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The contribution of age structure to cell population responses to

targeted therapeutics

Pierre Gabriel∗† Shawn P. Garbett‡ Darren R. Tyson† Glenn F. Webb§

February 21, 2013

Abstract

Cells grown in culture act as a model system for analyzing the effects of anticancer compounds,
which may affect cell behavior in a cell cycle position-dependent manner. Cell synchronization
techniques have been generally employed to minimize the variation in cell cycle position. However,
synchronization techniques are cumbersome and imprecise and the agents used to synchronize the
cells potentially have other unknown effects on the cells. An alternative approach is to determine
the age structure in the population and account for the cell cycle positional effects post hoc.
Here we provide a formalism to use quantifiable lifespans from live cell microscopy experiments to
parameterize an age-structured model of cell population response.

Keywords: Cell cycle, intermitotic time, renewal equation, exponentially modified gaussian

1 Introduction

When examined individually in time lapse microscopy experiments, cells grown in culture display
variability in the length of their cell cycles (between mitotic events), and this variability is represented
by intermitotic time (IMT) distributions [21, 34, 35]. These distributions are usually obtained from
asynchronously dividing populations of cells, which achieve a steady-state age structure when the
population is growing exponentially. In experimental studies that examine the effects of perturbations
on cellular proliferation, it is often desirable to determine whether the perturbation is affecting cells
in particular stages within their cell cycle, i.e. whether the perturbation has cell cycle-specific effects.
Since we do not know where a cell is in the cycle, an alternative is to define the age of a cell as
the time elapsed from its last division and deal with this measurable quantity instead of the cell
cycle phase. In this paper we adopt this definition and provide a formalism to convert data obtained
as IMT distributions to parameterize an age-structured population model and, thus, identifying the
contribution of age structure to the response of the cell population to perturbation.
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Models of age-structured populations using partial differential equations, such as those originally
discribed by A. Lotka, A.G. McKendrick, W.O. Kermack, and F. von Foerster, are well adapted to
model the dynamical features of experimental cultures of cells transiting the cell cycle with variable
IMT. These models have been widely studied from a mathematical perspective [4, 3, 15, 16, 17, 22, 37,
40, 43, 54], but the application of the model to experimental data has been hampered by an inability
to determine the age-dependent model parameters. The usual approach for parameter estimation is
to solve numerically an inverse problem (see [1, 9, 10, 20, 19, 23, 28, 42, 44, 45, 51, 52, 41] on this
question for structured population models), but this requires extensive input data and is specific to
a given situation. A much more convenient approach is to assume that the distributed parameters
lie in a class of functions with only a few constants (power laws or other forms [24]) and obtain the
parameters from the fit of the functions to experimental data.

One function that often provides a better fit to IMT data than others, such as log-normal, inverse
normal or gamma functions, is an exponentially modified Gaussian (EMG) [27, 53]. Under conditions
in which the IMT distribution can be explained by an EMG model, we submit that the age-dependent
division rate can be identified as an error function. Starting from this observation, we present a simple
method to recover the parameters of this error function from parameters fitted to the experimental
IMT data. Once reliably parameterized, the age-structured model can be used to make predictions
about cell age-dependent effects of perturbations, for example, whether cells arrest during their cell
cycle in response to treatment with antiproliferative compounds.

Individual based models (IBM) have also been used to track individual cell behavior in proliferating
cell populations [5, 36, 26, 39, 46, 47, 48, 49, 50]. IBM have advantages in their direct connection
to discrete events and to cell-cell interactions. IBM are usually readily implementable to computer
simulations, but may require many repeated runs to access an average outcome. IBM are usually
difficult to analyze theoretically with respect to parametric input, particularly with highly sensitive
parameters. The advantage of continuum differential equations models, such as the cell age struc-
tured models we develop here, are their tractability for theoretical analysis and their reproducibility
for specific parametric input. The practical difficulties of determining this parametric input is the
problem we focus upon here. IBM and differential equations models should be viewed as compan-
ion approaches, which complement and compare their insights and predictions for proliferating cell
population behavior, when individual cell variation is a primary consideration.

2 The age-structured model

As with human populations, we can associate an age to each individual cell in a cell population. We
define the age of a cell as the time elapsed from its last mitosis. Starting from this definition, we
derive an age-structured model giving the dynamics of populations of proliferating and quiescent cells.
This model is adapted to investigate the effect of treatment by the drug erlotinib on in vitro PC-9
cancer cell lines. It has been recently shown in [53] that the main effect of erlotinib on cancer cells
is to induce entry into quiescence. In [53] a system of ordinary differential equations (without age
structure) is used to model these experiments. We hypothesize here that erlotinib induced quiescence
is linked to the age of the cells involved. Many age-structured models with quiescence can be found
in the literature (see [8, 11, 12, 29, 30, 31] for examples). Here we present a simple age-structured
model with quiescence which allows us to explain observed delays in response to erlotinib. We start
from the observation that there is no effect of the treatment on total population growth during the
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first twenty hours (see [53] and Figure 7). This time corresponds almost exactly to the minimal age of
division observed for PC-9 cells. It suggests that erlotinib acts only during a specific phase of the cell
cycle, which based on its biological activity would be expected to be in G1. The model we present is
based on this idea and considers a fractional rate f of cells that become quiescent in an age-dependent
manner, where the fraction is assumed to reflect the dose of erlotinib used for the treatment.

We start from the the McKendrick–Von Foerster’s model which is widely used to model the cell
cycle (see [37, 40, 54] and references). The partial differential equation in this model provides the
evolution of the density p(t, a) of cells with age, or “cell cycle phase”, a at time t. To take into account
the quiescent cells, we introduce the quantity Q(t) which representsthe density of quiescent cells at
time t. It evolves according to an ordinary differential equation coupled to the equation on p(t, a). We
obtain the system
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












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


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















∂

∂t
p(t, a) +

∂

∂a
p(t, a) + β(a)p(t, a) + µ p(t, a) = 0, t ≥ 0, a > 0,

p(t, 0) = 2(1− f)

∫ ∞

0
β(a)p(t, a) da,

p(0, a) = p0(a),

d

dt
Q(t) = 2f

∫ ∞

0
β(a)p(t, a) da − µQ(t),

Q(0) = Q0.

(1)

In this model, the proliferaing cells age one-to-one with time at speed da
dt

= 1, and divide with rate
β(a) ≥ 0. When a cell divides at mitosis, it produces two daughters which are either proliferating with
age a = 0, or quiescent. This is taken into account by the boundary condition at a = 0 and the first
term in the equation for Q(t), where the parameter f ∈ [0, 1] represents the fraction of proliferating
cells which become quiescent. The coefficient µ is a death rates. The number of proliferating cells
at time t with age between a1 and a2 is

∫ a2
a1

p(t, a) da, and the total number of cells at time t is

N(t) =
∫∞

0 p(t, a) da +Q(t).
The division rate β has a probabilistic interpretation: the probability that a cell did not divide by

age a is given by
P(a) = e−

∫ a

0
β(a′) da′ .

Since all the proliferating cells must divide at some time by definition, the division rate has to satisfy

lim
a→+∞

∫ a

0
β(a′) da′ = +∞. (2)

The model is completed with intial data p0(a) and Q0. We choose the time t = 0 to be the beginning
of the erlotinib treatment, so at this time there are no quiescent cells (Q0 = 0). The age distribution
of the proliferating cells is assumed to be at equilibrium (i.e. p0(a) = const p̂(a), see Section 3 for
the mathematical definition of p̂). The experimental values of the total population N(t) along time
are ploted after normalization by the initial value N(0) on a log-scale (see Figure 7). Because of this
normalization, we consider an initial distribution such that

∫∞

0 p0(a) da = 1 which leads to p0(a) = p̂(a)
because of the definition of p̂.
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We want to compare the solutions of model (1) to the experimental observations presented in [53].
The first step is to estimate the different parameters of the model. To estimate the value of the
fraction f for different doses of treatment, we use data available in [53]. The fraction F of quiescent
cells is estimated by examination of whether cells treated with erlotinib divide or not before the end
of the experiment. We want to use this experimental fraction F to estimate the coefficient f of the
model. For the sake of simplicity, assume that the death rate µ is 0 in (1). In this case, at the end of
the labeling period t0, the quantity of labeled quiescent cells corresponds to Q(t0) and the quantity of
proliferating cells corresponds to

∫ t0
0 p(t, 0) dt. Thus, the fraction F of quiescent cells at t0 is

F =
Q(t0)

Q(t0) +
∫ t0
0 p(t, 0) dt

. (3)

Now we compute this quantity from model (1), keeping in mind that we have assumed no mortality.
We have

Q(t0) =

∫ t0

0

dQ

dt
(t) dt

= 2f

∫ t0

0

∫ ∞

0
β(a)p(t, a) da dt

and
∫ t0

0
p(t, 0) dt = 2(1 − f)

∫ t0

0

∫ ∞

0
β(a)p(t, a) da dt.

Finally we obtain
Q(t0)

Q(t0) +
∫ t0
0 p(t, 0) dt

=
2f

2f + 2(1− f)
= f. (4)

So when there is no death rate, the experimental fraction F corresponds exactly to the coefficient f.
In our simulations we consider positive a death rate µ as suggested by the results in Section 4.2. But
because the numerical value we recover for µ is very small (µ ≪ 1 in Figure 6), we can consider that
f is still well-approximated by F and we use the fractions available in [53] to parameterize f.

The identification of the coefficients β and µ is much more delicate because β(a) is a distributed
function. The two following sections are devoted to presenting a method to recover these coefficients
from IMT distributions. Then these coefficients are used to compare the solutions of Equation (1) to
experimental data in Section 5.

3 Modelling the intermitotic time

Since the age of a cell is defined as the time elapsed from its last mitosis, the IMT of a cell is its
age at division. This definition allows us to interpret the IMT distributions in terms of a dynamic
age-structured population model.

Experimental IMT distributions can be seen as histograms which represent, for a given population,
the density of cells with a certain age of division (see Figure 1 for an example taken from [53]). The
age of division is distributed into Na bins of width ∆a. For all i between 1 and Na, the height Hi of
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the ith bar represents the density of cells with an age of division in the window [i∆a, (i+ 1)∆a]. The
histogram (Hi)1≤i≤Na is normalized to represent a density

∆a

Na
∑

i=1

Hi = 1. (5)
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Figure 1: Plot of an histogram (Hi)1≤i≤Na representing the IMT distribution of a population of PC-9
lung cancer cells. The data is from [53] and the bin width is ∆a = 10

8 .

We briefly explain here the method used in [53] to build IMT histograms (we refer to this paper
for more details). The data are obtained using extended temporally resolved automated microscopy
(ETRAM) in which cell nuclei are fluorescently labeled, imaged by automated time lapse fluorescence
microscopy, and tracked as individual cells from the resultant image stacks. Cells are subjected to
various microenvironmental conditions (such as the addition of a drug) at a specific time during image
acquisition (set to time t0) and the effect of the perturbation from that point in time is followed across
the entire population and individual cells within it. The duration of observation (T ) is chosen large
enough to observe that almost all cycling cells divide before this final time. The data are organized
into the bins to obtain a histogram, which is then normalized to represent a density of cells.

The next step is to describe the IMT distributions in terms of an age-structured model and use this
interpretation to parameterize Equation (1). We want to estimate the coefficients β and µ, and for
this we fix f = 0 in (1). This corresponds to the situation when there is no erlotinib treatment and
thus all the cells are proliferating. We recover in this case the original McKendrick–Von Foerster’s
model































∂

∂t
p(t, a) +

∂

∂a
p(t, a) + β(a)p(t, a) + µ p(t, a) = 0, t ≥ 0, a > 0,

p(t, 0) = 2

∫ ∞

0
β(a)p(t, a) da,

p(0, a) = p0(a).

(6)
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It is a transport equation which satisfies a maximum principle, namely if the initial distribution
p0(a) is nonnegative (positive) then the distribution p(t, a) remains nonnegative (positive) for all time
t > 0. The solutions of (6) have a remarkable behavior as time evolves, in that the age structure
equilibrates no matter what the initial age structure of the population may be. This effect is known
as asynchronous exponential growth, and its interpretation is that the population disperses over time
to a limiting asymptotic equilibrium age structure where the fraction of the population in any age
range [a1, a2] satisfies

lim
t→∞

∫ a2
a1

p(t, a) da
∫∞

0 p(t, a) da

= a constant independent of the initial age structure [55]. Moreover, the solutions to this equation, as
t → ∞, are known to behave like a separated variables solution, that is, p(t, a) = a function of time
only × a function of age only. More precisely, consider the eigenvalue problem















λp̂(a) + ∂ap̂(a) + β(a)p̂(a) + µ p̂(a) = 0,

p̂(0) = 2
∫∞

0 β(a)p̂(a) da,

p̂(·) > 0,
∫

p̂(a) da = 1,

(7)

This problem has a unique solution given by

p̂(a) = p̂(0)e−
∫ a

0
(β(a′)+µ+λ) da′

where λ > 0 is the unique value such that

1 = 2

∫ ∞

0
β(a)e−

∫ a

0
(β(a′)+µ+λ) da′da (8)

and

p̂(0) =

(
∫ ∞

0
e−

∫ a

0
(β(a′)+µ+λ) da′ da

)−1

.

Then we can prove that, for large times,

p(t, a) ∼ const p̂(a)eλt

(see Appendix A for more details and references). If the population of cells proliferates over a suffi-
ciently long time, we can assume that this asymptotic behavior is reached and use it to investigate
the IMT distributions. An experimental observation that the total population (independent of age
structure) is growing exponentially is an indicator that the population has effectively reached the
equilibrium age distribution, which can be checked using ETRAM for other time series data collection
(see Figure 2).

Now we give a continuous expression of the IMT distribution in terms of the age-structured model.
The age distribution of the cells relative to time t0 (time of perturbation) is given by a truncation of
the equilibrium age distribution p̂

p̄0(a) =

{

ρ e−
∫ a

0
(β(a′)+µ+λ) da′ if 0 ≤ a ≤ t0,

0 if a > t0.
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Figure 2: The evolution of the total population N(t) is plotted on log-scale (blue) (the data is
from [53]). The data are well-fitted with a line of slope λ = 0.022 (correlation coefficient: R2 = 0.9967).
This is evidence that the total population is growing exponentially fast with exponential constant
λ. Thus, N(t) = expλtN(0), and if t⋆ is the population doubling time, then N(t⋆) = 2N(0), and
t⋆ = ln 2/λ.

where ρ is a scaling constant. We then follow this age distribution along time and obtain for t > 0

p̄(t, a) =

{

ρ e−
∫ a

0
(β(a′)+µ+λ) da′eλt if t ≤ a ≤ t+ t0,

0 otherwise.

According to the age-structured model, and because of the normalization (5), the IMT distribution
satisfies

IT (a) := C−1
T

∫ T

0
β(a)p̄(t, a) dt, CT :=

∫ ∞

0

∫ T

0
β(a)p̄(t, a) dt da, (9)

by definition of the division rate β. The fact that no cell can divide in a time less than t0 means

∀ a ≤ t0, β(a) = 0. (10)

Under this condition, for T large, the function IT is close to the function

I∞(a) := C−1
∞ β(a)e−

∫ a

0
(β(a′)+µ) da′ (11)

where

C∞ :=

∫ ∞

0
β(a)e−

∫ a

0
(β(a′)+µ) da′ da. (12)

This convergence is made mathematically precise by the following claim (the proof is given in Ap-
pendix B for a more general case in which it is not assumed that p(t, a) is close to the equilibrium age
distribution):
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Claim 1. Under Assumptions (2) and (10), we have the convergence
∫ ∞

0
|IT (a)− I∞(a)| da −−−−→

T→∞
0.

Remark 2. We can easily prove that, under the additional assumption

lim
a→+∞

β(a)e−
∫ a

0
β(a′) da′ = 0, (13)

we also have
sup
a≥0

|IT (a)− I∞(a)| −−−−−→
T→+∞

0.

Condition (13) is satisfied from Assumption (2), if for example, β bounded or monotonic.

Because in the experimental protocol T is chosen large enough to observe no dividing cells at the
end, we can approximate IT by I∞ which has a simple expression in terms of the division and death
rates (11).

4 From the intermitotic time to the division rate

In this section we explain how we can recover the parameters β and µ from the IMT distribution I∞.
We first present the method in the case when there is no death (µ = 0). This simplification is useful
to give an inversion formula which gives the rate β in terms of I∞. Then we extend the method to
include possible death rates.

4.1 The case µ = 0

In the case µ = 0, the constant C∞ is equal to 1 and we have

I∞(a) = β(a)e−
∫ a

0
β(a′) da′ .

This expression can be inverted to recover the division rate from the IMT distribution (see [32, 14])

β(a) =
I∞(a)

∫∞

a
I∞(a′) da′

. (14)

We start from the fitting of the experimental IMT distributions, which are observed to be positively
skewed. From a fitting procedure for I∞, we use Equation (14) to recover the division rate of the
McKendrick–Von Foerster’s equation.

First consider as in [32] that the IMT distribution is a shifted gamma function (see also [13] and
references therein). Setting

I∞(a|m,σ) =

{

0 if 0 ≤ a ≤ m,
a−m

σ2
e−

a−m
σ if a ≥ m,

(15)

we can solve explicitly Equation (14) and we find

β(a) =







0 if 0 ≤ a ≤ m,
a−m

σ(σ + a−m)
if a ≥ m.

(16)
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So by fitting an experimental IMT distribution with a shifted gamma function, we obtain two param-
eters m and σ which allows reconstruction of the division rate of the renewal equation.

To have a smoother transition at the minimum age of division m, one can consider a second shifted
gamma function

I∞(a|m,σ) =







0 if 0 ≤ a ≤ m,
(a−m)2

2σ3
e−

a−m
σ if a ≥ m.

(17)

Then the corresponding β is

β(a) =







0 if 0 ≤ a ≤ m,
1

σ

(a−m)2

2σ2 + 2σ(a−m) + (a−m)2
if a ≥ m.

(18)

The different functions (15) to (18) are plotted in Figure 3
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Figure 3: The two different gamma functions and their corresponding division rate β(a) are plotted
for coefficients m = 17 and σ = 2.

It has been observed that an exponentially modified Gaussian (EMG) is often a better model for
IMT distributions than the gamma function [27, 53] . An EMG is defined as the convolution of a
Gaussian with a decreasing exponential, but after solving it can be written with three parameters as

I∞(a|β0,m, σ) = β0 Erfc
(m− a

σ

)

e−2β0

(

β0σ
2

2
−m+a

)

. (19)

where the (complementary) error function is defined by

Erfc(z) = 1− 2√
π

∫ z

0
e−t2 dt.

Replacing I∞ by an EMG in Equation (14), we cannot compute explicitly the expression for β. But by
numerical comparison, we obtain a division rate β that is essentially indistinguishable from an error
function (see Figure 4).
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Figure 4: Left: The division rate β(a) is obtained numerically from (14) by using an EMG with
coefficients m = 22, σ = 2 and β0 = 0.2 to fit I∞ (19). Right: The formula for β, as an error function
with these same three parameters, is numerically indistinguishable from the numerically obtained β
(R2 = 1).

Instead of fitting the IMT distribution by an EMG and then fitting the corresponding β by an error
function, we may directly assume that β is an error function

β(a) = β0 Erfc
(m− a

σ

)

. (20)

We can then explicitly derive a new fitting formula for I∞ due to Equation (11)

I∞(a|β0,m, σ) = β0 Erfc
(m− a

σ

)

e−
∫ a

0
β0 Erfc(m−a′

σ
) da′ (21)

where the integral in the exponential can be computed as
∫ a

0
Erfc

(m− a′

σ

)

da′ = mErfc
(m

σ

)

− σ√
π
e−(m

σ
)2 − (m− a)Erfc

(m− a

σ

)

+
σ√
π
e−(m−a

σ
)2 . (22)

Using this formula for the IMT instead of an EMG formula, the fitting parameters provide immediately
the division rate β.

When we know the Malthusian growth parameter (population growth rate λ) from experimental
data (see Figure 2), it is possible to recover a division rate β such that relation (8) is satisfied. This is
an important step in order to parameterize and apply an age-structured model to experimental data.
We notice the relationship of β in terms of I∞(a) is

2

∫ ∞

0
I∞(a)e−λa da = 2

∫ ∞

0
β(a)e−

∫ a

0
β(a′) da′e−λada = 1.

To take advantage of this relationship between the IMT data, β(a), and the malthusian parameter λ
at the equilibrium distribution, we define a new histogram (H̃i)1≤i≤N by

∀ i, H̃i :=
2Hie

−λai

∆a
∑N

i=1 2Hie−λai
(23)
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where ai := (i + 1
2)∆a is the mean age of the ith bar. Thus defined, the new histogram incorporates

information about λ and satisfies the relation

∆a

∞
∑

i=1

H̃i = 1. (24)

We then fit this new histogram (H̃i) with the model

Ĩ∞(a) := 2I∞(a)e−λa (25)

instead of fitting (Hi) with I∞(a). Because of the normalization (24), we expect that the fitting provides
parameters such that

∫∞

0 Ĩ∞(a) da ≈ 1, and this relation can be checked numerically a posteriori.

Method and example. We divide the process in three steps and illustrate it by an example. Each
required fitting step can be performed using the freely available Ezyfit Matlab toolbox
[< http://www.fast.u-psud.fr/ezyfit/>].

Step 1: Determine equilibrium IMT distribution

a) Obtain a histogram (Hi) for the experimental IMT distribution of control (untreated) cells.
Here we use an IMT distribution obtained in [53] for PC-9 lung cancer cells using ETRAM
(see Figure 1).

b) Plot the time evolution of the total population on a loge-scale, verify a linear fit and obtain
the slope as the experimental value for the Malthusian parameter λ of the cell population
(see Figure 2 for an example).

c) Construct the new histogram (H̃i) from (Hi) and λ by using the definition (23).

Step 2: Obtain parameters from model fit to IMT distribution

a) Choose a form for I∞ as a gamma function (15) or (17), or as the new EMG form (21).

b) Fit the histogram (H̃i) with the corresponding form Ĩ∞ from definition (25). For PC-9 can-
cer cells we choose the form (21), because in [53] it was observed that the IMT distribution
appeared to be an EMG (see Figure 5 for the example).

c) Verify that the correlation coefficient R2 of the IMT data and the chosen form Ĩ∞(a) is
close to 1.

Step 3: Parameterize age-structured model

If numerical integral
∫∞

0 Ĩ∞(a) da is close to 1, the fitting parameters provide a good approxi-
mation of the division rate β, which can then be propagated through the population, based on
the choice of I∞. In the example, β is given by Equation (20) with the numerical paramaters of
Figure 5.
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Figure 5: Fitting of experimental data in [53] with the model (21). The fitting parameters are
β0 = 0.14204, m = 24.456 and σ = 3.3451. The correlation coefficient is R2 = 0.95363 and the
integral of Ĩ∞(a|β0,m, σ) is

∫∞

0 Ĩ∞(a) da ≈ 1.0983. The formula for the age dependent division rate is
β(a) = β0Erfc(m−a

σ
).

4.2 Introducing a death rate

If we include a death rate µ > 0 in the model, then there does not exist an inversion formula as
Equation (14) to recover β analytically. So we consider that β is a rational fraction given by Equa-
tion (16) or (18), or an error function given by Equation (20), and we derive the corresponding model
I∞ from Equation (11). The death rate µ will appear in the expression of I∞ as an additional fitting
parameter and will be determined together with the parameters of β by the fitting of experimental
IMT distributions. Notice that a fixed rate µ based on measured data can also be used if available to
avoid the addition of a free parameter.

Unlike the case µ = 0 for which C∞ = 1, we have for a positive death rate that C∞ < 1. This
constant is a function of the fitting parameters (see Equation (12)), but we do not have an analytic
expression of this function in general. A solution to this problem is to use the Malthusian parameter
λ, which incorporates information about µ and β(a), to define a form Ĩ∞(a) as in Section 4.1. Indeed
we obtain, because of relation (8),

Ĩ∞(a) := 2β(a)e−
∫ a

0
(β(a′)+µ) da′e−λa

which does not involve C∞. Then, the division rate β(a) is obtained from Ĩ∞(a) as before using the
modified histogram (H̃i) defined from (Hi) by (23).

Example. We fit the same distribution as in Section 4.1 still considering that β is an error function.
With a constant death rate µ, we obtain the four parameters model

Ĩ∞(a|β0,m, σ, µ) = 2β0 Erfc
(m− a

σ

)

e−
∫ a

0
(β0 Erfc (m−a′

σ
)+µ+λ) da′ (26)
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where the integral
∫ a

0 β0 Erfc
(

m−a′

σ

)

da′ is given by Equation (22). The fitting provides new param-
eters for β and a positive death rate µ (see Figure 6). The correlation R2 is slightly better than in
Figure 5 and the integral

∫∞

0 Ĩ∞(a) da is significantly closer to 1. So we can assume that mortality
has to be considered for this cell line.
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Figure 6: Fitting of experimental data with the model (26). The fitting parameters are β0 = 0.17879,
m = 25.007, σ = 3.6141 and µ = 0.00333. The correlation coefficient is R2 = 0.95611 and the
integral of Ĩ∞(a|β0,m, σ) is

∫∞

0 Ĩ∞(a) da ≈ 1.0132. The formula for the age dependent division rate is
β(a) = β0Erfc(m−a

σ
).

5 Numerical simulation and discussion

Once the parameters accurately estimated, we use them to compare the behavior of the solution of
Equation (1) to the experimental data in [53]. Since the model does not have analytic solutions,
we need to perform numerical simulations. Many numerical methods are available for structured
population equations (see for instance [2, 7, 6, 18, 25, 33]). Here we use a scheme based on the method
of characteristics, as in [7, 6, 33], for its anti-dissipative properties.

We can see in Figure 7 that the numerical simulations are very similar to the experimental curves. In
particular, the delay of twenty hours before the effect of the treatment on the growth of the population
is apparent, and this twenty hour period pulses two more times as the population approaches a new
equilibrium distribution during the total time of the experiment. We have thus developed an age-
structured model that can explain the dynamic effects of erlotinib on PC-9 cells, which are intrinsically
dependent on the age of proliferating cells. The model is also accurate in a quantitative point of view.
The quiescent fractions f which are used in the numerical simulations are not chosen arbitrarily to
obtain the adequate behavior. They are linked to the treatment dose of erlotinib and estimated from
experimental data in a rigorous way so that they are realistic.
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The model has been chosen as simple as possible to be able to recover all the parameters from ex-
perimental IMT distributions. This simplicity leads to qualitative differences between observed data
and simulations in Figure 7. Experimental observation suggests the population reaches equilibrium
when treated with drug whereas simulated population size is still increasing at the end of the exper-
iment. An age-structure for quiescent cells together with an age-dependent rate of death should be
consider to explain this plateau effect. Experimental data also suggest that drug treatment increases
population growth rate above that of untreated cells briefly, but model does not capture this. This
could be obtained by considering a lower death rate for quiescent cells than for proliferating cells. But
for such more complex models, additional experimental data and a new parameter estimation method
would be necessary to estimate the death rates.
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Figure 7: Left: experimental data without erlotinib, with a 50nM dose and with a 5000nM dose. The
total quantity N(t) is plotted on a log-scale. Right: numerical simulation of model (1) for f = 0, f =
0.6 and f = 0.84. The curves represent the evolution of ln(P (t) +Q(t)) where P (t) :=

∫∞

0 p(t, a) da is
the total quantity of proliferating cells at time t. They are obtained by solving Equation (1) numerically
with the parameters of Figure 6 and with ν = 0.004.

Conclusion

Linking experimental observation of cell behavior between the single-cell and population scales has
recently been described using newly developed mathematical models [53]. However, this approach
does not take into account the possible cell age-dependent effects of a perturbation on cell behavior,
such as would be expected if the effects occur in cells at a specific position in the cell cycle. Since
these studies were performed with asynchronously dividing cell populations, it is evident that the
mathematical models of these experiments should have age structure as a primary feature. In fact,
to fit the data, the authors had to use an artificial time offset to account for the age-structured
effects. Here we provide a formalized approach to accurately account for cell age-dependent effects
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on cellular behavior. A major difficulty in the parameterization of age-structured models is the
determination of the age dependent division rate. Our study provides a method for the quantitative
recovery of this rate by fitting experimental IMT distributions to special forms, such as gamma
functions or exponential modified Gaussians. This model, once successfully parameterized, is very
useful for simulating and analyzing age-dependent phenomena in cell population dynamics. We have
presented one such application for the in vitro treatment of cancer cells by erlotinib. This example
shows the utility of age-structured population models in explaining the connection of drug therapy
to phenomena such as cell cycle phase entry into quiescence. The method we have presented can be
implemented readily to many issues in cell population behavior when there is experimental data based
on cell age.

Aknowledgments

The research stays of P. Gabriel at Vanderbilt University have been financially supported by a grant
of the Fondation Pierre Ledoux Jeunesse Internationale.

A Convergence to the equilibrium

The long-time behavior p(t, a) ∼ const p̂(a)eλt can be proven by using semi-groups methods [37, 54]
or General Relative Entropy techniques [38, 40]. We detail here a result provided by General Relative
Entropy.
Consider φ the unique solution to the adjoint eigenvalue problem

{

λφ(a) − ∂aφ(a) + β(a)φ(a) + µφ(a) = 2φ(0)β(a),

φ(·) ≥ 0,
∫

p̂(a)φ(a) da = 1.

Then the General Relative Entropy method allows us to prove that
∫ ∞

0
|p(t, a)e−λt − ρ0p̂(a)|φ(a) da −−−→

t→∞
0

where

ρ0 =

∫ ∞

0
φ(a)p0(a) da.

B Convergence of the IMT distribution

Theorem 3. Suppose that Assumptions (2) and (10) are satisfied and consider an initial distribution
p̄0 such that p̄0(a) = 0 for all a > t0. Then we have the convergence

∫ ∞

0
|IT (a)− I∞(a)| da −−−−→

T→∞
0

where IT and I∞ are defined in (9) and (11).

For the sake of simplicity, the proof of Theorem 3 is given in the case µ = 0. But it can be easily
adapted to the case with a death rate.
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Proof of Theorem 3 in the case µ = 0. First we extend the initial distribution and the division rate
β(a) to negative ages by setting p̄0(a) = β(a) = 0 for a < 0. Since the daughters of the labeled cells are
not tracked, the age distribution p̄(t, a) of labeled cells satisfies a transport equation without boundary
condition. Thus it writes, using the characteristic method,

∀ t, a ≥ 0, p̄(t, a) = p̄0(a− t)e−
∫ t

0
β(a−s) ds.

Introducing this expression in the definition of IT (a) we obtain, with changes of variables,

IT (a) = C−1
T

∫ T

0
β(a)p̄0(a− t)e−

∫ t

0
β(a−s) dsdt

= C−1
T

∫ T

0
β(a)p̄0(a− t)e−

∫ a

a−t
β(a′) da′dt

= C−1
T

∫ a

a−T

β(a)p̄0(u)e
−

∫ a

u
β(a′) da′du

= C−1
T β(a)e−

∫ a

0
β(a′) da′

∫ a

a−T

p̄0(u)e
∫ u

0
β(a′) da′du.

Since the support of p̄0 is included in [0, t0] and β(a) = 0 for a ∈ [0, t0] due to Assumption (2), we
have for all u ∈ R

p̄0(u)e
∫ u

0
β(a′) da′ = p̄0(u)

so IT (a) writes

IT (a) = C−1
T β(a)e−

∫ a

0
β(a′) da′

∫ a

a−T

p̄0(u)du.

Define the primitive

P (a) :=

∫ a

0
p̄0(u) du.

This function is nondecreasing and satifies P (a) = 0 for a ≤ 0 and P (a) = P (t0) =
∫∞

0 p̄0 for a ≥ t0,
so we have

∫ a

a−T

p̄0(u)du = P (a)− P (a− T ) =















P (a) if 0 ≤ a ≤ t0,
P (t0) if t0 ≤ a ≤ T,
P (t0)− P (a− T ) if T ≤ a ≤ T + t0,
0 if a ≥ T + t0.

Because β(a) = 0 for a ≤ t0, we obtain by integration of IT (a) on R
+

1 = C−1
T P (t0)

∫ T

0
β(a)e−

∫ a

0
β(a′) da′ da+ C−1

T

∫ T+t0

T

β(a)e−
∫ a

0
β(a′) da′(P (t0)− P (a− T )) da

which gives

CT − P (t0)

∫ T

0
β(a)e−

∫ a

0
β(a′) da′ da =

∫ T+t0

T

β(a)e−
∫ a

0
β(a′) da′(P (t0)− P (a− T )) da

≤ P (t0)

∫ T+t0

T

β(a)e−
∫ a

0
β(a′) da′ da

−−−−−→
T→+∞

0.
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Since
∫ ∞

0
β(a)e−

∫ a

0
β(a′) da′ da = 1,

we conclude that

CT −−−−−→
T→+∞

P (t0) =

∫ ∞

0
p̄0(a) da.

Then we have
∫ ∞

0
|IT (a)− I∞(a)| da ≤

∣

∣C−1
T P (t0)− 1

∣

∣

∫ T

0
β(a)e−

∫ a

0
β(a′) da′ da

+

∫ T+t0

T

∣

∣C−1
T [P (t0)− P (a− T )]− 1

∣

∣ β(a)e−
∫ a

0
β(a′) da′ da

+

∫ ∞

T+t0

β(a)e−
∫ a

0
β(a′) da′ da

≤
∣

∣C−1
T P (t0)− 1

∣

∣

∫ T

0
β(a)e−

∫ a

0
β(a′) da′ da+K

∫ ∞

T

β(a)e−
∫ a

0
β(a′) da′ da

−−−−→
T→∞

0

and it ends the proof of Theorem 3.
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