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RESEARCH ARTICLE

Subtleties in the calculation of the pressure and pressure tensor of

anisotropic particles from volume-perturbation methods and the

apparent asymmetry of the compressive and expansive

contributions.

Paul E. Brumby†, Andrew J. Haslam†, Enrique de Miguel‡ and George Jackson†∗

†Department of Chemical Engineering, Imperial College London, South Kensington
Campus, London SW7 2AZ, UK; ‡Facultad de Ciencias Experimentales, Departamento

de F́ısica Aplicada, Universidad de Huelva, 21071 Huelva, Spain

(Submitted: 23 July 2010)

An efficient and versatile method to calculate the components of the pressure tensor for hard-
body fluids of generic shape from the perspective of molecular simulation is presented. After
due consideration of all the possible repulsive contributions exerted by molecules upon their
surroundings during an anisotropic system expansion, it is observed that such a volume change
can, for non-spherical molecules, give rise to configurations where overlaps occur. This feature
of anisotropic molecules has to be taken into account rigorously as it can lead to discrepancies
in the calculation of tensorial contributions to the pressure. Using the condition of detailed
balance as a basis, a perturbation method developed for spherical molecules has been extended
so that it is applicable to non-spherical and non-convex molecules. From a series of ‘ghost’
anisotropic volume perturbations the residual contribution to the components of the pressure
tensor may be accurately calculated. Comparisons are made with prior methods, and where
relevant results are evaluated against existing data. For inhomogeneous systems this method
provides a particularly convenient route to the calculation of the interfacial tension (surface
free energy) from molecular simulations.

Keywords: Monte Carlo; Pressure tensor; Perturbation, Surface tension; Hard-core
particles; Non-convex particles; Detailed balance

1. Introduction

A knowledge of a system’s pressure is a vital component in our understanding
of phase behaviour and phase transitions. In molecular simulation studies using
constant-volume ensembles an independent methodology is required to evaluate
the pressure [1, 2]. When a constant-pressure ensemble [3] is used, it is fundamen-
tal that the correct value of pressure is maintained; while this is straightforward in
simulations of simple systems, as we shall show for inhomogeneous systems involv-
ing molecules of complex shape, unexpected (and non-intuitive) contributions to
the pressure may be present; any such contributions must therefore be taken into
account. The first task in any molecular-simulation study is the choice of ensem-
ble in which the simulation is to be performed, and the microcanonical (constant
number of particles N , volume V , and energy E) or canonical (constant N , V , and
temperature T ) ensembles are often a convenient choice. A disadvantage of the use
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of these ensembles is that the pressure is not specified a priori. Consequently, a
method for the calculation of the pressure is required.

The approaches most commonly encountered fall into two broad classes that
may be described as the mechanical and the thermodynamic routes: the first is
based on the use of the pressure virial of Clausius [4, 5], while the second is de-
veloped from the thermodynamic definition of the pressure as the derivative of the
Helmholtz free energy with respect to the change in volume (at constant T and N)
[5]. Since the early days of molecular simulation the mechanical (virial) route has
been used in a routine manner to compute the pressure of systems of molecules
interacting through continuous potentials [1, 2]. In molecular dynamics this is the
technique of choice as the forces acting on the particles have to be evaluated to solve
the equations of motion, so that the virials are directly accessible. It is relatively
straightforward, even for large molecules represented with models at the atom-
istic level of detail, to determine the pressure by considering all of the appropriate
site-site contributions to the virial. Care has to be taken in the case of discon-
tinuous potentials; here the forces are impulsive and the corresponding virials are
delta functions which must be evaluated accurately. This is important also in the
case of otherwise-continuous potentials that are truncated at a finite distance; the
contribution at the discontinuity is often not negligible [1]. The thermodynamic
route, which involves a computation of the change in free energy accompanying
test (virtual) infinitesimal perturbations in the volume with an appropriate scal-
ing of the particle positions, is less prevalent. We note, however, that this type of
thermodynamic perturbation approach is used frequently to determine the chem-
ical potential with the so-called test-particle method of Widom [6], and a similar
test-area method is now commonly employed to determine the surface tension [7].
Eppenga and Frenkel [8] were the first to adopt this type of procedure for the pres-
sure in studies of the isotropic and nematic phases of systems of hard discs; as the
simulations involved particles with discontinuous repulsive potentials, in this case
the pressure was obtained by examining the probability of obtaining configurations
with overlapping particles after vanishingly small isotropic volume perturbations
(compressions). This methodology has now been extended to provide a route for
the computation of the bulk pressure of systems with attractive interactions such
as Lennard-Jones [9], square-well [10] or Gay-Berne [11] fluids. Related approaches
based on the virial expression for the pressure together with a direct enumeration of
the number of overlaps from a test volume contraction (to give the contact value of
the pair distribution function) have also been used for systems with discontinuous
potentials [12–22]. Though the formal equivalence of the virial (mechanical) and
thermodynamic (volume derivative of the free energy) routes to the pressure has
been known for some time [23, 24], there are important differences in the practical
implementation of the two approaches, which lead to numerical differences in the
value of the pressure that is computed: one method involves the explicit estimate of
the averages of the virial for each molecule, while the other involves the evaluation
of the average Boltzmann factor of the energy associated with infinitesimal volume
deformations.

The virial and thermodynamic approaches also provide a means of determining
the tensorial components of the pressure during a molecular simulation (see, for ex-
ample, references [10, 11, 19, 21, 22]). Such an approach is relatively straightforward
for systems of spherical particles, but there can be complications in the case of vol-
ume deformations involving hard-core particles of general non-spherical shape, as
we show in this paper. Allen [21] has shown that for systems comprising hard-body
molecules, one can determine the components of the pressure tensor from isotropic
volume perturbations using an overlap algorithm, provided that one can find a
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Calculation of the pressure and pressure tensor of anisotropic particles 3

mutual plane at the point of contact between the two overlapping molecules. This
method is, however, applicable only to convex shaped molecules, as only compres-
sive perturbations are made; for more geometrically complex hard-body molecules
another method is required.

Our principal aim in this paper is to provide a versatile method for calculating
the pressure and components of the pressure tensor of systems of convex and non-
convex hard-body molecules. Our method is straightforward to implement and
is general for hard-body molecules of generic shape. By making a series of ‘ghost’
perturbations to the system it is possible to evaluate the configurational component
of the pressure to a high level of accuracy [11]. It is very important to emphasise
that in common with other perturbative techniques these are nonpermanent (ghost)
trial volume deformations which have no influence on the ensemble averages or
particle trajectories. The methodology of Eppenga and Frenkel and others [8, 9, 11,
22] is generalised so that it is now also applicable to molecules which are non-convex
in shape. In addition, the components of the pressure tensor for such molecules can
be computed through anisotropic volume perturbations which involve the scaling
of the particle positions along the appropriate axis (axes); in this case we show
that both compressive and expansive volume deformations are required to capture
all of the contributions to the tensorial components of the pressure. The latter
methodology will turn out to be invaluable in calculations of the interfacial tension
(surface free energy) for inhomogeneous systems of hard particles of any shape or
size polydispersity. The interfacial tension can be obtained simply as the difference
between the normal and tangential components of the pressure tensor relative to
the interface; note that, by using such a technique, there is no need for an analysis
of the density profile in the vicinity of the interface [25].

This paper is set out as follows: in section 2 we consider the virial and ther-
modynamic volume-perturbation methods specific to hard-body molecules which
are of non-convex shape. We extend this method in section 3 so that it may be
applied to systems of hard-body molecules of any shape (an alternative derivation
is given in an appendix). Details of how the new method may be modified for the
calculation of the components of the pressure tensor are given in section 4. We
present sample results for carefully selected systems in section 5 for the purposes
of validating our method and demonstrating its accuracy. Finally, in section 6, we
highlight the implications on future work in this area and suggest possible systems
which are suitable for analysis.

2. Isotropic volume perturbations for systems of convex hard-body particles

The perturbation method used in this work is a thermodynamic route to evaluate
the pressure. The other approach, which is commonly used, is based on a virial
(mechanical) route. Both of the these methods can be applied in a straightfor-
ward manner to estimate, to a high degree of precision, the system pressure of
hard spherical particles, although the virial route turns out in some cases to be the
more accurate [22]. It is however important to mention that a mechanical approach
can be inappropriate in the case of nanoscale systems such as small liquid drops due
to contributions from fluctuation terms, so that a thermodynamic route is some-
times preferable [26]. In the current work we focus on the use of a thermodynamic
perturbation approach for anisotropic hard-core molecules, i.e., those described by
discontinuous potentials. The reader is referred to other papers [9, 11] for detailed
discussions on the application of volume-perturbation methods for systems with
continuous potentials.
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2.1. The virial route

Though not used in our current work, we first give a brief description of the tradi-
tional virial route for the calculation of the pressure of hard particles, in order to
set our thermodynamic approach in context. The pressure p may be expressed in
the virial form of Clausius [4] in terms of an average over the pair contributions to
the virial rij · fij as [5, 27]

p =
NkBT

V
+

1
3V

〈∑

i

∑

j>i

rij · fij
〉

, (1)

where N is the number of particles, V is the volume, T is the temperature, kB

is the Boltzmann constant, rij is the centre-to-centre vector between the pair of
molecules i and j, and fij is the force acting between those two molecules in the
case of a system with no external fields. It is conceptually simpler to illustrate
the virial approach with the corresponding expressions for spherical particles. For
a homogeneous hard-sphere system, which is radially symmetric so that only the
scalar intermolecular distance r = |r| is relevant, the average of the pressure virial
[cf. equation 1] can be written in terms of the radial pair distribution function g(r)
as [5]

p =
NkBT

V
− 2π

3

(
N

V

)2 ∫ ∞

0
g(r)

{
ru′(r)

}
r2dr , (2)

where u(r) is the pair potential, and u′(r) = ∂u(r)/∂r. Expressing the pair distri-
bution function in terms of the cavity function y(r),

g(r) = exp
[−u(r)

kBT

]
y(r) ≡ e(r)y(r) , (3)

one can write equation 2 as

p =
NkBT

V
− 2π

3

(
N

V

)2 ∫ ∞

0
u′(r)e(r)y(r)r3dr (4)

=
NkBT

V
+

2πkBT

3

(
N

V

)2 ∫ ∞

0
e′(r)y(r)r3dr , (5)

where

e′(r) =
∂e(r)
∂r

=
−u′(r)e(r)

kBT
. (6)

In the case of hard spheres of diameter σ, the Boltzmann factor of the potential
is a Heaviside (unit-step) function, e(r) = H(r − σ), the derivative of which is a
delta function, e′(r) = δ(r − σ). Since the force f(r) = −u′(r), from equation 6 it
follows that

e′(r) = δ(r − σ) =
f(r)e(r)

kBT
. (7)

In the case of a collision between hard spheres from a non-overlapping configura-
tion, r is infinitesimally greater than σ, for which u(r) = 0 and e(r) = 1, so that
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Calculation of the pressure and pressure tensor of anisotropic particles 5

equation 7 can be expressed as

δ(r − σ) =
f(r)
kBT

or f(r) = kBTδ(r − σ) . (8)

The components of the force for a pair of molecules i and j (which in this case acts
along the centre-to-centre unit vector r̂ij) can thus be written as

fij = kBTδ (rij − σ) r̂ij . (9)

The delta function is an infinite spike when the molecules are in contact (rij =
σ). Note that in the more general case of convex hard-core molecule with a non-
spherical shape, the force is parallel to the surface normal but need not lie along
the centre-to-centre vector. Upon substitution of equation 9 into equation 1 one
arrives at the following expression:

p =
NkBT

V
+

kBT

3V

〈∑

i

∑

j>i

rij · δ (rij − σ)

〉
. (10)

Following prior work [11], one can approximate the delta function using Heaviside
functions:

∑

i

∑

j>i

rij · δ (rij − σ) ≈
∑

i

∑

j>i

rij

[
H(rij − σ)−H(rij − (σ + ∆r))

∆r

]
. (11)

Here, ∆r represents a small increment in the centre-to-centre distance of closest
approach; this is equivalent to a small increment in molecular size. The sum of the
Heaviside functions is unity when σ < rij < (σ + ∆r) and zero for all other values.
Therefore, in the limit of an infinitesimal ∆r, this relation is exact:

∑

i

∑

j>i

rij · δ (rij − σ) = lim
∆r→0

∑

i

∑

j>i

rij
Hij

∆r
, (12)

where Hij = H(rij − σ)−H(rij − (σ + ∆r)). When a perturbation is made so that
the system volume is scaled isotropically, we may write r

′
ij = rij (1 + (∆V/V ))1/3

which, for small values of the volume-change ratio, can be approximated by
r
′
ij ≈ rij (1 + (∆V/3V )). Such an isotropic volume scaling is equivalent to shrinking

or increasing of the molecular size while keeping the system volume constant. The
perturbation ∆r in equation 12, becomes ∆r ≈ − (∆V/3V ) rij , which is exact in
the limit of ∆V → 0. Thereby, substitution of equation 12 into equation 10 yields

p =
NkBT

V
− lim

∆V→0

kBT

∆V

〈∑

i

∑

j>i

Hij

〉
. (13)

When summed over all pairs of molecules within the system, the Heaviside function
represents simply the number of overlaps resulting from a given perturbation. Over
the course of a simulation the average of the number of overlaps, denoted by nov,
and the pressure can be expressed as

p =
NkBT

V
− lim

∆V→0

kBTnov

∆V
. (14)
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This type of virial methodology can be extended to systems of convex, anisotropic
hard-core particles (see the work of Allen [21]) although, in general, it becomes
more difficult to apply.

2.2. The thermodynamic route

For molecules with continuous potentials one can average the virial (the product
of the intermolecular separation and force) for every possible pair combination of
molecules within the system and, from this, determine the system pressure [1].
However, the presence of a discontinuity in the intermolecular potential makes
the direct application of such a method problematic and an alternative approach is
highly desirable; hard-body systems represent an obvious example where this is the
case. Eppenga and Frenkel [8] showed that by making volume perturbations in the
form of very small trial volume compressions, an estimate of the derivative of the
Helmholtz free energy (A) with respect to the system volume may be found. The
pressure at constant T and N can then be obtained from the usual thermodynamic
relation, in the limit of an infinitesimal volume change:

p = −
(

∂A

∂V

)

N,T

= − lim
∆V→0

∆A

∆V
. (15)

The Helmholtz free energy can be written as

A = −kBT ln Q, (16)

where Q is the canonical partition function of the system [5]. For a change in the
system volume from V to V ′ = V + ∆V ,

∆A = − (kBT lnQV ′ − kBT lnQV ) = −kBT ln
QV ′

QV
. (17)

The partition functions in equation 17 are expressed as

QV =
∫

d~r N

∫
d~ω N 1

VNN !
exp

(
− UV

kBT

)
;

QV ′ =
∫

d~r
′N

∫
d~ω N 1

VNN !
exp

(
− UV ′

kBT

)
, (18)

where V is the modified thermal de Broglie volume for non-spherical molecules
and U is the internal energy of the system. The molecule centre-of-mass positions
are given by the vector ~r and the molecular orientations are given by ~ω. When a
volume perturbation is made, the box dimensions and molecule positions are scaled
as ~r → ~r

′
. If V

′
/ V = 1 + (∆V/V ), and the system volume is scaled isotropically,

then the molecule positions are scaled as follows:

~r
′
(
x
′
, y

′
, z

′
)

= ~r

(
x

(
1 +

∆V

V

)1/3

, y

(
1 +

∆V

V

)1/3

, z

(
1 +

∆V

V

)1/3
)

. (19)

Upon substitution of d~r
′N =

(
dx

′
dy

′
dz

′)N = d~r (1 + (∆V/V ))N and
UV ′ = UV + ∆U into the partition function of the new volume, QV ′ , from equation
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18:

QV ′ =
∫

d~r N

(
1 +

∆V

V

)N ∫
d~ω N 1

VNN !
exp

(
− UV

kBT

)
exp

(
− ∆U

kBT

)
. (20)

In terms of the partition functions of the unperturbed and perturbed states, QV

and QV ′ one has

∆A = −kBT ln




∫
d~r N

(
1 +

∆V

V

)N ∫
d~ω N exp

(
− UV

kBT

)
exp

(
− ∆U

kBT

)

∫
d~r N

∫
d~ω N exp

(
− UV

kBT

)




= −NkBT ln
(

1 +
∆V

V

)
− kBT ln

〈
exp

(
− ∆U

kBT

)〉
, (21)

where ∆U is the change in configurational energy associated with the trial vol-
ume change ∆V . The angled brackets indicate that the variables within are av-
eraged over unperturbed states of the system. Employing the further approxima-
tion ln (1 + (∆V/V )) ≈ ∆V/V , for very small values of the relative volume change
∆V/V , it is then possible to write equation 21 as

∆A = lim
∆V→0

(
−NkBT∆V

V
− kBT ln

〈
exp

(
− ∆U

kBT

)〉)
. (22)

Substituting equation 22 into equation 15 yields the pressure:

p = − lim
∆V→0

∆A

∆V
=

NkBT

V
+ lim

∆V→0

kBT ln
〈

exp
(
− ∆U

kBT

)〉

∆V
. (23)

As discussed by Eppenga and Frenkel, [8] for the case of hard-body molecules (with
no attractive term in the potential), exp (−∆U/kBT ) can take one of two values:
unity for states with no overlapping molecules; zero for states where molecules are
overlapping. When averaged over many states for a fixed relative volume change,
〈exp (−∆U/kBT )〉 becomes Pnov, the probability of no overlaps occurring, which
is a function of ∆V/V . Equation 23 is rewritten as

p =
NkBT

V
+ lim

∆V→0

kBT lnPnov

∆V
. (24)

The practical implementation of equations 24 and 14 for the determination of
the system pressure from simulations requires a series of test system-volume per-
turbations, collecting data averaged over many states of the unperturbed reference
system. To obtain the pressure of the unperturbed state, the residual pressures
(the second term in equation 24 or 14, depending on the route utilised) are plotted
against the relative volume change and, the residual pressure at a volume change of
zero is found by extrapolation. To determine the system pressure all that remains
is the simple addition of the ideal term.
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Figure 1. The occurrence of a molecule-molecule overlap for pair of flexi-
ble hard-sphere chains or hard crescent-shaped molecules upon an isotropic
expansion of the system volume. The systems labelled (a) and (c) are un-
perturbed, while in (b) and (d) the same systems are depicted following an
isotropic volume increase in which all axes are scaled in proportion to each
other. The filled dots represent the centre of mass of each molecule. The
shaded area highlights the overlap of the molecules due to the perturbation.

3. Isotropic volume perturbations for non-convex hard-body molecules

The methods for the calculation of the system pressure covered in section 2 are
appropriate for hard-body convex molecules. However the aforementioned methods
are not suitable for molecules which are non-convex in shape. If one considers, for
example, systems of flexible hard-sphere chains (see references [28, 29] for work
with their linear counterparts), or of crescent-shaped / banana-shaped (bent-core)
molecules, [30–32] a more-general method will be required that is able to correctly
capture all of the repulsive interactions that such molecules exert upon their sur-
roundings.

In figure 1 we illustrate the situation for a system of two hard-sphere chains
or crescent-shaped molecules which undergoes an isotropic increase in the system
volume (with a corresponding change in the scaled particle positions). Here, though
the centres of mass of the particles are moved away from each other, the nature
of the shape and the scaling (in proportion to the system volume) brings them
into contact. One may therefore suppose that to correctly estimate the pressure
of such a system, with a perturbation method of the type described in Section 2,
one must sample the repulsive interactions from both compressive and expansive
volume changes.

With this point in mind, we now present a general thermodynamic method for
the pressure and pressure tensor applicable to systems of hard-body molecules of
any shape and size polydispersity. The basis of the method can be developed and
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Calculation of the pressure and pressure tensor of anisotropic particles 9

understood from the condition of detailed balance for a system at equilibrium at
the centre of the acceptance criterion used during Monte Carlo simulations in the
isothermal-isobaric ensemble [1–3, 33–35].

We start with the partition function for the isothermal-isobaric NpT ensemble,
which can be expressed as [2]

∆NpT =
1

VNΩNN !V0

∫
dV

∫
d~r N

∫
d~ω N exp

(
−U + pV

kBT

)
; (25)

here V0 is an arbitrary reference volume so as to make the partition function di-
mensionless and Ω =

∫
d~ω (e.g., Ω = 8π2 for non-linear molecules; Ω = 4π for

molecules with cylindrical symmetry). One can scale the particle positions to di-
mensionless quantities in terms of the system box lengths Lx, Ly and Lz where
the product of all three is the system volume, V . We write the molecule posi-
tions relative to these axes, so x = x∗Lx, y = y∗Ly and z = z∗Lz such that
d~r N = (LαLβLγ)N d~r ∗N = V Nd~r ∗N , and thus

∆NpT =
1

VNΩNN !V0

∫
dV

∫
V Nd~r ∗N

∫
d~ω N exp

(
−U + pV

kBT

)
. (26)

Bringing the volume term inside the exponential allows us to write the partition
function in terms of the Boltzmann factor which is appropriate for states sampled
in terms of the scaled coordinates as

∆NpT =
1

VNΩNN !V0

∫
dV

∫
d~r ∗N

∫
d~ω N exp

(−U + pV −NkBT ln V

kBT

)
. (27)

The probability of finding the system in a given state is thus given by

Π =
1

VNΩNN !V0

exp
(
−U + pV −NkBT ln V

kBT

)

∆NpT
d~r ∗Nd~ω NdV. (28)

3.1. Detailed balance and acceptance criteria

Invoking the condition of detailed balance (or microscopic reversibility) allows one
to evaluate the acceptance criterion for moves to less favourable states in im-
portance sampling schemes, such as the Metropolis Monte Carlo algorithm [36].
Although this is described in detail in standard texts (e.g., see references [1, 2]) it
is helpful to review briefly the important ideas.

The condition of detailed balance requires that the probability of finding a state
i and moving to state j must be equal to the probability of finding a state j and
making the reverse move to state i. We can write and rearrange this in the following
form:

ΠiPi→j = ΠjPj→i ⇒ Pi→j

Pj→i
=

Πj

Πi
, (29)

where Πi and Πj denote the probabilities of the system being in state i and j
respectively; Pi→j and Pj→i are the transition probabilities of moves between states
i and j with the direction of the move indicated by the subscript. In the case of
Monte Carlo simulations in the isothermal-isobaric ensemble the ratio Πj/Πi on
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right-hand side of equation 29 can be written explicitly with the use of equation
28:

Πj

Πi
=

exp
(
−Uj + pVj −NkBT lnVj

kBT

)

exp
(
−Ui + pVi −NkBT lnVi

kBT

)

= exp


−

∆Ui→j + p∆Vi→j −NkBT ln
(

Vj

Vi

)

kBT


. (30)

Writing like this allows us to express the relative probability in terms of an enthalpic
contribution of a given state H, where H = U + pV − NkBT lnV (note that the
additional term −NkBT ln V here is due to the volume scaling employed in the
simulation):

Pi→j

Pj→i
=

Πj

Πi
= exp

(
−∆Hi→j

kBT

)
. (31)

Before continuing it is useful first to consider the standard Metropolis Monte
Carlo algorithm[36] for systems in the canonical ensemble. In this case equation
30 is much simpler as ∆Vi→j = 0 and Vj/Vi = 1. For constant NV T ensembles we
now have:

(
Pi→j

Pj→i

)

NV T

=
(

Πj

Πi

)

NV T

= exp
(
−∆Ui→j

kBT

)

NV T

. (32)

When a move is attempted to a state with a lower energy than the current state,
it is accepted. Moves to states which have a higher energy are accepted with a
prescribed probability of acceptance. In mathematical terms, if ∆Ui→j < 0, then
since ∆Ui→j = Uj − Ui = −∆Uj→i it is clear that for the reverse move ∆Uj→i > 0.
Since moves to lower-energy states are always accepted, (Pi→j)NV T = 1. From
equation 32 one obtains

(Pj→i)NV T = exp
(
−∆Uj→i

kBT

)

NV T

. (33)

Equation 33 represents, of course, the well-known Metropolis acceptance criterion
for moves to higher-energy states; this criterion is thus seen to be a consequence
of the condition of detailed balance.

We now turn our attention back to the isothermal-isobaric ensemble. This time
the change in the “instantaneous” enthalpy, rather than the energy, has to be
considered. Correspondingly, if the enthalpy change ∆Hi→j from equation 31 is
less than zero, then a move from state i to state j must be accepted [34]. The
analogy with the NV T scheme is that now we choose always to accept a move if
∆Hi→j (instead of ∆Ui→j) is less that zero, i.e., we take the transition probability
of this move to be unity:

[Pi→j = 1]∆Hi→j<0 . (34)

If we make the reverse move from j to i then the enthalpy change ∆Hj→i must now

Page 11 of 32

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

September 30, 2010 14:3 Molecular Physics TMPH-2010-0301R

Calculation of the pressure and pressure tensor of anisotropic particles 11

be positive, since ∆Hj→i = Hj −Hi = −∆Hi→j . Using this relation and Pi→j = 1
in equation 31, we find that the corresponding condition of detailed balance is

[
Pj→i = exp

(
−∆Hj→i

kBT

)]

∆Hj→i>0

. (35)

Equations 34 and 35 are the sufficient transition probabilities for the isothermal-
isobaric ensemble; these two expressions define the acceptance criteria for moves
made during a MC-NpT simulation, based upon the requirement of detailed bal-
ance. In the next section we will examine how these relations can be used to
determine the general form of the system pressure.

3.2. Computing the pressure at equilibrium

Now we consider an MC-NpT simulation at thermal and mechanical equilibrium.
At equilibrium we may say that, on average, moves to a larger volume must be
balanced by moves to a smaller volume. If this were not the case then the system
would tend systematically to larger or smaller volumes and would clearly not be
at equilibrium. We take i to be a representative state at equilibrium. If ∆Vi→j+

represents the change in volume for an attempted move to a larger volume and
Pi→j+ the corresponding transition probability, then the total positive change of
volume that is actually made during a simulation is given by

∑

N+

∆Vi→j+Pi→j+, (36)

where N+ is the number of moves attempted to a larger volume. Equation 36
must be balanced by that for the total negative change in volume if the system is
at equilibrium:

∑

N+

∆Vi→j+Pi→j+ = −
∑

N−

∆Vi→j−Pi→j−, (37)

where N− is the number of moves attempted to a smaller volume, ∆Vi→j− is the
volume change of those moves, and Pi→j− the corresponding transition probability.
Since the sign of each attempted volume change is random, then to very good
approximation we can write:

N+ = N− =
N
2

, (38)

where N is the total number of attempted volume changes. This relation is exact
in the limit of an infinite number of volume changes. Clearly:

2
N

∑

N+

∆Vi→j+Pi→j+ =
2
N

∑

N−

−∆Vi→j−Pi→j−, (39)

i.e.,

〈∆Vi→j+Pi→j+〉eq = −〈∆Vi→j−Pi→j−〉eq . (40)

The subscripts here signify that this relation is valid only at equilibrium.
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We now restrict ourselves to purely repulsive (hard-body) interactions and ex-
amine the implications of equations 34, 35 and 40. With this notation the enthalpy
change from an increase in volume is given by

∆Hi→j+ = ∆Ui→j+ + p∆Vi→j+ −NkBT ln
(

Vj+

Vi

)
. (41)

Here, Vj+/Vi is replaced by (Vi + ∆Vi→j+) /Vi = 1 + (∆Vi→j+/Vi). Assum-
ing that ∆Vi→j+/Vi is small, we can make the following approximation:
ln (1 + (∆Vi→j+/Vi)) ≈ ∆Vi→j+/Vi. This gives

∆Hi→j+ = ∆Ui→j+ + p∆Vi→j+ −NkBT
∆Vi→j+

Vi

= ∆Ui→j+ + ∆Vi→j+

(
p− NkBT

Vi

)
. (42)

This relation is valid in the limit of ∆Vi→j+ → 0. For the sake of compactness this
limit will be omitted from the derivation for the moment. In equation 42, NkBT/Vi,
which is the pressure of an ideal gas, must by definition be less than that of the
a hard-body system. Therefore for a small positive volume change (expansion)
the second term in equation 42 will always be positive. Meanwhile for hard-body
systems ∆Ui→j+ will take one of two values, either zero (for configurations with
no overlaps) or infinity (when an overlap between a pair of molecules occurs).
Hence, for hard-body systems, the right-hand side of equation 42 and therefore
the enthalpy change (associated with a small positive volume change), will always
be positive. Recalling equation 35 for positive enthalpy changes we can see that
the transition probability for an increase in volume for a hard-body system can be
written as

Pi→j+ = exp


−

∆Ui→j+ + p∆Vi→j+ −NkBT ln
(

1 +
∆Vi→j+

Vi

)

kBT


. (43)

We now apply the same reasoning to a volume reduction (compression) from an
equilibrium state. Here a form of equation 42 is used with the subscripts altered
to indicate the reduction in volume:

∆Hi→j− = ∆Ui→j− + ∆Vi→j−

(
p− NkBT

Vi

)
. (44)

In this case we have that the volume change is negative so (for small volume
changes) the second term of equation 44 is always less than zero. Here one must
consider the two possible values of ∆Ui→j− separately. For the case when there are
no overlapping molecules ∆Ui→j− = 0, and so ∆Hi→j− < 0. From equation 34 it
is evident that the transition probability for a negative enthalpy change is equal
to one

[Pi→j− = 1]∆Ui→j−=0 . (45)

For the case when there are overlapping molecules ∆Ui→j− = ∞ and clearly now
∆Hi→j− = ∞. The enthalpy change is now irrefutably larger than zero so from
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equation 35 we can say that the transition probability is given as


Pi→j− = exp


−

∆Ui→j− + ∆Vi→j−

(
p− NkBT

Vi

)

kBT


 = 0




∆Ui→j−=∞

. (46)

Equations 45 and 46 give us the forms of the transition probability for the two
possible values of ∆Ui→j−. It would be very convenient for us to be able to write
a single expression that is valid in both cases. An expression that satisfies these
conditions is Pi→j− = exp (−∆Ui→j−/kBT ):

Pi→j− = exp
(
−∆Ui→j−

kBT

) {
= 1; if ∆Ui→j− = 0
= 0; if ∆Ui→j− = ∞ . (47)

Both of the transition-probability terms in equation 40 have now been derived. The
substitution of equations 43 and 47 into equation 40 gives:

〈
−∆Vi→j− exp

(
−∆Ui→j−

kBT

)〉

eq

=

〈
∆Vi→j+ exp


−

∆Ui→j+ + p∆Vi→j+ −NkBT ln
(

1 +
∆Vi→j+

Vi

)

kBT




〉

eq

. (48)

Equation 48 is valid in the NpT ensemble (and could be used to independently
estimate the pressure), however it is not especially useful in its current form. To
proceed, it is instructive to consider first the case where the magnitudes of the at-
tempted volume changes are constant, i.e., ∆Vi→j+ = −∆Vi→j−. These prefactors
now come out of the averaging brackets and cancel:

〈
exp

(
−∆Ui→j−

kBT

)〉

eq

=

exp
(
−p∆Vi→j+

kBT

)〈
exp


−

∆Ui→j+ −NkBT ln
(

1 +
∆Vi→j+

Vi

)

kBT




〉

eq

. (49)

Rearranging and taking logarithms:

p∆Vi→j+

kBT
= ln

〈
exp


−

∆Ui→j+ −NkBT ln
(

1 +
∆Vi→j+

Vi

)

kBT




〉

eq

− ln
〈

exp
(
−∆Ui→j−

kBT

)〉

eq

. (50)

We now go on to illustrate how equation 50 contains the information we require
for the calculation of the pressure in the NV T ensemble. One way to calculate
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the pressure in the NV T ensemble is to employ a volume perturbation scheme.
Each perturbation effectively corresponds to a ghost volume deformation in the
NpT ensemble. This has the very convenient benefit that p is constant during each
perturbation. In an NV T simulation Vi will always be constant and is unaltered by
the perturbation (since this represents the volume of the unperturbed simulation
cell). Assuming that the magnitudes of the attempted volume changes are constant,
the ratio ∆Vi→j+/Vi is a constant and may be taken outside of the averaging
brackets:

p∆Vi→j+

kBT
= N ln

(
1 +

∆Vi→j+

Vi

)
+ ln

〈
exp

(
−∆Ui→j+

kBT

)〉

eq

− ln
〈

exp
(
−∆Ui→j−

kBT

)〉

eq

. (51)

Once more we make use of the approximation ln (1 + (∆Vi→j+/Vi)) ≈ ∆Vi→j+/Vi,
which is valid in the limit of ∆Vi→j+ → 0. We also divide both sides of equation
50 by ∆Vi→j+/kBT and recall that ∆Vi→j+ = −∆Vi→j− to give an expression for
the pressure as (with the correct limits of validity now shown explicitly)

p =
NkBT

Vi
+ lim

∆Vi→j+→0

kBT

∆Vi→j+
ln

〈
exp

(
−∆Ui→j+

kBT

)〉

eq

+ lim
∆Vi→j−→0

kBT

∆Vi→j−
ln

〈
exp

(
−∆Ui→j−

kBT

)〉

eq

. (52)

There are clearly three contributions to the pressure: the first term in equation 52
represents the ideal contribution; the second term is the contribution to the residual
(in excess of ideal) pressure from ghost volume expansions; similarly, the final
term is the contribution to the residual pressure from ghost volume compressions.
One should note that though expression 52 strictly should be used only in the
NV T ensemble, although it is in practice also appropriate for an independent
computation of the equilibrium pressure in the NpT ensemble for small volume
perturbations; in the latter case one should strictly retain the volume of each state
inside the average and use an expression of the form of equation 48, but the volume
will remain very close to its equilibrium value Vi ≈ Veq for systems of moderate to
large size.

As shown by Eppenga and Frenkel[8] for hard-body molecules a further nota-
tional simplification may be made for the exponential terms. As discussed previ-
ously, for such molecules the exponential terms in equation 52 can take one of only
two values: unity for perturbations leading to states with no overlapping molecules
or zero for perturbations which would lead to states where molecules overlap. When
averaged over many states for a fixed volume change, 〈exp (−∆Ui→j+/kBT )〉eq and
〈exp (−∆Ui→j−/kBT )〉eq become the probabilities of no overlaps occurring for the
particular volume perturbation, which are denoted by Pnov+ and Pnov−. Our equa-
tion for the pressure is now given as

p =
NkBT

V
+ lim

∆Vi→j+→0

kBT

∆Vi→j+
lnPnov+ + lim

∆Vi→j−→0

kBT

∆Vi→j−
ln Pnov−. (53)

The contributions to the residual pressure from the volume expansions and com-
pression are now cast in terms of the probabilities Pnov+ and Pnov−; note that in
this expression Vi has been replaced by V as there is no change in volume in this
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ensemble.
This expression can be used to calculate the pressure from simulations of hard-

body molecules performed in the NV T ensemble through a series of ‘ghost’ volume
perturbations. The pressure may be found by the determination of Pnov+ and Pnov−
in the limit of the change in volume approaching zero. These terms are easily
obtained and so this method offers an attractive route for the pressure calculation
of hard-body systems. Volume perturbations are also made naturally in the NpT
ensemble and thus during each perturbation the pressure is constant; this offers an
independent route to the calculation of the probabilities Pnov+ and Pnov− and an
independent check of expression 53 for the pressure.

4. Calculating components of the pressure tensor with anisotropic volume
perturbations

The pressure of a homogeneous system is a scalar quantity, however with inhomo-
geneous systems the pressure is a tensor. A slightly different approach is required
when one employs volume perturbations approaches in such systems.

If, instead of isotropically, the volume scaling during the perturbations is per-
formed anisotropically by changing the length of one of the simulation cell axes only,
one can determine these tensorial components of the pressure. Using the methods
outlined in section 2 one can obtain the tensorial components of the pressure for
hard-sphere systems with only a slight adjustment to the equations as detailed
in previous work. [11] However for non-spherical (anisometric) hard particles a
different method is required.

In Figure 2 it is demonstrated how for hard convex molecules (in this example
hard spherocylinders) undergoing an anisotropic volume change overlaps may oc-
cur upon an increase in volume. This part of the repulsive interaction that a convex
molecule exerts upon its surroundings needs to be taken into account. This is an
important point to remember not only for the calculation of the pressure tensor
in constant-volume simulations, but also in maintaining the pressure in constant-
tensorial-pressure (constant stress) simulations of inhomogeneous systems. Con-
stant stress simulations of this type are almost invariably carried out within a
molecular dynamics (MD) framework [37–39]. Though their use within a Monte
Carlo simulation is less common (see, e.g., references [40–43]) it is straightforward
and somewhat simpler to implement in MC than in MD.

For convex hard-body molecules one could employ the method presented by Allen
[21] to estimate the components of the pressure tensor with isotropic perturbative
volume compressions. This requires the calculation of the vector normal to the
common tangent plane at the point of contact between two overlapping molecules.
This vector is used to apportion the correct contribution of the residual pressure
to each of the cartesian axes from each overlapping pair of molecules. While this is
a straightforward check to perform for convex bodies such as hard ellipsoids [44],
the procedure is more complicated for molecules (and mixtures of molecules) of
general shape or even for deceptively simple models such hard spherocylinders and
hard disks.

The method we suggest here can be employed for the calculation of the com-
ponents of the pressure tensor for molecules of general shape and interactions,
and there is the added advantage that no more knowledge is required than the
molecule-molecule overlap check, which is in any case necessary for the implemen-
tation of the Monte Carlo algorithm. By making the appropriate modifications to
the derivations illustrated in section 3, we show how the tensorial components of
the pressure can be formulated in an equivalent manner. One needs only to prove
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Figure 2. The occurrence of a molecule-molecule overlap in a system of hard
spherocylinders. The system in (a) is unperturbed, while in (b) the same
system is shown following an anisotropic expansion in the volume in which
only the horizontal axis is scaled. Each molecules centre of mass is indicated
by white dots. The presence of an overlap is indicated by the area shaded in
grey.

that the first part of the derivation provides an almost identical expression for the
transitional probability. It is then apparent that following the remaining steps will
lead to an equivalent final expression.

The partition function of a system with a constant tensorial component of pres-
sure (labelled here as pαα to denote the generic Cartesian axis α), number of
molecules, temperature and area (in this case A = LβLγ in the β − γ plane per-
pendicular to α axis) may be written as

∆NpααTA =
1

VNΩNN !V0

∫
dV

∫
d~r N

∫
d~ω N exp

(
−U + pααV

kBT

)
. (54)

The subscript NpααTA here indicates the parameters that are constant in this
ensemble. From equation 54 we can scale the molecular coordinates in the usual
way to dimensionless quantities in terms of the system box lengths Lα, Lβ, and Lγ

with the positions defined relative to these axes such that if α = x, β = y and γ = z
then x = x∗Lx, y = y∗Ly and z = z∗Lz. In this case d~r N = (LαLβLγ)N d~r ∗N , and
thus we write:

∆NpααTA =

1
VNΩNN !V0

∫
d (LαLβLγ) (LαLβLγ)N

∫
d~r ∗N

∫
d~ω N exp

(
−U + pααV

kBT

)
. (55)

Since the volume perturbations in this ensemble are made by scaling only the α
axis, Lβ and Lγ will remain constant during the perturbations. Equation 55 can
then be expressed as rearranged as

∆NpααTA =
LN+1

β LN+1
γ

VNΩNN !V0

∫
dL LN

α

∫
d~r ∗N

∫
d~ω N exp

(
−U + pααV

kBT

)
. (56)

One can express this relation as an effective Boltzmann factor by including the
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perturbed system box length, LN
α , in of the exponential function:

∆NpααTA =
LN+1

β LN+1
γ

VNΩNN !V0

∫
dL

∫
d~r ∗N

∫
d~ω N exp

(
−U + pααV −NkBT lnLα

kBT

)
.

(57)
In this ensemble the probability of finding the system in a given state is:

Π =
LN+1

β LN+1
γ

VNΩNN !V0

exp
(
−U + pααV −NkBT ln Lα

kBT

)

∆NpααTA
d~r ∗Nd~ω NdLα. (58)

The ratio of the probabilities of two different states, i and j, is now given by

Πj

Πi
=

exp
(
−Uj + pααVj −NkBT ln Lj

kBT

)

exp
(
−Ui + pααVi −NkBT ln Li

kBT

)

= exp


−

∆Ui→j + pαα∆V α
i→j −NkBT ln

(
Lj

Li

)

kBT


. (59)

Here the superscript α is used to denote that the volume is changed by perturbing
the box length in the α direction only. The ratio Lj/Li is of course equivalent to
the ratio of the volumes of the two states Vj/Vi, and we can write

Πj

Πi
= exp


−

∆Ui→j + pαα∆V α
i→j −NkBT ln

(
Vj

Vi

)

kBT


. (60)

This is of the same form as equation 30. Following the rest of the derivation from
equations 30 to 53 leads to our final equivalent expression for the component of
the pressure tensor:

pαα =
NkBT

V
+ lim

∆V α
i→j+→0

kBT

∆V α
i→j+

ln Pnov+ + lim
∆V α

i→j−→0

kBT

∆V α
i→j−

lnPnov−; (61)

note that as previously (in equation 53) Vi has been replaced by V in this expres-
sion.

Though deceptively equation 61 appears to be identical to equation 53 for the
scalar pressure of the isotropic system, it is important to recall that the ghost
volume perturbations and the corresponding overlap probabilities are now for
anisotropic deformations along a single direction (here denoted by α).

5. Results

A detailed analysis of the approach outlined in the previous sections is made here
for a number of carefully selected systems to demonstrate the accuracy of the per-
turbation method in evaluations of the pressure and pressure tensor. Starting with
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a very simple test of Monte Carlo simulations of hard spheres in the isothermal-
isobaric ensemble, where the pressure is known exactly, we then examine the ad-
equacy of the technique when applied to systems in the canonical ensemble. A
comparison is made with published simulation data and theoretical predictions.
The results from Monte Carlo simulations of hard spherocylinders are then shown
in both of these ensembles. Finally, we briefly examine the applicability of the ap-
proach for the determination of the interfacial tension of inhomogeneous systems
of hard spherocylinders confined between two parallel structureless hard walls. In
the following the numerical values of pressure are expressed in dimensionless units:
p∗ = pVm/kBT where Vm is the volume of a molecule.

5.1. Systems of hard spheres

A simple and straightforward assessment of the perturbation method can be made
by applying it to systems of hard spheres in the constant NpT isothermal-isobaric
ensemble over a range of pressures in the fluid state. Here, we have the advantage
of being able to set the value for the pressure and therefore know precisely what to
expect from the estimates of the pressure obtained with the perturbation scheme.

Each of our simulated systems comprises N = 256 hard spheres in a perfect cubic
cell with standard periodic boundaries. The isothermal-isobaric Monte Carlo sim-
ulations (MC-NpT ) are carried out in the standard manner with isotropic changes
in the volume of the simulation cell with equivalent isotropic changes in the scaled
particle positions in the three Cartesian axes [1, 2]. The initial configuration is a
face-centred cubic lattice, and the simulations are performed for pressures ranging
from a dilute gas to the dense fluid. Once equilibrium is achieved after ∼ 2 × 107

cycles we begin a run of 8× 107 cycles, each cycle comprising N trial molecule dis-
placements, and one trial volume change (perturbation) is made every 20 cycles. To
maintain microscopic reversibility for each move, the molecule to be displaced or
the volume change is randomly selected at each step. The average density (packing
fraction η = NVm/V ) of the cell corresponding to the pressure that is set is ob-
tained as a configurational average. As a test of our methodology we also carry out
a separate set of standard Metropolis Monte Carlo (MC-NV T ) for systems with
densities corresponding to the equilibrium densities of the MC-NpT simulations. In
this case we run 2× 107 cycles for equilibration and 1.5× 108 cycles to accumulate
the averages, with a cycle again corresponding to N trial particle displacement.

Volume perturbations are made once every 20 cycles in both the NV T and NpT
ensembles: the simulation is temporarily paused and volume perturbations are
made to the current state before the simulation is allowed to resume once more from
the point at which it was paused. During each perturbation the system cell volume
is scaled, at first isotropically so that all box lengths are changed in proportion to
each other and all molecule positions scale such that their positions relative to each
axis remain the same. Subsequently, anisotropic volume perturbations are made,
in which only one axis is scaled at a time; the molecule coordinates are scaled
only in the cartesian axis to which the perturbation is made. In the case of the
MC-NpT simulations the perturbations can give rise to new states with different
system volumes, while for MC-NV T simulations the only “ghost” perturbations
are made enabling one to estimate the bulk pressure and its tensorial components.
During each volume perturbation, data are collected and recorded detailing how
many overlapping pairs of molecules would be brought about by that perturbation.
Twenty evenly spaced values of the relative volume change ∆V/V (ranging from
0.00300 to 0.00015) are tested during the perturbations and the overlaps recorded;
this is to allow extrapolation to find the contribution to the residual pressure at
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Table 1. The pressure and pressure tensor for systems of N = 256 hard spheres obtained

from Monte Carlo simulations in the isothermal-isobaric ensemble (MC-NpT ), using

isotropic (indicated by the subscript xyz) and anisotropic (with the subscripts xx, yy and

zz to indicate the perturbed axis) volume perturbations. The pressure is given in the non-

dimensional form of p∗ = pVm/kBT where Vm is the volume of a molecule. The average

packing fraction η of each system and also corresponds to the ideal contribution to the

reduced pressure. The columns denoted by p∗+ and p∗− represent the contributions to

the residual pressure from an expansion and a compression, respectively. The calculated

pressure, p∗, is the sum of the ideal (η) and the residual (p∗+ and p∗−) contributions.

The pressure at which each system is simulated during the period of averaging is denoted

by p∗input. AAD% is the absolute average deviation of the pressure obtained with the

volume perturbation approach with respect to the input pressure.

η p∗−xyz p∗+xyz p∗xyz p∗input AAD%

0.2498± 0.0003 0.5172± 0.0049 0 0.7670± 0.0052 0.7685 0.20
0.3001± 0.0002 0.9029± 0.0157 0 1.2029± 0.0159 1.1921 0.90
0.3496± 0.0002 1.4752± 0.0194 0 1.8248± 0.0196 1.8220 0.15
0.3996± 0.0002 2.3563± 0.0237 0 2.7559± 0.0239 2.7704 0.52

η p∗−xx p∗+xx p∗xx p∗input AAD%

0.2498± 0.0003 0.5172± 0.0049 0 0.7669± 0.0052 0.7685 0.21
0.3001± 0.0002 0.9027± 0.0155 0 1.2027± 0.0157 1.1921 0.89
0.3496± 0.0002 1.4725± 0.0191 0 1.8221± 0.0193 1.8220 0.00
0.3996± 0.0002 2.3552± 0.0213 0 2.7547± 0.0215 2.7704 0.56

η p∗−yy p∗+yy p∗yy p∗input AAD%

0.2498± 0.0003 0.5172± 0.0050 0 0.7670± 0.0053 0.7685 0.20
0.3001± 0.0002 0.9011± 0.0157 0 1.2012± 0.0159 1.1921 0.76
0.3496± 0.0002 1.4754± 0.0199 0 1.8250± 0.0201 1.8220 0.16
0.3996± 0.0002 2.3524± 0.0238 0 2.7520± 0.0240 2.7704 0.66

η p∗−zz p∗+zz p∗zz p∗input AAD%

0.2498± 0.0003 0.5174± 0.0049 0 0.7672± 0.0052 0.7685 0.18
0.3001± 0.0002 0.9026± 0.0161 0 1.2027± 0.0163 1.1921 0.88
0.3496± 0.0002 1.4743± 0.0198 0 1.8239± 0.0200 1.8220 0.10
0.3996± 0.0002 2.3557± 0.0269 0 2.7553± 0.0271 2.7704 0.54

∆V/V = 0. The actual range of values for the ghost relative volume changes
are similar to those employed in previous work [11, 22], though in general one
performs exploratory simulations to find the range that will give the best numerical
estimates of the pressure. Volume perturbations are made for both expansions and
compressions in the system volume with separate isotropic and anisotropic volume
scaling.

For the case of hard spheres we already know that there will be no overlaps
brought about by an increase in volume, either for isotropic or anisotropic volume
scaling, thus these perturbations, if performed, would not contribute to the residual
part of the pressure and pressure tensors. However as described in section 3 this is
not generally the case for non-spherical molecules.

The results from the four isothermal-isobaric simulations of hard-spheres are
presented in table 1. The system pressure is calculated from perturbations using
equation 53, and the x, y and z tensorial pressure components are calculated using
equation 61. As can be clearly seen the perturbation method gives results within
a 1% deviation for the set NpT system pressures that are investigated; one could
use the more formal expression (48) which is in the most appropriate form for the
NpT ensemble but we did not find this to be necessary in practice.

For our analysis with the canonical ensemble a comparison is made with pre-
viously calculated pressures for hard-sphere systems from volume perturbations
[11], as well as theoretical predictions. The accuracy of the Carnahan and Starling
equation [45] in predicting the pressure of hard-sphere systems is now well estab-
lished (e.g., see the recent work of Mulero et al. [46]); the early molecular-dynamics
simulation data of Erpenbeck and Wood [47] show very close agreement with this
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Table 2. The pressure and pressure tensor for systems of N = 256 hard spheres obtained from Monte

Carlo simulations for a range of packing fractions of in the canonical ensemble (MC-NV T ), using isotropic

(indicated by the subscript xyz) and anisotropic (the subscripts xx, yy and zz indicate the perturbed

axis) volume perturbations. The pressure is given in the non-dimensional form of p∗ = pVm/kBT where

Vm is the volume of a molecule. The columns denoted by p∗+ and p∗− represent the contributions to

the residual pressure from an expansion and a compression, respectively. The calculated pressure is the

sum of the ideal (η) and the residual (p∗+ and p∗−) contributions. p∗DMJ is the pressure calculated from

isotropic volume perturbations in previous work [11], while p∗CS is the predicted pressure obtained from

the Carnahan and Starling equation for hard spheres [45]. AADDMJ% and AADcs% are the corresponding

absolute average deviation of the perturbations results from the DMJ and CS values.

η p∗−xyz p∗+xyz p∗xyz p∗DMJ AADDMJ% p∗CS AADCS%

0.25 0.5195± 0.0003 0 0.7695± 0.0003 0.7707 0.16 0.7685 0.13
0.30 0.8947± 0.0007 0 1.1947± 0.0007 1.1964 0.14 1.1921 0.22
0.35 1.4765± 0.0015 0 1.8265± 0.0015 1.8300 0.19 1.8220 0.25
0.40 2.3775± 0.0022 0 2.7775± 0.0022 2.7766 0.03 2.7704 0.26

η p∗−xx p∗+xx p∗xx p∗DMJ AADDMJ% p∗CS AADCS%

0.25 0.5189± 0.0003 0 0.7689± 0.0003 0.7707 0.24 0.7685 0.05
0.30 0.8939± 0.0013 0 1.1939± 0.0013 1.1964 0.21 1.1921 0.15
0.35 1.4746± 0.0009 0 1.8246± 0.0009 1.8300 0.30 1.8220 0.14
0.40 2.3744± 0.0020 0 2.7744± 0.0020 2.7766 0.08 2.7704 0.15

η p∗−yy p∗+yy p∗yy p∗DMJ AADDMJ% p∗CS AADCS%

0.25 0.5188± 0.0004 0 0.7688± 0.0004 0.7707 0.25 0.7685 0.03
0.30 0.8935± 0.0003 0 1.1935± 0.0003 1.1964 0.24 1.1921 0.12
0.35 1.4762± 0.0003 0 1.8262± 0.0003 1.8300 0.21 1.8220 0.23
0.40 2.3754± 0.0026 0 2.7754± 0.0026 2.7766 0.05 2.7704 0.18

η p∗−zz p∗+zz p∗zz p∗DMJ AADDMJ% p∗CS AADCS%

0.25 0.5191± 0.0002 0 0.7691± 0.0002 0.7707 0.22 0.7685 0.07
0.30 0.8946± 0.0008 0 1.1946± 0.0008 1.1964 0.15 1.1921 0.21
0.35 1.4732± 0.0011 0 1.8232± 0.0011 1.8300 0.37 1.8220 0.07
0.40 2.3732± 0.0016 0 2.7732± 0.0016 2.7766 0.12 2.7704 0.10

equation of state in the density region of interest. Hence the Carnahan and Starling
relation provides both a straightforward and an excellent benchmark to assess our
results.

Four separate systems are now examined in the canonical ensemble for values of
the packing fraction which correspond to the pressures set in the isothermal-isobaric
with Carnahan and Starling relation: η = 0.25, 0.30, 0.35 or 0.40. The results from
these MC-NV T simulations are presented in table 2. One may observe that the
results obtained with the perturbation approach lie within 0.40% deviation of the
previous data [11], which is to be expected as the method is essentially the same
for hard spheres. When compared to the Carnahan and Starling equation of state
[45] we see close agreement with no more than 0.30% deviation.

5.2. Systems of hard spherocylinders

Having confirmed the accuracy of the proposed perturbation method for systems
of hard spheres in both the NpT and NV T ensembles, we shift our focus towards
the more interesting and challenging systems of non-spherical molecules. We ex-
amine systems of N = 256 hard spherocylinders (hard cylinders of length L with
hemispherical caps of diameter D on each end) with an aspect ratio characterised
by L/D = 5, for states in the dense isotropic liquid and in the anisotropic nematic
liquid-crystalline phase [48, 49]. The systems are first simulated in the isothermal-
isobaric ensemble for 2 × 107 cycles (with volume perturbations every 20 cycles),
at reduced pressures of p∗ = 3 and 6, until the equilibrium is reached, and a fur-
ther 9 × 107 cycles are performed to obtain averages of the equilibrium packing
fractions. Perturbations are made increasing and decreasing the system volume
isotropically, and also anisotropically in each of the three cartesian axes. Details of
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Table 3. Simulation results for two systems of 256 hard spherocylinders, with a length to diameter

ratio 5:1, in the isothermal-isobaric ensemble undergoing isotropic (indicated by a subscript xyz) and

anisotropic (subscripts xx, yy and zz indicate the perturbed axis) volume perturbations. Pressures

in a non-dimensional form of p∗ = pVmol/kBT where Vmol is the molecule volume. η is the average

packing fraction and ideal contribution to the pressure. p∗+ and p∗− are the contributions to the

residual pressure from volume increases and reductions respectively. The calculated pressure, p∗, is

the sum of the residual (p∗+ and p∗−) and ideal (η) contributions. p∗input is the inputed pressure of each

system during the period of averaging. AAD% is the absolute average deviation of the perturbation

results from the input pressure.

η p∗−xyz p∗+xyz p∗xyz p∗input AAD%

0.3291± 0.0001 2.6581± 0.0355 0 2.9871± 0.0356 3.0000 0.43
0.4438± 0.0002 5.5628± 0.0808 0 6.0066± 0.0808 6.0000 0.11

η p∗−xx p∗+xx p∗xx p∗input AAD%

0.3291± 0.0001 3.0149± 0.0378 −0.3591± 0.0068 2.9849± 0.0321 3.0000 0.50
0.4438± 0.0002 6.3088± 0.2766 −0.7533± 0.2809 5.9993± 0.0821 6.0000 0.01

η p∗−yy p∗+yy p∗yy p∗input AAD%

0.3291± 0.0001 3.0189± 0.0396 −0.3586± 0.0051 2.9893± 0.0354 3.0000 0.36
0.4438± 0.0002 6.2051± 0.3347 −0.6399± 0.3241 6.0090± 0.0827 6.0000 0.15

η p∗−zz p∗+zz p∗zz p∗input AAD%

0.3291± 0.0001 3.0152± 0.0388 −0.3597± 0.0061 2.9845± 0.0345 3.0000 0.52
0.4438± 0.0002 6.2701± 0.3352 −0.7081± 0.3146 6.0058± 0.0764 6.0000 0.10

these results are provided in table 3. The data obtained with the perturbation ap-
proach are all within a deviation of 0.6% from our input pressure. It is particularly
pleasing that the methodology works just as well in the p∗ = 3 liquid state as the
p∗ = 6 nematic state where one would expect some instantaneous anisotropies in
the pressure (long equilibration runs are required). It is also interesting to note, for
the tensorial pressure components, that the relative contributions to the pressure
resulting from increases to the volume are relatively small and negative (tensile)
compared with the larger positive (compressive) contributions from decreases in
the volume.

Next the simulations are halted and the density fixed at the equilibrium packing
fractions recorded from the preceding runs, before being resumed from this point
onwards in the canonical ensemble. Averages are then taken over 6 × 107 Monte
Carlo cycles with perturbations again being made to the system every 20 cycles.
The results for the MC-NV T are shown in table 4. Here we see no more than 0.6%
deviation from the original pressures in the corresponding MC-NpT simulations.
As one would have hoped the results from table 3 and table 4 are gratifyingly
similar.

5.3. Volume perturbations for inhomogeneous systems of hard particles and
the calculation of interfacial tension

In this section we illustrate the simplicity with which our method may be adapted
to the calculation of the interfacial tension of inhomogeneous hard-core systems.
We briefly give details of the equations used and present a preliminary study of
hard spherocylinders confined between two hard stuctureless walls. Note that this
and further work relating to calculation of surface tensions will be presented in
greater detail in a forthcoming publication.

There are three main routes for the determination the interfacial tension from
molecular simulations [7]; the usual virial and thermodynamic relations and, in
addition, methods based on finite-size scaling, such as the Landau free energy
approach of Binder [50]. The results we present here are obtained using the pressure
tensor relation for the surface tension, originating from the expression given by
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Table 4. The pressure and pressure tensor for systems of N = 256 hard spherocylinders

with an aspect ratio characterised by L/D = 5 obtained from Monte Carlo simulations in

the canonical ensemble (MC-NV T ) for packing fractions in isotropic (η = 0.3291) and ne-

matic (η = 0.4438) states. These correspond to the average packing fractions at equilibrium

pressures p∗input = 3 and 6, respectively (data taken from MC-NpT simulations of the same

system, cf. Table III). The pressure is given in the non-dimensional form of p∗ = pVm/kBT

where Vm is the volume of a molecule. The pressures are determined from isotropic (indi-

cated by the subscript xyz) and anisotropic (with the subscripts xx, yy and zz to indicate

the perturbed axis) volume perturbations. The columns denoted by p∗+ and p∗− represent

the contribution to the residual pressure determined from expansions and compressions in

the volume, respectively. The calculated pressure, p∗, is the sum of the ideal (η) and resid-

ual (p∗+ and p∗−) contributions. AAD% is the absolute average deviation of the pressure

obtained with the volume perturbation approach with respect to the pressure set in the

MC-NpT simulations.

η p∗−xyz p∗+xyz p∗xyz p∗NpT AAD%

0.3291 2.6729± 0.0078 0 3.0019± 0.0078 3.0000 0.06
0.4438 5.5691± 0.0218 0 6.0129± 0.0218 6.0000 0.21

η p∗−xx p∗+xx p∗xx p∗NpT AAD%

0.3291 3.0291± 0.0101 −0.3624± 0.0023 2.9958± 0.0075 3.0000 0.14
0.4438 6.4124± 0.3260 −0.8307± 0.3040 6.0255± 0.0314 6.0000 0.42

η p∗−yy p∗+yy p∗yy p∗NpT AAD%

0.3291 3.0350± 0.0086 −0.3606± 0.0032 3.0034± 0.0075 3.0000 0.11
0.4438 6.2457± 0.2586 −0.6633± 0.2835 6.0262± 0.0336 6.0000 0.44

η p∗−zz p∗+zz p∗zz p∗NpT AAD%

0.3291 3.0309± 0.0085 −0.3626± 0.0030 2.9973± 0.0082 3.0000 0.09
0.4438 6.3594± 0.3604 −0.7679± 0.3570 6.0352± 0.0237 6.0000 0.59

Kirkwood and Buff [51] for planar interfaces [52]:

γ =
∫ ∞

−∞
dz (pN (z)− pT (z)) . (62)

Here, we assume that the surface is in the x−y plane so pN is the tensorial pressure
normal to the surface (in our case taken as pN = pzz) and pT the tensorial pres-
sure transverse to the surface (pT = pxx = pyy). For systems with planar interfaces
one can employ the mean-value theorem and write the expression in terms of the
average values of the tensorial components

∫
dzpαβ(z) = Lzpαβ . [11] This allows

the interfacial tension of our systems to be expressed conveniently in the form:

γ = Lz (pN − pT ) . (63)

Two systems of hard spherocylinders with an aspect ratio of L/D = 10 are ex-
amined, one comprising N = 100 molecules and the other 200. There are standard
periodic boundaries in two axes (x and y) while the third axis (z) is confined by
two smooth impenetrable planar walls at z = 0 and z = Lz. The axes lengths are
Lx ≈ 39.89D, Ly ≈ 39.23D and Lz ≈ 43D in units of molecular diameters. The
simulations are performed in the canonical ensemble for selected packing fractions
in the isotropic and nematic liquid-crystalline states. A full examination of the fluid
phase and interfacial behaviour of the system in the higher-density region will be
explored in greater depth in a forthcoming publication. Values of the normal and
tangential components of the pressure tensor of the confined system are obtained
using the thermodynamic anisotropic test-volume equation 61 and the interfacial
tension is then obtained from equation 63. However, note that as in our case the
simulation cell comprises two walls (surfaces), the surface tension calculated using
equation 63 must be divided by two to give the tension corresponding to a sin-
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Table 5. The pressure tensor and surface tension for systems of hard spherocylinders characterised by an aspect ratio of L/D = 10

confined by two hard structureless walls (L∗z = Lz/D apart) obtained from Monte Carlo simulations in the canonical ensemble (MC-

NV T ) for overall packing fractions of η = 0.0127, 0.0255, 0.1020 and 0.2804. The packing fractions in the bulk fluid (obtained as

averages of the density profiles for the middle third of the system) are ηbulk = 0.0141, 0.0277, 0.1047 and 0.2742 The tensorial

components of the pressure are given in the non-dimensional form of p∗αα = pααVm/kBT where Vm is the volume of a molecule

and αα is the corresponding axis in which that component of the pressure acts. The pressure tensor is obtained from anisotropic

volume perturbations in the xx, yy and zz axes. The columns denoted by p∗+αα and p∗−αα are the contribution to the residual tensorial

pressure from expansions and compressions in the volume, respectively. The calculated tensorial pressure, p∗αα, is the sum of the ideal

(ηbulk) and residual (p∗+αα and p∗−αα) contributions. The wall-particle interfacial tension of the systems is found from the relation:

γ∗ = γD2/kBT = (1/2)
(
LzD2/Vm

) (
p∗zz − (1/2)

[
p∗xx + p∗yy

])
. The systems with overall packing fractions of η = 0.0127, 0.0255, and

0.1020 corresponding to bulk isotropic states, while the system with η = 0.2804 corresponds to a bulk nematic state.

N η ηbulk Phase Lz αα p∗+αα p∗−αα p∗αα γ∗

xx −0.0007± 0.0000 0.0031± 0.0000 0.0151± 0.0000
100 0.0127 0.0141 Isotropic 43 yy −0.0007± 0.0000 0.0031± 0.0000 0.0151± 0.0000 0.0057± 0.0001

zz −0.0007± 0.0000 0.0053± 0.0000 0.0173± 0.0000

xx −0.0030± 0.0000 0.0129± 0.0001 0.0354± 0.0001
200 0.0255 0.0277 Isotropic 43 yy −0.0030± 0.0000 0.0129± 0.0001 0.0354± 0.0000 0.0121± 0.0001

zz −0.0030± 0.0000 0.0176± 0.0001 0.0401± 0.0000

xx −0.0636± 0.0002 0.2629± 0.0003 0.3012± 0.0005
800 0.1020 0.1047 Isotropic 43 yy −0.0637± 0.0004 0.2629± 0.0004 0.3012± 0.0008 0.0590± 0.0018

zz −0.0617± 0.0003 0.2840± 0.0003 0.3242± 0.0003

xx −0.6740± 0.0442 2.3642± 0.0032 1.9706± 0.0045
2200 0.2804 0.2742 Nematic 43 yy −0.5251± 0.0573 2.2169± 0.0509 1.9722± 0.0034 0.1280± 0.0098

zz −0.2645± 0.0021 2.0054± 0.0032 2.0213± 0.0028

gle surface; the results are presented in table 5. Here we examine two low-density
isotropic liquid states, a high-density isotropic liquid state, and a high-density
anisotropic nematic state. It is clear from table 5 that our method provides an
accurate estimate of the tension (the error bars estimated over 10 blocks of 2 × 107

cycles are at most 8%).
Other methodologies can be used to estimate the surface tension of hard-core

systems of the type examined in our paper. One can simulate the system in the
grand canonical ensemble (MC-µV T ) [1, 2], and integrate the Gibbs adsorption
equation over a range of chemical potentials µ at constant temperature to give
the surface tension [52]. An excellent example of this is the work of Mao et al.
[25] who have also determined the surface tension of hard rods of aspect ratio
L/D = 10 confined between two hard slits. To make a rough comparison with our
results, we have performed a linear interpolation of the data points of Mao et al.
in the low-density region: for the two lowest density states that we examine, our
values of the surface tension lie within 10% deviation of their values. We should
mention at this point that the integration of the adsorption over chemical potential
inherent in a grand canonical approach can lead to inaccuracies particularly for
the high density states where particle insertion is prohibitive. Our test-volume
thermodynamic approach does not suffer from a deterioration in performance at
high density. Alternatively one could use the contact theorem for the particles
at the wall to estimate the surface tension (e.g., see the book by Hansen and
MacDonald [5]). Again however, this type of approach is difficult to implement
in high-density isotropic liquid and nematic states as the density profiles become
very sharply peaked near the hard-wall, and extrapolation to contact can lead to
significant error.

We have shown that our method is simple and straight-forward to implement
for the calculation of the interfacial tension. It can also be readily applied to a
wide range of hard-body systems including colloid-polymer systems [53, 54], dipo-
lar hard-core mesogens [48, 55–58], and liquid-crystal mixtures [59–63] which are
currently being studied in confinement with this type of approach.

Page 24 of 32

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

September 30, 2010 14:3 Molecular Physics TMPH-2010-0301R

24 P. E. Brumby et al.

6. Conclusions

We have presented a robust and efficient perturbative thermodynamic approach
for the calculation of the pressure and the components of the pressure tensor for
systems of hard-body molecules, extending previous work [8, 9, 11]. Using the con-
dition of detailed balance, we have derived an expression which is valid for systems
of hard-body molecules of any shape and size, suitable for use in the canonical
ensemble. This is particularly useful given that in general the more-realistic mod-
els are non-convex in shape. Further to this, with a slight modification to the
method, we have shown how it is possible to determine the tensorial components
of the pressure in an equivalent manner. We have discussed the practical use of
this expression with volume perturbations and presented results for hard spheres
and hard spherocylinders illustrating their accuracy and generality. One may con-
clude that this method is particularly convenient for the calculation of the surface
energy of inhomogeneous hard-body systems. It is applicable to a wide range of
hard-body systems. The only requirement is a knowledge of the overlap criteria,
which of course is needed in the first instance in a general Monte Carlo scheme.

The occurrence of a repulsive contribution upon expansion of systems composed
purely of hard-body molecules is also of importance to the correct implementation
of constant-pressure simulations. When dealing with non-convex molecules, overlap
checks need to be made in the case of isotropic volume increases (and of course de-
creases) to systems in such ensembles, and checks must be made for all but perfectly
spherical molecules when the volume is increased or decreased anisotropically.

From our results one can see the relative contributions to the pressure made by
expansive and compressive perturbations to the volume. As one might expect, these
contributions are found not to be equal. The asymmetry is most apparent for the
case of hard spheres; here, all of the repulsive interactions that the molecules exert
on their surroundings are captured by volume compressions alone. In the case of
hard spherocylinders (of aspect ratio L/D = 5), the contribution to the pressure
from an expansion in the volume is (in magnitude) of order 10% to 13% that from
a compression.

In summary, we have developed a new volume-perturbation method for the es-
timation of the pressure and pressure tensor of hard-body systems that, unlike
existing methods, applies not only to homogeneous systems of convex molecules,
but also to systems incorporating non-convex molecules or inhomogeneities. The
method provides reliable estimates for the pressure, of similar accuracy (for the case
of spherical molecules) as existing methods, and (for the case of spherocylindrical
molecules) shows self-consistency with the specified pressure in MC-NpT simula-
tions. Finally, as we have shown, this method has great potential for calculation of
the interfacial tension of inhomogeneous hard-body systems. A alternative deriva-
tion of the expressions for the test-volume method is given for systems interacting
via potentials of general (attractive/repulsive) form is given in the Appendix to
emphasise the generality of the approach.
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Appendix A. Isotropic volume perturbations for non-convex molecules
interacting through continuous potentials

We consider the derivation of a similar expression to equation 52 that is applicable
to systems with continuous potentials and thereby reveals the generality of the
concepts presented.

From equations 34 and 35 we can see how the transition probability of moving
from one state to another is influenced by the sign of the change in the instanta-
neous enthalpy. If the enthalpy change is negative the probability of the transition
is unity, while when the enthalpy change is positive this probability is given instead
by its appropriate Boltzmann factor.

In section 3.2 equation 47 is introduced as a way of satisfying both the conditions
of possible changes in energy for hard-body systems brought about by a reduction
in volume. We will now do something similar for changes in enthalpy, this time
keeping our expressions general to include continuous potentials and applicable to
either expansions or compressions in volume.

We make use of Heaviside functions of the enthalpy change, H (∆Hi→j+) and
H (∆Hi→j−), in order to write expressions for the transition probability that are
valid for moves which increase or decrease the system volume:

Pi→j+ = 1 +H (∆Hi→j+)
(

exp
(
−∆Hi→j+

kBT

)
− 1

)
; (A1)

Pi→j− = 1 +H (∆Hi→j−)
(

exp
(
−∆Hi→j−

kBT

)
− 1

)
. (A2)

Since the systems of interest are at equilibrium, equation 40 still holds, which,
incorporating equations A1 and A2, becomes

〈
∆Vi→j+

[
1 +H (∆Hi→j+)

(
exp

(
−∆Hi→j+

kBT

)
− 1

)]〉

eq

=

〈
−∆Vi→j−

[
1 +H (∆Hi→j−)

(
exp

(
−∆Hi→j−

kBT

)
− 1

)]〉

eq

. (A3)

If the change in volume associated with the perturbations is taken to be constant
throughout a simulation, the ∆V terms may be moved outside the averaging brack-
ets. Moreover, since ∆Vi→j+ = −∆Vi→j− these terms then cancel:

〈
H (∆Hi→j+)

(
exp

(
−∆Hi→j+

kBT

)
− 1

)〉

eq

=

〈
H (∆Hi→j−)

(
exp

(
−∆Hi→j−

kBT

)
− 1

)〉

eq

. (A4)

Inserting the definition for the change in enthalpy from equation 41 for volume
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expansions and the equivalent form for volume compressions into equation A4
gives

〈
H (∆Hi→j+)


exp


−

∆Ui→j+ + p∆Vi→j+ −NkBT ln
(

Vj+

Vi

)

kBT


− 1




〉

eq

=

〈
H (∆Hi→j−)


exp


−

∆Ui→j− + p∆Vi→j− −NkBT ln
(

Vj−
Vi

)

kBT


− 1




〉

eq

.

(A5)

As before Vj+/Vi is replaced by (Vi + ∆Vi→j+) /Vi = 1 + (∆Vi→j+/Vi) and Vj−/Vi

is replaced by (Vi + ∆Vi→j−) /Vi = 1 + (∆Vi→j−/Vi). With some rearrangement
we now have

〈
H (∆Hi→j+)

(
exp

(
−∆Ui→j+

kBT

)
exp

(
−p∆Vi→j+

kBT

) (
1 +

∆Vi→j+

Vi

)N

− 1

)〉

eq

=

〈
H (∆Hi→j−)

(
exp

(
−∆Ui→j−

kBT

)
exp

(
−p∆Vi→j−

kBT

) (
1 +

∆Vi→j−
Vi

)N

− 1

)〉

eq

,

(A6)

Recalling that we have already restricted the discussion to the case in which the
magnitudes of the attempted volume changes are constant, and now also recog-
nising that p is constant, exp (−p∆Vi→j+/kBT ) and exp (−p∆Vi→j−/kBT ) can be
taken outside of the averaging brackets:

exp
(
−p∆Vi→j+

kBT

) 〈
H (∆Hi→j+) exp

(
−∆Ui→j+

kBT

)(
1 +

∆Vi→j+

Vi

)N
〉

eq

− 〈H (∆Hi→j+)〉eq =

exp
(
−p∆Vi→j−

kBT

) 〈
H (∆Hi→j−) exp

(
−∆Ui→j−

kBT

)(
1 +

∆Vi→j−
Vi

)N
〉

eq

− 〈H (∆Hi→j−)〉eq.

(A7)

Although this equation can be used to extract the pressure, for example one could
determine the pressure by numerical solution, it is not straightforward to isolate
p in terms of the other variables. However an expression may be obtained for the
case in which the distribution of ∆H is symmetric with respect to volume expan-
sions and compressions, as may be expected for systems of particles interacting
via continuous potentials. In this event, 〈H (∆Hi→j−)〉eq = 〈H (∆Hi→j+)〉eq and
these two averages will disappear from equation A7, allowing one to take logs of
the equation which can then be rearranged in favour of p. It is important to stress
that, although one might expect such symmetry in the distribution of ∆H in the
limit of ∆V → 0, this is not true in general; in particular, it clearly will not be
true in the case where the system interacts through hard potentials.
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Taking logarithms as described gives

−p∆Vi→j+

kBT
+ ln

〈
H (∆Hi→j+) exp

(
−∆Ui→j+

kBT

)(
1 +

∆Vi→j+

Vi

)N
〉

eq

≈

−p∆Vi→j−
kBT

+ ln

〈
H (∆Hi→j−) exp

(
−∆Ui→j−

kBT

)(
1 +

∆Vi→j−
Vi

)N
〉

eq

. (A8)

Note that in equation A8 two terms of the form “−p∆V/kBT” appear, whereas in
the analogous equation 50 for hard particles, only one such term appears; this will
give rise to a factor of 1/2 in the final expression for p for systems with continuous
potentials that did not appear in the equivalent expression for systems of hard
particles. Since ∆Vi→j+ = −∆Vi→j−, these two terms may be collected together;
following a little rearrangement one obtains

p ≈ 1
2

kBT

∆Vi→j+



ln

〈
H (∆Hi→j+) exp

(
−∆Ui→j+

kBT

) (
1 +

∆Vi→j+

Vi

)N
〉

eq

− ln

〈
H (∆Hi→j−) exp

(
−∆Ui→j−

kBT

)(
1 +

∆Vi→j−
Vi

)N
〉

eq



 . (A9)

Finally, for systems at equilibrium (for which Vi is approximately constant and
equal to the equilibrium value of V ) one can extract the (1 − ∆Vi→j/Vi)N fac-
tors from the averaging brackets and, recognising that ∆Vi→j << Vi (so that the
logarithms may be simplified) one finally obtains

p ≈ NkBT

Vi
+ lim

∆Vi→j+→0

1
2

kBT

∆Vi→j+
ln

〈
H (∆Hi→j+) exp

(
−∆Ui→j+

kBT

)〉

eq

+ lim
∆Vi→j−→0

1
2

kBT

∆Vi→j−
ln

〈
H (∆Hi→j−) exp

(
−∆Ui→j−

kBT

)〉

eq

; (A10)

the implied limits have been explicitly restored in the final expression. It is inter-
esting to compare this equation, which is true only for systems interacting through
(continuous) potentials for which ∆Hi→j is symmetric with respect to expansions
and compressions, with its analogy for the hard-potential system. In the latter
(equation 52) the second and third terms on the right-hand side appear without
the factor of 1/2; this subtle difference can thus be seen to be a consequence of the
asymmetry of ∆Hi→j with respect to expansions and compressions.

A.1. Purely repulsive potentials

When considering hard-body interactions, for systems undergoing an increase
in volume, equation 42 implies that ∆Hi→j+ is always greater than zero. Thus
H (∆Hi→j+) = 1. Equation A4 now becomes:

〈
H (∆Hi→j−)

(
exp

(
−∆Hi→j−

kBT

)
− 1

)〉

eq

+1 =
〈

exp
(
−∆Hi→j+

kBT

)〉

eq

. (A11)
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As we have already covered in section 3.2, we know that for volume reductions
∆Hi→j− can take either positive or negative values at equilibrium, so we must
look at each of these cases separately. H (∆Hi→j−) = 0 when ∆Hi→j− < 0,
while H (∆Hi→j−) = 1 for the case where ∆Hi→j− > 0. Considering equation
44, we recall that for hard-body molecules ∆Hi→j− < 0 for all cases where
there are no overlapping molecules, and when there are overlapping molecules
∆Hi→j− = ∞. Thus H (∆Hi→j−) (exp (−∆Hi→j−/kBT )− 1) may be replaced by
exp (−∆Ui→j−/kBT )− 1 in equation A11. In writing ∆Hi→j+ in terms of the sys-
tem pressure as given by equation 42, we obtain

〈
exp

(
−∆Ui→j−

kBT

)〉

eq

=

〈
exp


−

∆Ui→j+ + p∆Vi→j+ −NkBT

(
∆Vi→j+

Vi

)

kBT




〉

eq

.

(A12)
Equation A12 can be evaluated for ghost volume perturbations in either the NV T
or the NpT ensemble. When the change in volume ∆Vi→j+ and the volume of the
unperturbed state Vi are kept constant, one can write

〈
exp

(
−∆Ui→j−

kBT

)〉

eq

=
〈

exp
(
−∆Ui→j+

kBT

)〉

eq

exp
(
−p∆Vi→j+

kBT

)
exp

(
N∆Vi→j+

Vi

)
.

(A13)

Rearranging, taking logarithms, dividing both sides by
∆Vi→j+

kBT
and recalling that

∆Vi→j+ = −∆Vi→j− allows us to write

p =
NkBT

Vi
+

kBT

∆Vi→j+
ln

〈
exp

(
−∆Ui→j+

kBT

)〉

eq

+
kBT

∆Vi→j−
ln

〈
exp

(
−∆Ui→j−

kBT

)〉

eq

.

(A14)
As before we now reinstate the limits for which our equation is valid to give the
final form as

p =
NkBT

Vi
+ lim

∆Vi→j+→0

kBT

∆Vi→j+
lnPnov+ + lim

∆Vi→j−→0

kBT

∆Vi→j−
ln Pnov−. (A15)

Equations A15 and 53 are of course identical.
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Thank you for sending us the referee report for our paper. We found the comments and 
suggestions most useful, and were very pleased to hear that the referee found that the 
paper was a “very interesting” and “well written”, and that it represents “a very useful new 
methodology in the simulation of hard core molecules”. We have addressed the points that 
are raised about the virial route, and have revised the manuscript accordingly. Our detailed 
response with the appropriate changes to the manuscript are listed below: 
 
1) The derivative of the hard sphere force is not a delta function. You get a delta function as 
the derivative of a unit step. The hard sphere potential is an infinite step! Thus eq. 2 is 
wrong. 
 
In hindsight we agree with the referee that this part of the description is problematic. The 
way we presented the virial expression is rather obscure and concise, and only applicable to 
the case of spherical particles. Equation 2 (now Equation 8) actually follows directly from the 
standard derivation of the virial (pressure) equation presented in, e.g., Hansen and 
McDonald, Theory of Simple Liquids, 3rd Edition. We demonstrate this by starting with the 
pressure equation for a system of spherical particles (Equation 2.5.22, page 32 of the 
monograph): 
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where the variables take their usual meaning.  
 
Expressing the pair distribution function  in terms of the cavity function , )(rg )(ry
 

[ ] )()()()(exp)( ryreryrurg =−= β ,        (ii) 
 
one can write Equation (i) as 
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In the case of a system of hard spheres of diameter σ , the Boltzmann factor of the potential 
is a Heaviside (unit-step) function, )()( σ−= rHre , the derivative of which is a delta 
function, )()(' σδ −= rre . Since the force )(' r)( urf −= , from Equation (iv) it follows that 
 

)()()()(' rerfrre βδ == .          (v) 
 

In the case of a collision between hard spheres from a non-overlapping configuration r  is 
infinitesimally greater than σ  for which 0)( =ru and 1)( =re , so that Equation (v) can be 
expressed as  
 

)()(or)()( σδβσδ −==− rTkrfrfr B ,       (vi) 
 

which is the same as equation (2) (now equation (8)) in our paper for the force acting 
between hard spheres in a homogeneous phase with radial symmetry. 
 
In order to make this clearer we have revised the manuscript by mentioning after equation 
(1) that the virial equation can be expressed in terms of the radial pair distribution function 
for a homogeneous phase of hard spheres with radial symmetry [cf. Equation (i)]. We then 
follow the description given above [Equations (ii) - (vi)] to show that in this particular case 
the force is proportional to the delta function as expressed in equation (2) (now equation 
(8)).    
 
2) Above eq. 3 it is stated that a delta function is unity at contact. Again this is not true - a 
delta function is an infinitely high spike! Also the direction of the force is parallel to the 
surface normal at the point of contact - this, in general, is not the same direction at the 
centre-to-centre vector. 
 
We apologise for this error; we were in fact referring to the Heaviside function (not the delta 
function) as approached from non-overlapping configurations. This has been corrected in 
the revised manuscript by stating that the delta function is an infinite spike at contact. 
 
It is true that in the general case of molecules of non-spherical shape the force is parallel to 
the surface normal and not along the centre-to-centre vector. The derivation was 
exemplified for the case of hard spheres where this always holds. We have revised the 
manuscript to make this point explicitly. 
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We hope that the work will now be deemed to be acceptable for publication in the Molecular 
Physics. 
 
Please keep me informed on the progress of our manuscript, and do not hesitate to 
contact me if you require any further assistance in this matter. 
 
Yours truly, 
With best wishes, 
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