An analytical solution of Shallow Water system coupled to Exner equation
Christophe Berthon, Stéphane Cordier, Minh Le, Olivier Delestre

To cite this version:

HAL Id: hal-00648343
https://hal.archives-ouvertes.fr/hal-00648343
Submitted on 7 Dec 2011
An analytical solution of Shallow Water system coupled to Exner equation

C. Berthon⁷, S. Cordier⁸, O. Delestre⁹ and M.H. Le¹⁰

¹Laboratoire de Mathématiques Jean Leray, Université de Nantes – 2 rue de la Houssiniere – 44322 Nantes
²MAPMO UMR CNRS 6628, Université d’Orléans, UFR Sciences, Bâtiment de mathématiques – 45067 Orléans
³Laboratoire de Mathématiques J.A. Dieudonné & Ecole Polytech Nice - Sophia, Université de Nice - Sophia Antipolis, Parc Valrose – 06108 Nice
⁴BRGM – 3 avenue Claude Guillemin - B.P. 36009 – 45060 Orléans Orléans

Received *****; accepted after revision +++++
Presented by

Abstract

In this paper, an exact smooth solution for the equations modeling the bedload transport of sediment in Shallow Water is presented. This solution is valid for a large family of sedimentation laws which are widely used in erosion modeling such as the Grass model or those of Meyer-Peter & Müller. One of the main interest of this solution is the derivation of numerical benchmarks to validate the approximation methods. To cite this article: A. Name1, A. Name2, C. R. Acad. Sci. Paris, Ser. I 340 (2005).

1. Introduction

Soil erosion is a consequence of the movements of sediments due to mechanical actions of flows. In the context of bedload transport, a mass conservation law, also called Exner equation [1], is used to update

Email addresses: christophe.berthon@math.univ-nantes.fr (C. Berthon), stephane.cordier@math.cnrs.fr (S. Cordier), Delestre@unice.fr (O. Delestre), mh.le@brgm.fr (M.H. Le).

Preprint submitted to the Académie des sciences

December 7, 2011
the bed elevation. This equation is coupled with the shallow water equations describing the overland flows (see [2] and references therein) as follows:

\[
\begin{aligned}
\partial_t h + \partial_x (hu) &= 0, \\
\partial_t (hu) + \partial_x (hu^2 + gh^2/2) + gh \partial_x z_b &= 0, \\
\partial_t z_b + \partial_x q_b &= 0,
\end{aligned}
\]

where \(h \) is the water depth, \(u \) the flow velocity, \(z_b \) the thickness of sediment layer which can be modified by the fluid and \(g \) the acceleration due to gravity. The variable \(hu \) is also called water discharge and noted by \(q \). Finally, \(q_b \) is the volumetric bedload sediment transport rate. Its expressions are usually proposed for granular non-cohesive sediments and quantified empirically [3,4,5].

Many numerical schemes have been developed to solve system (1-3) (see [5] and references therein). The validation of such schemes by an analytical solution is a simple way to ensure their working. Nevertheless, analytical solutions are not proposed in the literature. Up to our knowledge, asymptotic solutions, derived by Hudson in [6], are in general adopted to perform some comparisons with approximated solutions. The solutions are derived for Grass model [3], i.e \(q_b = A_g u_e^2 \), when the interaction constant \(A_g \) is smaller than \(10^{-2} \). In this paper, we propose a non obvious analytical solution in the steady state condition of flow.

2. Solution of the equations

In order to obtain an analytic solution, we consider \(q_b \) as a function of the dimensionless bottom shear stress \(\tau_b^* \) (see [5]). By using the friction law of Darcy-Weisbach, \(\tau_b^* \) is given by

\[
\tau_b^* = \frac{fu^2}{8(s-1)gd_s},
\]

where \(f \) is the friction coefficient, \(s = \rho_s/\rho \) the relative density of sediment in water and \(d_s \) the diameter of sediment. The formula of \(q_b \) is usually expressed under the form

\[
q_b = \kappa (\tau_b^* - \tau_{cr}^*)^p \sqrt{(s-1)gd_s^3},
\]

where \(\tau_{cr}^* \) is the threshold for erosion, \(\kappa \) an empirical coefficient and \(p \) an exponent which is often fixed to 3/2 in many applications. The expression (4) can be written in the simple form

\[
q_b = Au_e^{2p},
\]

where the effective velocity \(u_e \) and the interaction coefficient \(A \) are defined by

\[
\begin{aligned}
\left\{ \begin{array}{l}
u_e^2 = u^2 - u_{cr}^2, \\
u_{cr}^2 = \tau_{cr}^* \left[\frac{f}{8(s-1)gd} \right]^{-1}, \\
A = \kappa \left[\frac{f}{8(s-1)gd} \right]^p \sqrt{(s-1)gd_s^3}.
\end{array} \right.
\]

Remark. The Grass model [3] is one of the simplest case by using \(p = 3/2, \tau_{cr}^* = 0 \) and an empirical coefficient \(A_g \) instead of \(A \). The Meyer-Peter & Müller model [4] is one of the most applied by using \(p = 3/2, \kappa = 8, \tau_{cr}^* = 0.047 \). The following result is valid for all models rewriting in form (5-6).

Proposition 2.1 Assume that \(q_b \) is defined by (4). For a given uniform discharge \(q \) such that \(\tau_b^* > \tau_{cr}^* \), system (1-3) has the following analytical unsteady solution
\[\begin{align*}
 u^2_e &= \left(\frac{\alpha x + \beta}{A} \right)^{1/p}, \\
 u &= \sqrt{u^2_e + u^2_{cr}}, \quad h = q/u, \\
 z^0_b &= -\frac{u^3 + 2qg}{2gu} + C, \\
 z_b &= -\alpha t + z^0_b.
\end{align*} \]

where \(\alpha, \beta, C \) are constants and \(A, u_{cr} \) are defined by (6).

Proof. We are here concerned by the smooth solution. In view of the assumption \(hu = q = \text{cst} \), equations (1-3) reduce to

\[\begin{align*}
 \partial_t h &= 0, \\
 \partial_x q^2/h + gh\partial_x H &= 0, \\
 \partial_t H + \partial_x q_b &= 0,
\end{align*} \]

where \(H = h + z \) is the free surface elevation. Differentiating equation (8) with respect to \(t \) and then equation (9) with respect to \(x \), we obtain

\[\begin{align*}
 \partial_{tt} H &= 0, \\
 \partial_{tt}^2 H &= 0.
\end{align*} \]

Note that we can write \(q_b = q_b(h, q) \) to have \(\partial_t q_b = \partial_h q_b \partial_t h + \partial_q q_b \partial_t q = 0 \), so \(q_b \) is not time-depending. Thank to (10), the expression of \(q_b \) is obtained under the form

\[q_b = \alpha x + \beta, \]

where \(\alpha \) and \(\beta \) are constant. From (3), we obtain \(\partial_t z_b = -\partial_x q_b = -\alpha \) to write

\[z_b = -\alpha t + z^0_b(x). \]

Moreover, from (5) we deduce the effective velocity as follows:

\[u^2_e = \left(\frac{\alpha x + \beta}{A} \right)^{1/p}. \]

Plugging (12) into the momentum equation (8) and using a direct calculation, we have

\[\partial_x z^0_b = \left[\frac{q}{u^2} - \frac{u}{g} \right] \partial_x u \Rightarrow z^0_b = -\frac{u^3 + 2qg}{2gu} + C \]

which concludes the proof.

Remark. As \(h \) and \(u \) are stationary, the initial condition of (7) is \((h, u, z^0_b) \). Moreover, the solution \((h, u) \) applied to the Grass model is also an analytical solution of the Shallow Water Equations with the variable topography \(z^0_b \). Concerning the shallow-water model, other solutions can be found in [7].

3. Numerical experiments

In this section, we consider the analytical solution (7) applied to the Grass model with \(q = 1, A_g = \alpha = \beta = 0.005 \) and \(C = 1 \). A relaxation solver is applied to approximate the solution of the model. We will not give here the details of the relaxation solver (for details see [8]), but just the relaxation model for the equations (1-3). Thus, we solve the following relaxation system:
Figure 1. Comparison between the exact solution and the relaxation method for: the water height and the topography (left) and the velocity (right).

\[
\begin{align*}
\partial_t h + \partial_x (hu) &= 0, \\
\partial_t (hu) + \partial_x (hu^2 + \pi) + gh \partial_x z_b &= 0, \\
\partial_t \pi + u \partial_x \pi + \frac{a^2}{h} \partial_x u &= 0, \\
\partial_t z_b + \partial_x q_r &= 0, \\
\partial_t q_r + \left(\frac{b^2}{h^2} - u^2 \right) \partial_x z_b + 2u \partial_x q_r &= 0,
\end{align*}
\]

that is completed with \(\pi = gh^2/2 \) and \(q_r = q_b \) at the equilibrium. Figure 1 presents the numerical result with \(J = 500 \) space cells, a CFL fix condition of 1 and \(T = 7s \). We only notice little difference on the velocity, near the inflow boundary.

References