at low costs. The small
size, low weight and low energy requirements of a simple
camera make it an integrated sensor that can be easily
embedded on most mobile robots, while vision provides a
rich qualitative description of the environment that is suitable
for robotics applications like place recognition ([1], [2], [3]).
Moreover, vision can be employed for the extraction of
metrical information about the environment, as in certain
SLAM solutions ([4]).

SLAM (Simultaneous Localization And Mapping, [5]) is
the process of localizing a mobile robot while concurrently
building a map of the environment. Historically, the field
of SLAM has been divided into metrical and topological
approaches. In the former case, the environment is repre-
sented using a metrical map where the robot can be localized
in a continuous manner. In the latter family of approaches,
the environment model is a graph of discrete locations: the
nodes of this topological map identify distinct places in
the environment, while edges link them according to their
similarity or distance. Number of approaches have attempted
to capitalize on the advantages of the two representations. For
instance, metrical maps can be embedded in graphs of higher
level to enhance scalability ([6]). Also, other graph-based
solutions can be used to infer a precise metrical position for
the robot, while still allowing for large scale mapping ([7]).

In previous work [8], we have demonstrated how a vision-
based loop-closure detection method (i.e. BayesianL.CD, [1])
could be turned into a reliable incremental and real-time
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topological SLAM solution, using appearance information
from a single monocular camera only. One limitation of this
work was the lack of metrical information which lead to
the impossibility to use the map to guide a robot. We have
enhanced this mapping solution with the addition of such
information, taking advantage of the odometry measurements
provided by a mobile robot. Also, we have adapted this
framework to the context of global localization, as this
problem can be considered as a particular case of loop-
closure detection where the robot is assumed to be in
known terrain. We demonstrate the quality of our approach
using image sequences acquired with a single monocular
camera on a Pioneer 3 DX mobile robot, in indoor and
urban environments, and under strong perceptual aliasing
conditions (i.e. when several distinct places look similar).

II. RELATED WORK

Several approaches have been designed to add metrical
information in a visual topological map. A first solution is to
match images coming from neighbouring nodes to estimate
the robot displacement between these nodes ([7], [9], [10])
using visual odometry [11] and to store this displacement
in the edges. Another similar method is to rely on visual
servoing, which makes it possible to directly guide the
robot toward the position of a neighbouring node, without
explicitly computing the corresponding relative positions
[12]. Other authors ([13], [14], [15]) use the odometry mea-
surements provided by a mobile robot during the movement
between nodes. Depending on the scenario, this last approach
may be more relevant than the aforementioned vision-based
techniques, as it can still provide an estimation of the robot’s
position in situations where vision is no longer reliable (e.g.
during temporary sensor occlusion, or in featureless scenes
such as those caused by a dark spot in the environment). It
also has the advantage of being computationally simpler, as
it does not require any image processing.

The metrical information that relates neighbouring nodes
may be used directly to guide the robot between nodes
([10], [12]). However, it is also possible to capitalize on
this information to build a globally consistent map of the
environment. This can be achieved by using a relaxation
algorithm that relies on the relative information between the
nodes to estimate a global position for them ([13], [14],
[15]). Similar approaches were also applied to build metrical



maps of the environment ([9], [16]), following the seminal
work of [17]. In particular, the relaxation method proposed
in [9] allows to rapidly converge to low average error when
considering 3D-6DoF camera poses.

The topological global localization problem consists in
determining the node corresponding to the actual robot’s
position, without any a priori information on this position.
Several vision-based techniques ([10], [18], [19]) consider
this problem in a simple image-to-nodes matching scheme,
where the location of the current image is determined as
the location of the most likely node in the map. To this
end, a similarity measure between an image and a node is
defined (i.e. this generally entails counting the number of
correspondences between them), while some authors ([10],
[18]) also rely on a final multiple-view geometry validation
step in order to confirm the retrieved location. In the afore-
mentioned approaches, global localization is achieved in a
maximum likelihood (ML) scheme, which may suffer sever
limitations and lead to transient errors in the presence of
perceptual aliasing.

In order to circumvent these limitations, Bayesian filtering
methods can be employed, leading to a maximum a pos-
teriori (MAP) scheme that ensures the time coherency of
the estimation (i.e. information from past estimates is fused
with current ones). The authors of [20] and [21] use MAP
frameworks to estimate the probability of the location of
the current image. Before the first localization attempt, this
probability is uniformly distributed over all the nodes of
the map. Then, an iterative predict-update procedure helps
refining the estimation of this probability, as the robot moves
and acquires new images. To this end, a time evolution model
predicts the probability distribution at time ¢, given this
distribution one step before, while an observation model is
used to update the probability of each node, by computing the
likelihood of the current image given the description of this
node. This update step relies on a image-to-nodes matching
scheme that is similar to those used in ML approaches.
At each iteration of the filtering process, the location of
the current image can be determined confidently when the
probability of a particular node is high.

Finally, learning techniques can also be employed to
address the visual topological global localization problem,
as shown in [22] and [3] where a monocular camera is used
to recognize the different rooms of an indoor environment.

III. TorPoLOGICAL SLAM

The environment model used in this paper is an en-
hancement of the model described in [8]. It consists in a
topological map of the environment (i.e. the graph of the
locations linked in order of traversal) that is constructed from
image sequences, and where each node is characterized using
the bags of visual words paradigm.

A. Model overview

Bags of visual words is a popular method for image
categorization [23] that relies on a representation of images
as a set of unordered elementary visual features (the words)

taken from a dictionary (or codebook). Over the last years,
this method has been successfully adapted to several robotics
applications (e.g. [2], [10], [19]).

An example of the visual features typically used for
image characterization in the bags of visual words scheme
is the Scale Invariant Feature Transform (SIFT, [24]). As
these features are sensitive to noise and are represented
in high dimension spaces, they are not directly used as
words, but are categorized using vector quantization tech-
niques like k-means. The output of this discretization is
the dictionary. Instead of building the dictionary off-line on
an image database, as performed in most applications ([2],
[10], [19], [23]), we rather rely on an incremental dictionary
construction mechanism [3]. This makes it possible to start
with an empty structure that is filled as the robot discovers
its surroundings: our system therefore makes no a priori
hypotheses on the type of environment it will face.
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\‘ S <

/Absolute posmon\\

of node | @
/ \

|
l
I
|
\ [-Ln Yi, 0 :
T
~ T .
I
|
i
1
|
|
|
|
|
|
|

Relative dlsplacement\
[ betweennodesiandj \—"

\\Ei,j = [dij, 0i, ¢ij] ) = ——
\\\\‘\,<;;//4i%\ / \ @ / @

Dictionary

\\Absolute posmon/
-_of nodej

Fig. 1. Illustration of the environment model. The visual words of the
dictionary (right part of the figure) are used to describe the locations of
the topological map (left part of the figure). The integration of metrical
information makes it possible to compute an absolute position for each node,
using the relative displacements between them (see figure 2 for details about
the metrical information added here).

The input information used to build the dictionary of
the environment model described in this paper is the SIFT
descriptor ([24]): interest points are detected as maxima over
scale and space in differences of Gaussians convolutions.
The keypoints are memorized as histograms of gradient
orientations around the detected point at the detected scale.
The corresponding descriptors are of dimension 128 and are
compared using L2 distance.

n [8], we have shown how the model can be learned
on-line, in real-time and without any a priori information
about the environment. To this end, when a new image
is acquired, our Bayesian loop-closure detection algorithm
(i.e. BayesianLCD, [1]) is used to determine the robot’s
location, so as to update the topological map. In case of
successful detection, the image is considered as pertainning
to the loop-closing location. Otherwise, it is used to define
a new location. An edge is added to the map between the
current node and the previously recognized one. Then, the
visual dictionary is updated, by adding all the features of the
current image that did not match existing words.

B. Image selection strategy

In our previous work, images taken from a hand held
camera were processed at 1Hz for map building. In order



to avoid loop-closure detections due to the resemblance
between consecutively acquired images, frames exhibiting
too much similarities with the last considered image were
discarded. In this paper, as the camera is mounted on a
mobile robot, it is possible to use information from odometry
measurements as an additional constraint to decide which
image to process and, as a consequence, how the nodes of the
map should be distributed. Hence, we now also impose that
the robot must have moved a given distance or rotated a given
angle (50cm and ¥ radians in the reported experiments) for
the image to be considered.

C. Embedding metrical information in the map

Each node of the graph has an associated 2D position
and orientation [z;,y;, 6;] initialized to the robot odometry
position when the node is created. A variance v; is also
associated to each node and is initialized with the variance
of the previous node in the map plus 2% of the distance
travelled by the robot since this previous node. When a node
is added or recognized in the map, a new edge is created to
link this node with the previous one (i.e. the node where
the robot was last located). The relative metrical position
of the two nodes obtained through the robot odometry
measurements is memorized in this link (see figure 2):

Eij = [dij, 035, ¢ij]

a variance v;; is also associated to the edge. In this paper, it
is taken as 2% of the edge length d;;. Note that uncertainty
is modelled very simply here by a single value for both posi-
tion coordinates and orientation, which provides surprisingly
good results in our experiments as odometry has a reasonable
precision, notably on orientation. However, for larger scale
experiments, a more precise model (e.g. the one presented
in [25]) would be required.
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Fig. 2. Odometric information stored in the edges of the topological map.

After a loop-closure detection, the robot is assumed to
have returned exactly at the position of the previous passing
(i.e. the position of the loop-closing node), thus relative
position and uncertainty for the loop closing edge is taken
from odometry information like for any other edge. This
is a reasonable assumption given that loop-closures are
only detected between close monocular views of a given
place, thereby exhibiting only small variations between the
corresponding positions and orientations. A solution relying
on the relative image position given by the multiple-view
geometry algorithm (see section III-D) would be hardly
feasible here due to scale ambiguity.

As a consequence of the cumulative noise of odometry, the
graph is not coherent after loop closing. Thus, a relaxation
algorithm is employed to estimate the position of each node
that best satisfies the constraints imposed by the relative
odometric information. The algorithm we used for relaxation
is simple, as the maps we are building have a relatively small
number of nodes (at most few hundreds in the experiments
reported hereafter), and as the nodes only have 3 degrees of
freedom. We use the iterative algorithm described in [13], to
which we added the estimation of the orientation for each
node.

An iteration of the algorithm is made of three steps applied
to each node ¢ of the map:

e Step 1 — Estimate the position of node ¢ from each
neighbouring node j:
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and estimate variance of node ¢ from node j:
(v3); = vj + vji

« Step 2 — Estimate the variance of node ¢ using harmonic
mean of the estimates from the neighbours:
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where n; is the number of neighbours of node .
e Step 3 — Estimate the position of the node as the mean
of the estimates from its neighbours:
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These three steps are repeated until the total change
in the nodes coordinates falls under a given threshold, or
a maximum number of iterations is reached (20 in our
experiments). The first node of the map is considered as
the reference frame: its position is fixed at [0,0,0] and its
variance is fixed at a small value. This algorithm was proven
to converge [13], as it corresponds to the minimization of a
quadratic energy function of a spring network equivalent to
the topological map. It is also fast enough to be executed
during the time separating two image processing during map
construction.



D. Topological global localization

In this section, we propose to derive the probabilis-
tic framework employed for loop-closure detection in
BayesianL.CD for the task of global localization. The main
difference is that in this new context, we wish to recover
the location of the robot in an environment model obtained
beforehand, and it is assumed that each acquired image is
taken from an already visited place. As a consequence, the
“novelty” event that is used in loop-closure detection to take
new locations into account is not required. In our previous
work [1], this novelty event was managed by the addition
of a virtual location in the model which was updated at
each new image acquisition, in order to represent a potential
new location to which this image could pertain. In the task
considered here, this virtual location mechanism is no longer
necessary. Also, when performing global localization, the
environment model is held fixed, and so neither the map nor
the visual dictionary should be updated after the processing
of an image.

The probability that the current image comes from an
already visited location can be recursively evaluated using
a discrete Bayes filter, as follows:

p(St|Zta M) = np(ZtISt,M)

n

> p(SilSi—1 =4, M)p(Si—1 = j|M)  (10)
3=0
where 7 is a normalization term, M = {Np,...,N,}

is the set of nodes forming the topological map, and z; is
the set of visual words found in current image [;. S; = i
is the event that I; comes from the location corresponding
to N;. Computing the full posterior p(S¢|z;, M) according
to equation 10 using a discrete Bayes filter then makes it
possible to find the node N; whose characterization is similar
enough to I; to consider that I; comes from V;.

As usual in classical Bayesian filtering problems, the esti-
mation of the full posterior requires a time evolution model
p(St|St_1 =7, M), and an observation model p(zt\St, M)

The time evolution model makes it possible to predict the
probability distribution at time ¢, given this distribution at
time t—1, and according to possible displacements in the map
between t—1 and t. Here, it is simply represented as a sum of
Gaussians over the nodes neighbouring a given location (see
figure 3): according to the image selection strategy given in
section III, it is assumed that the robot has moved between
two images, implying that it is more likely to be situated in
a different node rather than in its last location.
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Fig. 3.  Sum of Gaussians for the time evolution model: the sum of
Gaussians model gives more emphasis to neighbouring states than to centre
one, making it adapted to a non-stationary system.

The observation model computes the likelihood of the
currently observed words z; given the descriptions of all
the locations of the environment model. In other words, it
evaluates the relevance of each position hypothesis S; = 1,
based on the observed similarities between I; and N;. To this
end, each word of the current image votes for all the locations
in which it has been seen, using a score derived from the
tf—idf [26] coefficient (i.e. the product of the frequency
of a word in a location by the inverse frequency of the
locations containning this word). Once all the words of the
current image have voted, the more likely locations are those
receiving the more important number of votes, and their
likelihood score is obtained from these votes.

Finally, when the sum of the probabilities taken over
neighbouring locations is above a threshold (i.e. 0.8 in the
following experiments), a multiple-view geometry algorithm
[11] is employed to verify that a consistent camera trans-
formation can be found between the current image and the
retrieved location. This final validation step makes it possible
to discard false alarms (i.e. locations that look similar to the
current image but that do not share a consistent structure
with it). More details regarding the observation model and
this ultimate verification procedure can be found in [8].

IV. EXPERIMENTAL RESULTS

A. Mapping

Fig. 4. Images from the sequence used in the reported experiment. Note
that some images are almost featureless (bottom row, centre).

Experiments were conducted using a Pioneer 3 DX mobile
robot from MobileRobots Inc. equipped with an on-board
camera providing images of size 320x240 pixels (automatic
exposure control). The robot’s trajectory started with a small
loop around a room, before taking one longer loop in a
corridor. Along this trajectory, 209 images were selected
(through the appearance and position threshold described in
section III) and processed for mapping (see figure 4).

During this experiment, 7 loop-closures were correctly
detected, and in spite of strong perceptual aliasing in the
environment, no false detections were made (i.e. when a
loop-closure is detected whereas none occurred). The final
map contains a total of 202 nodes. The robot took 5m10s to
complete the whole trajectory, while the total computation
time was 2m58s: all images were thus processed in the
required time frame. Figure 5 shows that the relaxation al-
gorithm effectively compensated the odometry drift and map



Fig. 5.

The map constructed during the reported experiment without relaxation (top) and with relaxation overlaid on a metrical map of the environment

(bottom). The yellow circled nodes indicate nodes where loop-closures were detected. The red dot indicate the final robot position estimated with the robot

odometry from the last node of the map.

inconsistencies. As a consequence, the resulting topological
structure is coherent with a metrical map constructed using
a traditional laser range-finder based SLAM algorithm.

B. Topological global localization

Global localization has been performed in both indoor and
outdoor image sequences, under strong perceptual aliasing
conditions. To learn the environment model, a first passing
is done in the environment, visiting all the places it contains
once. After that, images from a second passing in those
places are randomly selected to attempt global localization.
Each time such a new random image is selected, the proba-
bility of the position of the robot is uniformly distributed
over all the nodes of the map. Then, our discrete Bayes
filter (see section III-D) is employed to refine this probability
with the acquisition of the following consecutive images
in the sequence, according to the image selection strategy
given in section III, until a correct location is found (i.e.
when the corresponding probability is higher than 0.8, and
the multiple-view geometry validation step is satisfied). The
number of images required before recovering a correct loca-
tion is the number of trials. After that, following consecutive
images not discarded by the image selection strategy are still
being processed, as long as their locations are also correctly
determined: the number of successfully tracked images is the
number of trackings. Once tracking is lost, a new random
image is picked, and global localization is attempted again.

The experimental results for the two aforementioned im-
age sequences are presented in table I, which gives the
mean number of trials before success (“#IMG-Loc”) and the
mean number of successful trackings (“#Trackings”) over
100 global localization attempts (corresponding standard
deviation values are given in brackets). Also, table I gives the

mean processing time per image, the total number of images
in each sequence (“#IMG”), and the number of images used
to learn the environment model (“#L-IMG”).

TABLE I
GLOBAL LOCALIZATION PERFORMANCES

Sequence #IMG #L-IMG #IMG-Loc #Trackings CPU time/IMG
Indoor 327 190 54) 5@3) 115ms
Outdoor 531 230 2 (1) 12 (10) 644ms

Table I shows that the mean number of trials is small in
both sequences, and most notably in the outdoor one: this
is due to the good reliability of the SIFT features in the
outdoor scenes. As a consequence, the number of successful
trackings is also higher in this case. Tracking usually fails in
situations such as sudden rotation of the camera around the
vertical axis (e.g. when turning around corners in the indoor
environment), or when the scene is partially obstructed (e.g.
due to the presence of pedestrians and cars in the outdoor
sequence). In both cases, the output of the Bayes filter
usually continues to correctly detect the loop closure, but
the lack of feature correspondences between previous and
actual views cause the multiple-view validation step to fail,
thus provoking the rejection of the corresponding hypothesis.

It is important to notice the high standard deviation values
for the indoor sequence. The reason for this is the higher
level of perceptual aliasing, but also the characteristics of
this environment (i.e. medium sized corridors, with curved
shape and suddenly appearing corners) that make it difficult
to rapidly recognize a place and track the following images
confidently. Finally, processing outdoor images takes longer
due to the more important number of features they contain.



V. DISCUSSION

We showed the capacity of our system to build consistent
visual topological maps in real-time using a simple yet effi-
cient relaxation algorithm to integrate odometry information.
When compared to graph-based metrical SLAM solutions
like [7], our system estimates metrical information with
less precision (notably due to the simplistic odometry error
model), but offers very robust data association that makes
global localization, mapping and loop-closure detection pos-
sible in the same unified framework. Data association is
performed here at the location level, relying on appearance
information only by considering the image as a whole,
thereby offering robustness in challenging environment sub-
ject to strong perceptual aliasing or in large featureless areas.
A limitation of our approach is however that information on
relative position of nodes coming from vision is very sparse
as it is only obtained from detected loop-closure events, thus
relying on a reasonably precise odometry in between.

Localization in our model is performed by a loop-closure
detection algorithm, relying on a Bayes filter to estimate
the probability that an image comes from a known location:
this makes it possible to prevent temporary detection errors.
The probability propagation in this filter is based on the
neighbouring nodes in time, giving more importance to the
nodes that were detected just before and after each node
(see section III-D). In the metrical extension presented here,
it would be interesting to take relative position of nodes into
account for this propagation, along with a probabilistic model
of the robot odometry. Such a modification would probably
enhance the responsiveness of loop-closure detections, as
propagation would be made in the direction of the robot’s
movement, instead of in direction of all the neighbouring
nodes. This would hence make it possible to concentrate the
probability mass more efficiently at each prediction, directing
it toward the robot’s next presumed location.

VI. CONCLUSION

We have presented an enhancement to our previous work
on visual topological SLAM by integrating odometric infor-
mation from a mobile robot to obtain globally consistent
maps, and by adapting the framework to achieve global
localization. In future work, we plan to use metrical informa-
tion for more relevant bayesian filtering. Also, it would be
interesting to compare the precision of the solution employed
here with a more generic setup relying on visual odometry
instead of wheel encoded odometry.
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