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Abstract

Prostate cancer is the most common cancer in men over 50 years of age and it
has been shown that nuclear magnetic resonance spectra are sensitive enough
to distinguish normal and cancer. In this paper, we propose a classification
technique of spectra from magnetic resonance spectroscopy. We studied au-
tomatic classification with and without quantification of metabolite signals.
The dataset is composed of 22 patient datasets with a biopsy-proven can-
cer, from which we extracted 2464 spectra from the whole prostate and of
which 1062 were localised in the peripheral zone. The spectra were manually
classed into 3 different categories by a spectroscopist with 4 years experi-
ence in clinical spectroscopy of prostate cancer: undetermined, healthy and
pathologic. We used different preprocessing methods (module, phase cor-
rection only, phase correction and baseline correction) as input for Support
Vector Machine and for Multilayer Perceptron, and we compared the results
with those from the expert. If we class only healthy and pathologic spec-
tra we reach a total error rate of 4.51%. However, if we class all spectra
(undetermined, healthy and pathologic) the total error rate rises to 11.49%.
We have shown in this paper that the best results are obtained using the
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pre-processed spectra without quantification as input for the classifiers and
we confirm that Support Vector Machine are more efficient than Multilayer
Perceptron in processing high dimensional data.

Keywords: SVM, Prostate Cancer, Magnetic resonance spectroscopy

1. Introduction

In men with an elevated level of serum prostate specific antigen (PSA),
the diagnosis of prostate cancer usually requires histological confirmation on
a biopsy sample that is obtained invasively during transrectal ultrasound
imaging. Magnetic Resonance Spectroscopy (MRS) has demonstrated a high
level of ability to differenciate prostate tissue from Cancer [1] and it is now
feasible without endorectal coil [2, 3]at higher magnetic fields (≥ 3T) one
more time for patient comfort. Three-dimensional proton (3D 1H) Magnetic
Resonance Spectroscopic Imaging (MRSI) of the entire gland displays rela-
tive concentrations of metabolites, particularly citrate and choline (Fig. 1).
Normal prostate tissue contains high levels of citrate (higher in the peripheral
zone than in the central zone and transition zone) whereas, in the presence of
prostate cancer, the citrate level is diminished or undetectable [4] and choline
level is apparently increased (Fig. 2). We can notice that prostate cancer is
a focal tumour and if the examination is done early enough only a few part
of the prostate is occuped by cancer, the rest was healthy.

Even with several years of practice, the decision as to whether a spectrum
is healthy or pathologic can be quite difficult and time consuming. Therefore
we decided to implement an automatic classification to reduce subjective
human invention and to speed up diagnosis.

Although the literature covering prostate cancer depiction (automatically
or not) is quite abundant, few papers concern in vivo human MRS with au-
tomatic classification. Tiwari et al. produced several articles on this subject
[5, 6]. In the more recent paper, they used linear (Principal component anal-
ysis, z-score) and non-linear (Locally linear embedding, Graph embedding)
dimensionality reduction algorithms on a multicenter MRS database (from
ACRIN trial) with a hierarchical clustering to first determine which spectra
were in prostate and secondly identify prostate cancer spectra. They reached
a sensitivity of 97.66% and a specificity of 98.87% in first experience and sen-
sitivity of 81.36% and a specificity of 64.71% in prostate cancer detection.
Although for each prostate examination they had, at their disposal, biopsies
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(a) (b)

Figure 1: Typical spectra from (a) normal prostate showing high citrate level
(triplet centered around 2.65 ppm) and (b) cancer showing high choline level,
at 3.2 ppm (on the ordinate arbitrate unit, on the abscissa chemical shift in
ppm).

it was complicated to match biopsy and spectroscopy location, so they chose
to define a statistical ground truth.

Matulewicz et al. [7] used MRS data acquired with an endo-rectal coil
from patients before radical prostatectomy. A spectroscopist labeled each
voxel as healthy or tumour based on established rules. Tumor-classed voxels
were confirmed on the basis of histopathologic maps with sextant precision. A
Partial Least Square algorithm with Orthogonal Signal Correction filtering
has been tested for prediction. They gave prominence to a shorter time
of analysis compared with a visual inspection by a spectroscopist, but the
accuracy is not comparable to the one of a spectroscopist.

Kelm et al. [8] have compared two approaches : subspace methods on
spectral patterns versus quantification of some metabolites in spectra. The
datasets were classified with linear and non linear classifiers (Support Vector
Machine, Gaussian processes, random forests) and they obtained their best
results with a non-linear classifier on magnitude spectra.

Valenzuela et al. [9] proposed an automatic procedure to extract sev-
eral features from light microscope images and automatically classified them.
They reach a classification rate of 85.7% in cancer and 91.4% in benign
prostate. This work aimed at help the pathologist in classifying slides.

Jung et al. [10] tried to investigate the accuracy and interobserver vari-
ability for MRSI of the prostate. Data were acquired with an endorectal coil
from 22 patients. They used histopathologic tumor maps to decide whether
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Figure 2: Prostate anatomy. Prostate is composed of 3 zones (central, pe-
ripheral and transition).(Extract from Greene DR, Shabsigh R, Scardino P
T.Urologic ultrasonography. In: Walsh P C, Retik A B, Stamey T A et al.
eds. Campbell’s Urology, 6th edn.Philadephia: WB Saunders, 1992; 342-393)

a voxel was benign or malignant. Two spectroscopists scored each voxel
on a standardized five-point scale only by analyzing spectra visually. This
score was then compared to a histopathologic reference, firstly by considering
scores 4 and 5 as pathological, secondly by considering 3 to 5 as pathologi-
cal and interreader agreement was evaluated by using K-statistics. A good
agreement score, close to k=0.80 was reached. When spectra were considered
as malignant for a score of 4-5, sensitivity close to 70% and specificity a little
under 90%. When a score of 3 to 5 was considered as malignant, sensitivity
was over 90% but specificity was only around 70%.

A major study on the classification of pathological tissues based on Mag-
netic Resonance Spectroscopy (MRS) is the INTERPRET study [11] : Sev-
eral european MRS centers collaborated to create a consequential database
of brain spectra. The aim was then to separate different types of tumor using
different classification techniques. Among all data published, the results of
Devos et al. [12] show that 1) Support Vector Machine (SVM) are more ef-
ficient in high dimensional space than a linear technique 2)L2-normalisation
method is very simple and gave good results 3) the best results were obtained
with L2-normalised magnitude spectra without baseline correction and sim-
ply using peak integration or PCA for dimensionality reduction.

In a clinical context and depending on the chosen acquisition parameters
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and the actual size of the gland itself, 3D-MRSI has the potential to provide
data from several hundred voxels located entirely within the prostate. The
sheer volume of information renders the task of visually or manually classify-
ing data from individual patients virtually impossible. From the standpoint
of the spectroscopist and the clinician, a relatively rapid, robust method to-
wards voxel classification is necessary if MRS is to be seriously considered as
a clinical tool in prostate cancer detection, localisation and follow-up after
treatment.

It was our aim, therefore, to develop an automatic classification scheme
based on MRS data in order to assist prostate cancer localisation. To this
end, we have chosen the support vector machine (SVM), a machine learn-
ing technique originating from statistical theory [8] and often used for the
classification of images. The SVM has been widely used in pattern recogni-
tion applications due to its computational efficiency and good generalization
performance even in the case of non linearly separable classes and in case
of non-uniform distribution. Moreover, some studies [12, 13, 14] have shown
that SVM were generally more efficient on whole data than data having un-
dergone dimension reduction techniques. We chose to compare this method
with a Multilayer Perceptron (MLP) that have already proved it qualities in
medical applications [15, 16].

Thus, this paper presents the application of SVM and MLP to the au-
tomatic classification and localisation of prostate cancer, comparing several
pre-processing steps of spectra, with and without estimations of metabo-
lite signals. The study subjects, acquisition techniques and the dataset are
presented in section 2. In section 3, the preprocessing methods studied for
feature extraction are described, and a brief overview of SVM is presented.
Section 4 contains experiments and results while a conclusion is presented in
section 5.

2. Acquisition techniques and materials

2.1. Study subjects

All data were acquired in the Department of Magnetic Resonance Spec-
troscopy of our University Hospital. This is a cross-sectional study on 22
patients (56-81 years old, mean age=67.9 ± 6.7, median=67.5) with a proven
prostate cancer (PSA level = 4-61 ng/mL mean=11.3 ± 11.9 median=8.3 and
positive biopsies). They all received a complete pelvis Magnetic Resonance
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(a) Transverse

(b) coronal (c) sagittal

Figure 3: Prostate T2 MRI with spectroscopic grid. Central and peripheral
zone are surrounded. The white box is the VOI where tuning of the device
is optimized. On sagittal and coronal slices we can see the projection of the
spectroscopic grid

Imaging (MRI) and MRS examination. Every patient underwent transrectal
ultrasound-guided biopsy at least 6 weeks before MRI.

2.2. MRI and MRS imaging techniques

Images acquired using a three-dimensional T2-weighted fast spin-echo
(TR/TE/ETL: 3000 ms/143 ms/109, slice thickness: 1.5 mm) sequence and
orientated perpendicular to the prostate peripheral zone (PZ) - rectal wall
axis were used to position the 3D spectroscopic grid. The nominal matrix
and field-of-view (FOV) of the 3D T2-weighted fast spin-echo images were
320 x 256 and 280 x 240 mm2, respectively, thereby affording sub-millimetric
pixel resolution within the imaging plane. Once the grid positioned correctly
on the prostate (figure 3), 3D 1H MRSI data were acquired by using a water
and lipid suppressed double-spin-echo point-resolved spectroscopic (PRESS)
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sequence optimized for the quantitative detection of both choline and citrate.
Water and lipid suppression were achieved by using a dual-band spectral spa-
tial pulse technique [17]. Data sets were acquired as 16 x 12 x 8 (interpolated
to 16 x 16 x 8) phase-encoded spectral arrays (2048 voxels) with a nominal
spectral resolution of 0.28-0.36 cm3 before interpolation, TR/TE: 720/140
ms and a 13-minute acquisition time. A spectral bandwidth of 1250 Hz was
used over 512 complex data points.

2.3. Dataset

From the 22 examinations, we only retained those voxels located entirely
within the prostate and more specifically within the peripheral zone, where
the majority of prostate cancer lesions are found. Finally, 1062 spectra from
the peripheral zone were retained for further analysis.

Based on the spectra and the results from the MRI examination, a spec-
troscopist with more than 4 years experience in prostate spectroscopy visu-
ally classed the spectra into three categories: Undetermined, Healthy and
Pathologic (Fig. 4) according to decision rules based on choline, creatine,
polyamines and citrate level [18]. The notion of an ”Undetermined” spec-
trum had to be taken into account in the context of an automatic classifi-
cation, because a number of spectra, from the spectroscopist point of view,
did not contain any significant information neither on healthy tissue nor on
cancer. This is mainly due to low metabolic concentrations within the voxel.
Such would be the case, for example, in the presence of prostatitis, an in-
flammatory condition of the gland. The final number of spectra available for
each class is presented in table 1. Note that the proportion of spectra of each
class is expected to be representative of prior probabilities of these classes.

Undetermined Healthy Pathologic Total
286 636 140 1062

Table 1: Number of spectra per class

3. Preprocessing and classification methods

3.1. Preprocessing of nuclear magnetic resonance spectra

The Nuclear Magnetic Resonance (NMR) device provides a signal called
the free induction decay (FID). To obtain the spectrum we have to initially
perform the following simple operations using Matlab :
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Figure 4: Samples of 3 undetermined, 3 healthy and 3 pathologic spectra
from prostate (on the ordinate arbitrate unit, on the abscissa chemical shift
in ppm).
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• Zero-filling of the free induction decays obtained from the NMR device
to double the number of complex points from 512 to 1024,

• FFT to obtain spectra,

• normalization of spectra with respect to the volume of the voxel.

However, it is necessary to introduce more sophisticated pre-processing
steps in order to analyse spectra efficiently. The NMR spectrum is by nature
a complex signal, with real and imaginary parts. Although, only the real
part is usually analysed by the spectroscopist, this signal can be difficult to
process notably due to the presence of interfering background signals leading
to baseline distortion and to phase correction problems.

The discrete Fourier transform vectors are written as functions of fre-
quency ν. Thus, the discrete spectrum data points Y (νk) are modeled as:

Ŷ (νk) = S(νk). exp(−iΦ(νk)) with S(νk) = ρ.M(νk) +B(νk) + ǫ(νk) (1)

where exp(−iΦ(νk)) is a phase correction factor, M(νk) is the signal of inter-
est, ρ is a normalization factor, B(νk) the baseline component and ǫ(νk) is an
additive noise. The aim of the preprocessing steps is to estimate the signal
M(νk) from the signal Ŷ (νk). We have then to correct the phase, remove the
noise, remove the baseline and determine the normalization factor ρ.

As our acquisition techniques present a good signal to noise ratio, the
noise is just treated by a simple Gaussian filter.

3.1.1. Phase correction

Phase correction aims to find the coefficient Φ(νk) from equation 1. We
have employed the algorithm ACME, proposed by Chen et al. in [19] to solve
the problem of phase correction. This method is based on the minimization
of an entropy function to find the best spectral form. Indeed, zero-order
and first-order phase corrections are required for Fourier transformed NMR
spectra :

• A zero-order phase misadjustment arises from the phase difference be-
tween the reference phase and the receiver detector phase. This cor-
rection is frequency-independent,

• A first-order phase misadjustment arises from the time delay between
excitation and detection, flip-angle variation across the spectrum and
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phase shifts from the filter employed to reduce noise outside the spectral
bandwidth [1-3]. This correction is frequency-dependent.

The phase corrected spectra is

S(νk) = Ŷ (νk). exp(iΦ(νk))

If n is the number of samples within the spectra, Φ(νk) is the total phase
angle correction given by :

Φ(νk) = ϕ0 +
νk

n
.ϕ1

with ϕ0 and ϕ1 the value of the zero order and first order phase correction.
The ACME algorithm tries to find the best parameters ϕ0 and ϕ1 that

minimize an objective function E which possesses a Shannon type informa-
tion entropy measurement and which is the addition of two terms. The first,
denoted H is built from the normalized derivative of the real part of the
signal. The second, denoted P is a penalty function to ensure nonnegative
bands in the spectra.

If we denote RŶ (νk) and IŶ (νk) the real and the imaginary part of Ŷ (νk),
H is given by

H =
n−3
∑

i=1

−Di.ln(Di)

with

Di =
dRŶ (νi)

∑n−3

k=1 dRŶ (νk)

and

dRŶ (νi) =

∣

∣

∣

∣

RŶ (νi + 2)− RŶ (νi)

2

∣

∣

∣

∣

P, the penalty function is given by :

P = γ

n
∑

i=1

F (RŶ (νi)).(RŶ (νi))
2

where γ is a penalty factor which should be set appropriately to balance
the contributions of the entropy and penalty parts. The function F is defined
as
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F (x) =

{

0, x > 0
1, x < 0

The function E = H + P is minimized by the simplex method. Phase
correction on a small set of spectra allow us to choose a value of 1000 for γ
because it permit to obtain spectra near hand made phase correction.

3.1.2. Baseline correction

The presence of macromolecules or lipids within the acquisition voxel may
give rise to very wide peaks in the MR spectra. These peaks are often of little
interest in the context of prostate cancer and may distort the spectrum by
artificially elevating the baseline of the signal. Several methods exist to detect
and correct this problem: some very simple and some more complex using
the wavelet transform or a Bayesian framework [20, 21, 22, 23]. We compared
two methods, the first one based on the work of Lieber et al. [21] and the
second one described in [12]. The method of Devos consist in multiplying
the NMR temporal signal with an exponential decreasing function before
applying FFT to obtain a baseline. It is possible to tune a parameter of the
exponential function (β) in order to optimize the baseline estimation. The
method of Lieber is based on a low-pass filter (convolution with a Gaussian
function) applied iteratively as follows:

• Initialise S ′(νk) = S(νk)

• For each iteration

Compute S ′′(νk) = (S ′ ∗G)(νk) where G is a Gaussian function

If S(νk) ≥ S ′′(νk) then S ′(νk) = S ′′(νk)

• Output : B(νk) = S ′′(νk)

We compared the two algorithms using a set of 100 simulated spectra
built using the Gaussian decomposition of real spectra, added to a simulated
baseline composed of two Gaussian functions. For each method, we com-
puted the quadratic error between the theoretical baseline and the estimated
baseline. For the Lieber method, we tuned the number of iteration from
1 to 1000, and for the Devos algorithm, we tuned the β parameter from 0
to 10. Results are depicted Fig.5 a and b. Regarding the quadratic error,
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the method of Lieber outperforms the method of Devos. We choose then
this method and we fixed T=200 iterations for next experiments (after 200
iterations, the error rate decrease is no longer significant). An example of
baseline estimation using the algorithm of Lieber is presented in Fig.5 c and
d.

3.1.3. Normalisation

Due to different machine settings for different patients (position and di-
mension of the VOI, magnetic and radiofrequency field homogeneities ...),
the detected NMR signal may be very different from one patient to another.
Signal normalisation is therefore required for the estimation of the parameter
ρ of the eq. 1. As the human prostate contains about 70% of NMR-visible
water, a spectrum without prior water suppression will contain a largely
dominant water peak. Two techniques are usually used to normalize spectra
[12] :

• estimation of the concentration of water and use of this value as a
normalisation factor,

• T2-normalisation : ρ =
√

∑

k

(S(νk))2

As in the Devos study [12], we observed that the most efficient normalisa-
tion method for classification problem is T2-normalization. We used this
technique in the next experiments.

3.1.4. Relative concentration estimation of metabolites

A common way to analyze MRS data is to estimate the relative concentra-
tion of metabolites detected in the spectrum. LCModel is a software initially
developed for brain spectra processing, by S. Provencher [24] which analyzes
the in vivo spectrum as a linear combination of a basis set of complete model
spectra of metabolite solutions in vitro (eq. 2).

Ŷ (νk) = exp(−iΦ(νk))

[

NB
∑

j=1

βjBj(νk) +

NM
∑

l=1

Cl

Ns
∑

n=−Ns

Γn.Ml(νk−n; ξl, δl)

]

(2)

with the constraints

Cl > 0, ξl > 0,

NS
∑

n=−NS

Γn = 1
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Figure 5: Quadratic error between simulated and estimated baseline with
Lieber-based baseline correction (a) and Devos baseline correction (b) Spec-
trum from prostate before (c) and after Lieber-based baseline correction (d).
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and where

• The baseline is represented by
NB
∑

j=1

βjBj(νk), a sum of NB cubic B-

splines, Bj(υ), with equally spaced knots.

• Cl are the concentrations of each metabolite.

• Ml(νk−n; ξl, δl) modelizes the spectrum of the metabolite l, ξl is a pa-
rameter to account the shorter T2 echo times in vivo and δl is a shifting
parameters to account small errors in referencing spectra.

• Γn is a normalization factor.

The algorithm tries to minimize the difference between this model and
the real spectra (more information are available in [24]).

Since LCModel was first developed to estimate brain spectra, the soft-
ware has been modified to cater for prostate spectra - the basis sets were
simulated rather than generated from in vitro data (see Fig. 6). The esti-
mated concentration values can be used as an input vector of a classification
method, or simply thresholded such as in [25]. The results will be compared
with the human based ground truth established in 2.3.

3.2. Classification

3.2.1. Support Vector Machine

SVM is a universal learning machine developed by Vladimir Vapnik [26] in
1979. A review of the basic principles follows, considering a 2-class problem
(whatever the number of classes, it can be reduced, by a “one-against-others”
method, to a 2-class problem).

The SVM performs a mapping of the input vectors from the input space
(initial feature space) Rd into a high dimensional feature space Q; the map-
ping is determined by a kernel function K. It finds a linear decision rule in
the feature space Q in the form of an optimal separating boundary, which
leaves the widest margin between the decision boundary and the input vector
mapped into Q. This boundary is found by solving the following constrained
quadratic programming problem:

Maximize:

W (α) =

n
∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

αiαjyiyjK(xi, xj)
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Figure 6: Example of spectrum processed by LCmodel. Initial spectrum is
in black in the lower part. The simulated spectrum (red) and the baseline
(black) are overpainted. In upper part there is the residual. In the box are
the concentrations estimated by LCModel with a confidence index (Cramer
Rao lower bounds) and the ratio with citrate.

Under the constraints

n
∑

i=1

αiyi = 0

and 0 ≤ αi ≤ T for i=1, 2, ..., n where xi ∈ Rd are the training sample
set vectors, and yi ∈ {−1,+1} the corresponding class label. T is a constant
needed for non separable classes. K(u, v) is an inner product in the feature
space Q which may be defined as a kernel function in the input space. The
condition required is that the kernel K(u, v) be a symmetric function which
satisfies the following general positive constraint:

∫

Rd

K(u, v)g(u)g(v) du dv > 0

Which is valid for all g 6= 0 for which
∫

g2(u)du < ∞ (Mercer’s theorem).
The choice of the kernel K(u, v) determines the structure of the feature

space Q. A kernel that satisfies eq. 3.2.1 may be presented in the form:

K(u, v) =
∑

k

akΘk(u)Θk(v)
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Where ak are positive scalars and the functions Θk represent a basis in
the space Q. A Radial Basis Function SVM (RBF) was used in this study:

K(x, y) = exp

(

−‖x− y‖2

2σ2

)

The separating plane is constructed from those input vectors, for which
αi 6= 0. These vectors si, i = 1, ..., Nv are called support vectors and reside
on the boundary margin. Mapping the separating plane back into the input
space Rd, gives a separating surface which forms the following nonlinear
decision rules:

C(x) = Sgn

(

Nv
∑

i=1

yiαi ·K(si, x) + b

)

All results with SVM were obtained with a home made software based on
the LIBSVM library [27].

3.2.2. MultiLayer Perceptron

Perceptron is a family of Neural Networks, imagined by Rosenblatt [28].
We used a commercial software : NeuroSolutions version 5.07 developed by
NeuroDimension, Inc.. Perceptron were composed with one hidden layer.
The number of neurals was automatically tuned by a genetic algorithm to
obtain the best learning rates.

4. Experiments and results

4.1. Experiments

We aimed to find the best combination of signal preprocessing and classifi-
cation methods, and so for each preprocessing method, (raw spectra, spectra
after phase correction by ACME, spectra after phase correction by ACME
and baseline correction) we looked at the classification total error rates with
each classification method (SVM, MLP).

As described in the section 3.1.4, LCModel is used for the estimation of
relative concentration of metabolites (choline, polyamine, creatine, citrate).
The preprocessing steps are included in the software (phase and baseline
correction, frequency shift). From these relative concentrations, two experi-
ments were carried out:
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• Bayes classification rule, based on the ratio choline/citrate. This ratio
was used in a previous study [25] for the evaluation of cancer in the
prostate.

• SVM based classification, using the four concentration values as an
input vector.

We also evaluated the performance of classification methods without es-
timating the relative concentration of metabolites. For these experiments,
the spectra are used directly as an input vector of the SVM classifier after
the following preprocessing (normalized by a T2-Normalization described in
3.1.3):

• use of the module of the spectra,

• correction of the spectra by the ACME algorithm restricted to the
chemical shift range 2.0 - 4.0 ppm, in which the main metabolites are
present. That represent 192 data points. Several experiments carried
out using larger ranges did not allow to obtain a lower classification
error.

• correction of the spectra by the ACME algorithm and baseline correc-
tion.

The preprocessing result, in the case of a restricted range of analysis,
is a vector of dimension 192 used as an input of the classification method.
Indeed, the potential advantage of SVM is to deal correctly with high dimen-
sional input vectors with a good generalization power. For each SVM based
experiment, the error rate is measured using a 5-fold crossvalidation. We
used a RBF Kernel, which is often used in the literature because it depends
on only one parameter, which can be easily be tuned to obtain an optimum
classification error rate and usually gives the best results [12, 29, 13, 30].

We first evaluated the ability of the methods to separate healthy and
pathological spectra. Secondly, we evaluated the methods using all the
classes, including ”Undetermined” spectra.

4.2. Results

4.2.1. Two class experiments

The results of the two class experiments (misclassification rate, sensi-
tivity and specificity) are presented in the table 2. The first row of this
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Error rate(%) Sensitivity (%) Specificity (%)
Healthy Pathologic Total

Relative concentrations
LCModel + Bayes 9.15 33.33 12.89 66.42 90.88
LCModel + SVM 1.73 37.14 8.12 62.85 98.27
LCModel + MLP 1.60 42.90 8.97 57.14 98.42

Whole spectra with SVM

Module 1.26 20.71 4.77 79.28 98.74
ACME 2.36 15.71 4.77 84.28 97.64
ACME + Baseline Correction 1.89 16.43 4.51 83.57 98.11

Whole spectra with MLP

Module 0.80 85.70 3.23 14.28 99.21
ACME 3.30 20.71 6.44 79.28 96.69
ACME+ Baseline Correction 2.99 19.29 5.93 80.71 97.01

Table 2: Healthy vs Pathologic misclassification rate, sensitivity and speci-
ficity (%)

table presents the results of optimum classification obtained applying a sim-
ple Bayes based classification rule (single threshold applied to the ratio
choline/citrate). The high total error rate (12.89%) shows that this ratio
does not separate the classes Healthy and Pathologic efficiently. The sec-
ond and the third rows present the result of classification using the relative
concentration estimated by LCModel as an input vector of the SVM based
classification and the MLP. The total error rate is similar (between 8% and
9%) for both classification methods. It is lower (8.12%) than for the previ-
ous case, but higher than for all other experiments. This is partially due to
the fact that LCModel fails to evaluate correctly the concentration of some
metabolites. Indeed, the software was initially developed for the spectro-
scopic analysis of the brain, for which it is known as a very efficient method.
Thus, although the detection of the limited number of prostate metabolites
was satisfactory when high concentrations of citrate were present, serious
errors were observed in pathological tissues when citrate is severely depleted.
In such cases, the minimization function did not converge to the right solu-
tion, a large frequency shift was observed, and as a result, the dominating
choline peak was often confused with other metabolites. In addition, residual
lipid resonances were erroneously quantified as citrate thereby overestimating
relative citrate concentration. Errors in peak detection also hindered correct
baseline detection (Fig. 7d): when LCModel did not cater for the presence of
the residual lipids (ca 2.0-2.4 ppm), the baseline was artificially high, thereby
underestimating citrate concentration. Although there is a total error rate of
3.23% using module as input of MLP, this result must be compared with the
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Pathologic error rate of 85.70%: we want to detect pathologic spectrum and
so this result is not particularly interesting (sensitivity is only 14.28%). So
the best result (error rate : 4.51%) is obtained using a correction of the spec-
tra by the ACME algorithm and baseline correction combined with SVM. In
that case, the sensitivity is 83.57% and the specificity is 98.11%. Even if the
difference between the use of the module and the ACME+baseline correc-
tion is not really significant, when comparing the global classification error,
nevertheless the ACME+baseline based method is more efficient (sensitivity
is higher) when considering the misclassification rate of pathologic spectra
(error rate of 16.43% vs 20,71%). SVM outperforms here the MLP, regarding
the sensitivity and the global misclassification rate.

4.2.2. Three class experiments

Undetermined Healthy Pathologic Total
Relative concentrations

LCModel + SVM 52.45 7.08 47.14 24.58
LCModel + MLP 57.34 9.75 52.86 28.25

Whole spectra with SVM

Module 20.28 6.76 27.86 13.18
ACME 23.42 7.39 30.00 14.69
ACME + Baseline
correction

17.83 5.66 25.00 11.49

Whole spectra with MLP

Module 24.13 6.45 40.00 15.63
ACME 27.62 9.28 24.29 16.20
ACME + Baseline
correction

19.93 9.12 27.86 14.50

Table 3: 3 Classes experiments: misclassification rates(%)

Predicted class
Undetermined Healthy Pathologic

Actual class
Undetermined 82.17 11.54 6.29
Healthy 4.72 94.34 0.94
Pathologic 14.29 10.71 75.00

Table 4: Confusion matrix for SVM with ACME/Baseline Correction
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Figure 7: LCModel typical errors (a) spectrum with position of Choline
(b) Spectrum corrected by LCModel : choline peak fitted as creatine (c)
Spectrum before LCModel (d) Spectrum fitted by LCModel: complex form
of citrate renders fit complicated. (on the ordinate arbitrate unit, on the
abscissa chemical shift in ppm)
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These experiments confirm the previous results concerning the problem
of LCModel-SVM method to separate the classes efficiently (the total error
is 24.58% with SVM and 28.25% with MLP). Classification errors are pre-
sented in table 3. For the other studies, we also obtained the best results
using ACME algorithm and baseline correction (total error is 11.49%). The
confusion matrix obtained for this optimum result is presented in table 4. We
observed that SVM distinguished only with difficulty the ”Pathology” class
spectra from the ”Undetermined” class spectra. Indeed, in the three-class
analysis, 14.29% of ”Pathology” voxels were classed in the ”Undetermined”
category.

5. Conclusion

If magnetic resonance spectroscopy is to be seriously considered as a clin-
ical tool in the diagnosis and localisation of prostate cancer, a robust method
for voxel classification is an absolute necessity. Indeed, the volume of infor-
mation provided by 3D 1H MRSI renders the task of visually or manually
classifying data from individual patients a very arduous and time consuming
task. The aim of this work was then to study the feasibility of such a fast
and automatic classification tool. We built a data set of 1062 spectra from
22 patients, allowing to evaluate experimentally several pre-processing steps
(estimation of concentration of metabolites, direct use of spectra samples
with or without phase and baseline correction), and classification methods
(SVM and MLP).

The main conclusion from these experiments is that it is possible to au-
tomatically classify spectra and then to depict prostate cancer by using MR
spectroscopy, with a total misclassification rate of 4.15%, a sensitivity of
83.57% and specificity of 98.11%. We have proven experimentally that it is
more efficient to use the entire spectrum as an input vector of the classifier
rather than use specific peak integrals or metabolite ratios, commonly used
in previously published papers. We have also observed that SVM and MLP
are equally efficient with a small advantage to the SVM mainly regarding the
sensitivity.

The importance of appropriate baseline and phase corrections is also
clearly illustrated: in all cases, application of the ACME routine with a base-
line correction gave the best results in terms of mean misclassification rate,
although the gain was relatively modest with respect to the module based
approach alone. This is explained by the fact that both methods tend to
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minimize ”under-the-baseline” signals. Our results confirm that good base-
line and phase correction are needed to correctly class spectra and encourage
us to evaluate or develop in the next future more sophisticated baseline de-
tection algorithms.

Our method allows also to speed up the global analysis process of one
prostate, from around 10mn for an examination including estimation of
metabolite concentrations, to less than 1mn using direct classification (this is
an estimation but it does not take into account the selection of voxels within
the prostate). This acceleration will allow us to investigate, for example, new
processes taking into account interaction between neighbouring voxels, and
not just classifying voxels independently.

In our work, the selection of voxels within prostate was performed man-
ually on the basis of the positioning of the spectroscopic grid over the T2-
weighted images. This is particularly time consuming and would benefit
from a semi-automatic or fully automatic treatment. Further work is nec-
essary, but one could readily imagine methods based on the thresholding
of water peak linewidths and water peak intensities rather than sophisti-
cated algorithms applied directly on the spectra containing the metabolites
of interest. Further work is also necessary to improve the classification per-
formance of ”Undetermined” spectra by introducing some new classification
features, using a classification tree based on SVM, or by mixing MRS and
MRI information.

This study is part of the Pharmimage R© project. It is funded by the
Conseil Régional de Bourgogne, European social fund and Oncodesign SA.
We thank M. Provencher for the improvements he brought to his software to
cater for prostate spectra.
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