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A DIRICHLET PRINCIPLE FOR NON REVERSIBLE MARKOV

CHAINS AND SOME RECURRENCE THEOREMS

A. GAUDILLIÈRE, C. LANDIM

Abstract. We extend the Dirichlet principle to non-reversible Markov pro-
cesses on countable state spaces. We present two variational formulas for the
solution of the Poisson equation or, equivalently, for the capacity between two
disjoint sets. As an application we prove a some recurrence theorems. In par-
ticular, we show the recurrence of two-dimensional cycle random walks under
a second moment condition on the winding numbers.

1. Introduction

Since Kakutani work [10], probability theory has not only proven to be a powerful
tool inside potential theory, but potential theory has also given deep insight into the
study of Markov processes. For example, the Dirichlet and the Thomson principles,
which express escape probabilities as infima and suprema, respectively, give efficient
recurrence and transience criteria. One can use the Dirichlet principle to prove the
recurrence of random walks in random conductances in dimension one and two,
and the Thomson principle to prove transience in dimension larger than or equal
to three [15, 17].

Recently, potential theory and the Dirichlet principle played an important role
in the proof of almost sure convergence of Dirichlet functions in transient Markov
processes [1, 6], and in the proof of the recurrence of a simple random walk on
the trace of transient Markov processes [5]. In a completely different context, the
Dirichlet principle has been a basic tool in the investigation of metastability of
reversible Markov processes (cf. [4, 3] and references therein).

Most applications of potential theory to Markov processes, as the ones cited
above, are however restricted to reversible processes due to the lack of variational
formulas for the effective resistance between two sets in non-reversible processes.
We fill this gap here, presenting a Dirichlet principle for general Markov processes
in discrete state spaces.

To illustrate the interest of the Dirichlet principle, we present some direct impli-
cations of this result. In Lemma 2.8, we extend to non-reversible transient Markov
processes a well known pointwise estimate of a function in terms of its Dirichlet
form and the Green function. In the last section, we state some recurrence theorems
for non-reversible processes. In particular, we show that the recurrence property of
Durrett multidimensional generalization [8] of Sinai random walk relies in fact on
the scale invariance properties of a stationary measure and not on the reversibility
of the process. We also give a sufficient second moment condition for the recurrence
of two-dimensional cyclic random walks considered before in [11, 13, 7, 12].

Key words and phrases. Markov process, Potential theory, Non-reversible, Dirichlet principle,
Recurrence.
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In a completely different direction, relying on the Dirichlet principle presented in
this article we prove in [9] the metastable behavior of the condensate in supercritical
asymmetric zero range processes, extending to the non-reversible case the results
proved in [3].

2. Notation and Main results

Consider an irreducible Markov process {Xt : t ≥ 0} on a countable state space E
with generator L. Denote by λ(x), x ∈ E, the holding rates, by p(x, y), x 6= y ∈ E,
the jump probabilities, and by r(x, y) = λ(x)p(x, y) the jump rates. In particular,
for every function f : E → R with finite support,

(Lf)(x) =
∑

y∈E

r(x, y)[f(y) − f(x)] , x ∈ E . (2.1)

Note that Lf is well defined for a bounded function f .
Assume that the Markov process {Xt : t ≥ 0} admits a stationary state µ. Let

L2(µ) be the space of square summable functions f : E → R endowed with the
scalar product defined by

〈f, g〉µ =
∑

x∈E

µ(x) f(x) g(x) .

Denote by the same symbol L the generator acting on a domain of L2(µ), and by
D(f) the Dirichlet form or energy of a function f : E → R :

D(f) =
1

2

∑

x,y∈E

µ(x) r(x, y) [f(y) − f(x)]2

so that for f in the domain of the generator we have D(f) = 〈f, (−L)f〉µ.
For each x ∈ E, denote by Px the probability measure on the path space

D(R+, E) of right continuous trajectories with left limits induced by the Markov
process Xt starting from x. Expectation with respect to Px is denoted by Ex.

Denote by {X∗
t : t ≥ 0} the stationary Markov process Xt reversed in time. We

shall refer to X∗
t as the adjoint or the time reversed process. It is well known that

X∗
t is a Markov process on E whose generator L∗ is the adjoint of L in L2(µ).

The jump rates r∗(x, y), x 6= y ∈ E, of the adjoint process satisfy the balanced
equations

µ(x) r(x, y) = µ(y) r∗(y, x) . (2.2)

Denote by λ∗(x) = λ(x), x ∈ E, p∗(x, y), x 6= y ∈ E, the holding rates and the
jump probabilities of the time reversed process X∗

t .
As above, for each x ∈ E, denote by P

∗
x the probability measure on the path

space D(R+, E) induced by the Markov process X∗
t starting from x. Expectation

with respect to P
∗
x is denoted by E

∗
x.

For a subset A of E, denote by TA (resp. T+
A ) the hitting (resp. return) time of

a set A:

TA := inf
{

s > 0 : Xs ∈ A
}

,

T+
A := inf{t > 0 : Xt ∈ A,Xs 6= X0 for some 0 < s < t} .

When the set A is a singleton {a}, we denote T{a}, T
+
{a} by Ta, T

+
a , respectively.

We set for every x in E, M(x) = µ(x)λ(x).
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Definition 2.1. For two disjoint subsets A, B of E, the capacity between A and

B is defined as

cap(A,B) =
∑

x∈A

M(x)Px
[

T+
A > T+

B

]

. (2.3)

Clearly, the sum may be infinite. We prove below in Lemma 2.3 that the capacity
is symmetric: cap(A,B) = cap(B,A).

We may also express the capacity in terms of the distribution of the adjoint
process. By (2.2), for any sequence x0, x1, . . . , xn such that p(xi, xi+1) > 0, 0 ≤
i < n, M(x0)

∏

0≤i<n p(xi, xi+1) =M(xn)
∏

0≤i<n p
∗(xi+1, xi). It follows from this

observation that for any a ∈ A, b ∈ B,M(a)Pa[TB < T+
A , TB = Tb] =M(b)P∗

b [TA <

T+
B , TA = Ta]. Hence,

cap(A,B) =
∑

a∈A

M(a)Pa[TB < T+
A ] =

∑

a∈A

∑

b∈B

M(a)Pa[TB < T+
A , TB = Tb] ,

so that

cap(A,B) =
∑

b∈B

M(b)P∗
b [T

+
A < T+

B ] = cap∗(B,A). (2.4)

As in the reversible case, the capacity is a monotone function in each of its
coordinates:

Lemma 2.2. Fix two disjoint subsets A, B of E. Consider two sets A′, B′ such

that A ⊂ A′ ⊂ Bc and B ⊂ B′ ⊂ Ac. Then,

cap(A,B) ≤ cap(A,B′) , cap(A,B) ≤ cap(A′, B) .

Proof. The first claim follows from the original definition and the second one from
equation (2.4). �

For two disjoint subsets A, B of E, let VA,B, V
∗
A,B : E → [0, 1] be the equilibrium

potentials defined by

VA,B(x) = Px[TA < TB] , V ∗
A,B(x) = P

∗
x[TA < TB] . (2.5)

When the set Bc is finite, the equilibrium potential VA,B has a finite support
and belongs therefore to the domain of the generator. Moreover, in this case, VA,B
is the unique solution of the elliptic equation







(LV )(z) = 0 , z ∈ E \ (A ∪B) ,
V (x) = 1 , x ∈ A ,
V (y) = 0 , y ∈ B .

Furthermore, since by the Markov property, −(LVA,B)(x) = λ(x)Px[TB < T+
A ],

x ∈ A,

cap(A,B) = 〈VA,B , (−L)VA,B〉µ = D(VA,B) . (2.6)

This identity does not hold in general, since the scalar product is not well defined
if the set Bc is not finite. However, following [2], if the process Xt is positive
recurrent and the measure M(x) = µ(x)λ(x) is finite, one can show that this
formula for the capacity holds.

Lemma 2.3. For any disjoints subsets A and B of E,

cap(A,B) = cap(B,A) .
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Moreover, if {Kn |n ≥ 1} is an increasing sequence of finite sets such that E =
∪n≥1Kn, then

cap(A,B) = lim
m→+∞

lim
n→+∞

cap(Am, Bn) ,

where Am = A ∩Km, Bn = B ∪Kc
n.

Proof. Assume first that Bc is finite. In this case by (2.6),

cap(A,B) = D(VA,B) = D(1− VB,A) = D(VB,A) .

Since
∑

x∈B,y∈Bc µ(x)r(x, y) and
∑

y∈B,x∈Bc µ(x)r(x, y) are finite, and since VB,A
is equal to 1 on B, we may write D(VB,A) as

1

2

∑

x,y

µ(x)r(x, y)VB,A(x)(VB,A(x) − VB,A(y))

+
1

2

∑

x,y

µ(y)r(y, x)VB,A(y)(VB,A(y)− VB,A(x))

+
∑

x,y

ca(x, y)VB,A(y)(VB,A(y)− VB,A(x)) ,

(2.7)

where ca(x, y) = (1/2)[µ(x)r(x, y) − µ(y)r(y, x)] and all these sums are absolutely
convergent since VB,A is bounded.

The first two lines of the previous sum are equal. Since VB,A is bounded,
(LVB,A)(x) is well defined by (2.1) for each x in E. Moreover, (LVB,A)(x) = 0
for x ∈ (A∪B)c and −(LVB,A)(x) = λ(x)Px[TA < T+

B ], x ∈ B. Therefore, the sum
of the first two lines is equal to

∑

x

µ(x)VB,A(x)(−LVB,A)(x) =
∑

b∈B

M(b)Pb[T
+
A < T+

B ] = cap(B,A) . (2.8)

On the other hand, since ca(x, y) = −ca(y, x) and since the sum
∑

x,y ux,y may

be written as (1/2)
∑

x,y{ux,y + uy,x}, the last line in (2.7) is equal to

1

2

∑

x,y

ca(x, y)(V
2
B,A(y)− V 2

B,A(x))

=
1

2

∑

x,y 6∈B

ca(x, y)(V
2
B,A(y)− V 2

B,A(x)) +
∑

x 6∈B

∑

y∈B

ca(x, y)(1 − V 2
B,A(x))

= −
∑

x 6∈B

∑

y∈E

ca(x, y)V
2
B,A(x) +

∑

x 6∈B

∑

y∈B

ca(x, y) .

As ca(x, y) = −ca(y, x),
∑

x,y 6∈B ca(x, y) = 0. We may therefore replace the
sum over B in the last term by a sum over E. Since µ is a stationary state,
∑

y∈E ca(x, y) = 0 for all x ∈ E. This proves that the last line of the previous
displayed formula vanishes. In conclusion, when Bc is finite,

cap(A,B) = D(VB,A) = cap(B,A) .

It remains to remove the assumption that Bc is finite. Let {Kn |n ≥ 1} be an
increasing sequence of finite sets such that E = ∪n≥1Kn. For each m ≤ n, let
Am = A ∩Km, Bn = B ∪Kc

n and note that Bcn is finite for each n ≥ 1. Since each
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set Am is finite, by (2.3), by (2.4) and by Beppo Levi’s theorem,

lim
m→+∞

lim
n→+∞

cap(Am, Bn) = lim
m→+∞

cap(Am, B) = lim
m→+∞

cap∗(B,Am)

= lim
m→+∞

∑

b∈B

M(b)P∗
b [T

+
B > T+

Am
] = cap∗(B,A) = cap(A,B) .

Since Bcn is finite, by (2.4) and by the first part of the proof, for any m ≤ n,
cap(Am, Bn) = cap(Bn, Am) = cap∗(Am, Bn). Repeating the same computations
we obtain that

lim
m→+∞

lim
n→+∞

cap(Am, Bn) = lim
m→+∞

lim
n→+∞

cap∗(Am, Bn) = cap(B,A) .

This proves the lemma. �

Denote by S (resp. A) the symmetric (resp. anti-symmetric) part of the genera-
tor L in L2(µ): S = (1/2){L+ L∗}, A = (1/2){L− L∗}. The next result is proved
in Section 3.

Theorem 2.4. Fix two disjoint subsets A, B of E, with Bc finite. Then,

cap(A,B) = inf
F

sup
H

{

2〈L∗F , H〉µ − 〈H, (−S)H〉µ

}

, (2.9)

where the supremum is carried over all functions H : E → R which are constant

at A and B, and where the infimum is carried over all functions F which are equal

to 1 at A and 0 at B. Moreover, the function FA,B which solves the variational

problem for the capacity is equal to (1/2){VA,B + V ∗
A,B}, where VA,B, V

∗
A,B are the

harmonic functions defined in (2.5).

In the reversible case, the supremum over H in the statement of Theorem 2.4 is
easily shown to be equal to 〈(−L)F , F 〉µ and we recover the well known variational
formula for the capacity:

cap(A,B) = inf
F

〈(−L)F , F 〉µ ,

where the infimum is carried over all functions F which are equal to 1 at A and 0
at B.

When the set E is finite and the sets A and B are singletons, A = {a}, B = {b},
the supremum over H becomes a supremum over all functions H : E → R. In this
case,

sup
H

{

2〈L∗F , H〉µ − 〈H, (−S)H〉µ

}

= 〈L∗F , (−S)−1L∗F 〉µ . (2.10)

Therefore, when the set E is finite, since L (−S)−1L∗ = {[(−L)−1]s}−1 [12, Section
2.5], the formula for the capacity between two singletons becomes

cap({a}, {b}) = inf
F

〈F , L(−S)−1L∗F 〉µ = inf
F

〈F , {[(−L)−1]s}−1F 〉µ ,

where the infimum is carried over all functions F which are equal to 1 at a and 0
at b, and where [(−L)−1]s stands for the symmetric part of the operator (−L)−1.

In Lemma 4.1 below we express the right hand side of (2.10) as an infimum over
divergence free flows. We have therefore two alternative formulas for the scalar
product 〈L∗F , (−S)−1L∗F 〉µ, one expressed as a supremum over functions, and
another one written as an infimum over flows.
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2.1. Estimates on the capacity. We compare in this subsection the capacity
associated to the generator L with the symmetric capacities caps associated to the
generators S. Let {Xs

t : t ≥ 0} be the Markov process on E with generator S. We
shall refer to Xs

t as the symmetric or reversible version of the process Xt. Denote
by P

s
x, x ∈ E, the probability measure on the path space D(R+, E) induced by the

Markov process Xs
t starting from x.

For two disjoint subsets A, B of E, let caps(A,B) be the capacity between the
sets A and B for the reversible process Xs

t :

caps(A,B) =
∑

x∈A

M(x)Psx
[

T+
A > T+

B

]

.

In the case where the set Bc is finite,

caps(A,B) = 〈V sA,B , (−S)V
s
A,B〉µ ,

where V sA,B is the equilibrium potential: V sA,B(x) = P
s
x[TA < TB]. Moreover, since

the generator S is symmetric in L2(µ), it is well known that if Bc is finite,

caps(A,B) = inf
F

〈(−S)F , F 〉µ = inf
F

〈(−L)F , F 〉µ , (2.11)

where the infimum is carried over all functions F which are equal to 1 at A and 0
at B. Taking H = −F in the variational formula (2.9) we obtain that

cap(A,B) ≥ inf
F
〈(−L)F , F 〉µ .

The next result follows from the previous observation, (2.11) and Lemma 2.3.

Lemma 2.5. For two disjoint subsets A, B of E,

caps(A,B) ≤ cap(A,B) .

Recall that a generator L satisfies a sector condition with constant C0 if for every
f , g in the domain of the generator,

〈Lf, g〉2µ ≤ C0 〈(−L)f, f〉µ 〈(−L)g, g〉µ .

Next result, whose proof is presented at the end of Section 3, shows that if the
generator L satisfies a sector condition, we may estimate the capacity between two
sets by the capacity associated to the symmetric part of the generator.

Lemma 2.6. Suppose that the generator L satisfies a sector condition with constant

C0. Then, for every pair of disjoint subsets A, B of E,

cap(A,B) ≤ C0 cap
s(A,B) .

2.2. Flows in finite state spaces. We have seen that one can reduce capacity
computations to the case when Bc is finite. By identifying B with a single point
(this will be rigorously done in the next section) we can then restrict ourselves to the
case of a finite space E. We then assume in this subsection that the E is finite. In
this case the stationary measure µ is unique up to multiplicative constants. Define
the (generally asymmetric) conductances

c(x, y) = µ(x) r(x, y) , c∗(x, y) = µ(x) r∗(x, y) , x 6= y ∈ E .

Note that c(x, y) = c∗(y, x). Let cs(x, y), ca(x, y), be the symmetric and the asym-
metric parts of the conductances:

cs(x, y) = (1/2){c(x, y) + c∗(x, y)} , ca(x, y) = (1/2){c(x, y)− c∗(x, y)} ,
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for x 6= y ∈ E. Clearly, cs(x, y) = cs(y, x) and ca(x, y) = −ca(y, x). The sym-
metric conductances cs(x, y) are the conductances of the reversible Markov process
associated to the generator S.

Denote by E the set of oriented edges or arcs of E: E = {(x, y) ∈ E × E :
cs(x, y) > 0}. For an oriented edge e = (x, y) ∈ E , let e− = x be the tail of the arc
e and let e+ = y be its head. We call flow any anti-symmetric function ϕ : E → R.
Denote by F the set of flows endowed with the scalar product

〈ϕ, ψ〉 =
1

2

∑

(x,y)∈E

1

cs(x, y)
ϕ(x, y)ψ(x, y) , (2.12)

and let ‖ · ‖ be the norm associated to this scalar product.
Denote by (div ϕ)(x), x ∈ E, the divergence of the flow ϕ at x:

(div ϕ)(x) =
∑

y:(x,y)∈E

ϕ(x, y) , x ∈ E .

A flow ϕ whose divergence vanishes at all sites, (divϕ)(x) = 0 for all x ∈ E, is
called a divergence free flow. An important example of such a divergence free flow
is ca.

For a function f : E → R, let Ψf(x, y) = cs(x, y)[f(x) − f(y)] be the gradient
flow associated to f . Clearly, Ψf belongs to F and

‖Ψf‖
2 = 〈Ψf ,Ψf 〉 = 〈(−L)f , f〉µ . (2.13)

Let G = {Ψf | f : E → R} ⊂ F . We refer to G as the set of gradient flows.
A finite sequence γ = (x0, . . . , xn = x0) of sites in E which starts and ends at the

same site is called a cycle if (xi, xi+1) is an arc for each 0 ≤ i ≤ n−1 and if xi 6= xj
for 0 ≤ i < j < n. An arc e is said to belong to a cycle γ = (x0, . . . , xn = x0) if
e = (xi, xi+1) for some 0 ≤ i < n. We associate to a cycle γ = (x0, . . . , xn = x0)
the flow χγ : E → R defined by

χγ =
n−1
∑

i=0

{δ(xi,xi+1) − δ(xi+1,xi)} . (2.14)

Denote by C the subspace of F spanned by flows associated to cycles.
A flow ϕ ∈ C associated to a cycle has no divergence:

(div ϕ)(x) = 0 x ∈ E .

Also, ϕ is a gradient flow if and only if ϕ is orthogonal to all cycle flows. In other
words, we have

F = G ⊕ C , G ⊥ C . (2.15)

In addition, a flow ϕ that is orthogonal to all gradient flows satisfies, (divϕ)(x0) = 0
for all x0 in E, because (divϕ)(x0) = 〈Ψf , ϕ〉 for the function f defined by f(x) =
δx0,x. This proves that C is the set of all divergence free flows.

Inspired by the computation of the current through an arc (x, y), presented in
(4.5) below, for a function f : E → R, denote by Φf : E → R the flow defined by

Φf (x, y) = f(x) c(x, y) − f(y) c(y, x) . (2.16)

In Section 4 we prove the following result.
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Theorem 2.7. For any disjoint and non-empty sets A, B ⊂ E,

cap(A,B) = inf
f

inf
ϕ

‖Φf − ϕ‖2 ,

where the first infimum is carried over all functions f : E → R which are equal to

1 on the set A and 0 on the set B, and the second infimum is carried over all flows

ϕ ∈ F such that

(div ϕ)(x) = 0 , x ∈ (A ∪B)c ,
∑

a∈A

(div ϕ)(a) = 0 ,
∑

b∈B

(div ϕ)(b) = 0 .

In the case where A and B are singletons, the second infimum is carried over all
divergence free flows. Hence, in the case of singletons, the infimum corresponds to
a projection over the space of gradient flows.

In the last section of this article, when we shall estimate some capacities among
singletons, the divergence free flow ϕ(x, y) = ca(x, y), (x, y) ∈ E , will be used
repeatedly to obtain upper bounds.

2.3. Transient Markov processes. Assume in this subsection that the irre-
ducible Markov process {Xt | t ≥ 0} is transient, and denote by G(x, y) its Green
function:

G(x, y) = Ex

[

∫ ∞

0

1{Xt = y} dt
]

.

Define the capacity of a state x ∈ E, denoted by cap(x), as

cap(x) = M(x)Px
[

T+
x = ∞

]

.

Since G(x, x)−1 = λ(x)Px[T
+
x = ∞], we have that

cap(x) = µ(x)
1

G(x, x)
· (2.17)

Fix a finitely supported function f : E → R such that f(x) 6= 0, and let F (y) =
f(y)/f(x) so that F (x) = 1. By Definition 2.1, if {An |n ≥ 1} is a sequence of
increasing, finite sets such that E = ∪n≥1An,

cap(x) = lim
n→∞

cap(x,Acn) .

Since An is finite and since F is finitely supported, with F (x) = 1, by Theorem 2.4,

cap(x) ≤ lim
n→∞

sup
H∈Bn

{

2〈L∗F , H〉µ − 〈H, (−S)H〉µ

}

,

where Bn is the set of functions H : E → R which vanish at Acn. As F ( · ) =
f( · )/f(x), replacing H by H ′( · ) = H( · )/f(x), we obtain that

cap(x) ≤
1

f(x)2
lim
n→∞

sup
H∈Bn

{

2〈L∗f , H〉µ − 〈H, (−S)H〉µ

}

.

In view of (2.17), we have proved the following result, which generalizes a well
known estimate in the context of reversible Markov processes [12, Proposition 5.23],
[1, Lemma 2.1].

Lemma 2.8. Let f : E → R be a finitely supported function and let {An |n ≥ 1}
be a sequence of increasing, finite sets such that E = ∪n≥1An. Then, for every

x ∈ E,

µ(x) f(x)2 ≤ G(x, x) lim
n→∞

sup
H∈Bn

{

2〈L∗f , H〉µ − 〈H, (−S)H〉µ

}

,
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where Bn is the set of functions H : E → R which vanish at Acn.

3. Collapsed Chains and Proof of Theorem 2.4

We start this section by assuming that E is finite and that µ is the unique
stationary probability measure. In the case where the sets A and B are singletons,
the proof of Theorem 2.4 takes the following form.

Lemma 3.1. Fix a pair of points a 6= b in a finite set E. Then,

cap({a}, {b}) = inf
f

〈f , L (−S)−1L∗f〉µ , (3.1)

where the infimum is carried over all function f : E → R such that f(a) = 1,
f(b) = 0. Moreover, the function fa,b which solves the variational problem (3.1) is
unique and equal to (1/2){Va,b+V ∗

a,b}, where Va,b, V
∗
a,b are the harmonic functions

defined in (2.5).

Proof. The operator L(−S)−1L∗ restricted to the space of mean zero functions is
symmetric, strictly positive and bounded because the state space is finite. There
exists, in particular, a unique function fa,b which solves the variational problem
(3.1). Moreover, as (−S)−1 is also strictly positive on the the space of mean zero
functions, there exists a strictly positive constant C0 such that

〈fa,b , L (−S)−1L∗fa,b〉µ ≥ C0〈L
∗fa,b , L

∗fa,b〉µ > 0 . (3.2)

The previous expression can not vanish due to the boundary conditions of fa,b.
Since fa,b solves the variational problem (3.1),

(L (−S)−1L∗fa,b)(x) = 0 , x 6= a, b .

Let Wa,b = S−1L∗fa,b + c0, where c0 is a constant chosen for Wa,b to vanish at b:
Wa,b(b) = 0. Since LWa,b = 0 on E \ {a, b}, Wa,b is a multiple of the harmonic
function Va,b introduced in (2.5): Wa,b = λVa,b, where λ =Wa,b(a).

We claim that λ = 1 so that Wa,b = Va,b. Indeed, since Wa,b is harmonic on
E \ {a, b} and fa,b(a) = 1, fa,b(b) = 0,

〈fa,b , L (−S)−1L∗fa,b〉µ = 〈fa,b , (−L)Wa,b〉µ = −µ(a) (LWa,b)(a) .

On the other hand, since Wa,b − c0 = S−1L∗fa,b and SS
−1 is the identity,

〈fa,b , L (−S)−1L∗fa,b〉µ = 〈L∗fa,b , (−S)
−1L∗fa,b〉µ = 〈Wa,b , (−S)Wa,b〉µ

= 〈Wa,b , (−L)Wa,b〉µ = −µ(a)Wa,b(a) (LWa,b)(a) ,

where the last identity follows from the fact thatWa,b is harmonic on E \{a, b} and
that Wa,b(b) = 0. By (3.2) and the two previous displayed formulas, Wa,b(a) = 1
so that Wa,b = Va,b. Hence, by the last displayed formula and (2.3),

〈fa,b , L (−S)−1L∗fa,b〉µ = 〈Va,b , (−L)Va,b〉µ = cap({a}, {b}) ,

which concludes the proof of the first assertion of the lemma.
Denote by fa,b a function which solves the variational problem (3.1). We claim

that fa,b = (1/2){Va,b + V ∗
a,b}. Indeed, since Wa,b = Va,b and since Va,b is L-

harmonic on E \ {a, b}, on this set (1/2)L∗Va,b = SVa,b = L∗fa,b. Furthermore, as
V ∗
a,b is L

∗-harmonic on E\{a, b}, we have in fact that (1/2)L∗{Va,b+V
∗
a,b} = L∗fa,b.

Hence,

L∗(1/2){Va,b + V ∗
a,b} = L∗fa,b on E \ {a, b}

and (1/2){Va,b + V ∗
a,b} = fa,b on {a, b} .



10 A. GAUDILLIÈRE, C. LANDIM

It follows from these two identities that fa,b = (1/2){Va,b + V ∗
a,b}. �

To extend the previous result to the case where the sets A and B are not sin-
gletons, we define a Markov chain in which a set is collapsed to a single state. Fix
a subset A of E, and let EA = [E \ A] ∪ {d}, where d is an extra site added to E

to represent the collapsed set A. Denote by {X
A

t : t ≥ 0} the chain obtained from
Xt by collapsing the set A to a singleton. This is the Markov process on EA with
jump rates rA(x, y), x, y ∈ EA, given by

rA(x, y) = r(x, y) , rA(x, d) =
∑

z∈A

r(x, z) , x, y ∈ E \A ,

rA(d, x) =
1

µ(A)

∑

y∈A

µ(y) r(y, x) , x ∈ E \A .
(3.3)

The collapsed chain {X
A

t : t ≥ 0} inherits the irreducibility from the original chain.
Denote by µA the probability measure on EA given by

µA(d) = µ(A) , µA(x) = µ(x) , x ∈ E \A . (3.4)

Since
∑

y 6∈A,z∈A

c(y, z) =
∑

y 6∈A,z∈A

c(z, y) ,

one checks that µA is a stationary state, and therefore the unique invariant proba-

bility measure, for the collapsed chain X
A

t .
We may extend the concept of collapsed chain to the case in which more than

one set is collapsed to a singleton. One can proceed recursively, collapsing first
a set A to a point a 6∈ E, obtaining a Markov chain in (E \ A) ∪ {a}, and then
collapsing a set B ⊂ E, B∩A = ∅, to a point b 6∈ E∪{a}, obtaining a new Markov
chain in [E \ (A ∪ B)] ∪ {a, b}. One checks that the final process is the same if we
first collapse B and then A. The rate rA,B(a, b) at which the collapsed chain jumps
from a to b is given by

rA,B(a, b) =
1

µ(A)

∑

z∈A

µ(z)
∑

x∈B

r(z, x) . (3.5)

Denote by LA the generator of the chain {X
A

t : t ≥ 0} and by L
∗

A the adjoint
of LA in L2(µA). Recall that we represent by {X∗

t : t ≥ 0} the adjoint of the chain

Xt and by L∗ its generator. Let {X∗A

t : t ≥ 0} be the chain obtained from X∗
t by

collapsing the set A to a singleton and by L∗
A the generator of this process. We

claim that
L

∗

A = L∗
A . (3.6)

To prove this claim, denote by r ∗
A(x, y) the rates of the adjoint of {X

A

t : t ≥ 0}:

r ∗
A(x, y) =

µA(y) rA(y, x)

µA(x)
, x , y ∈ EA .

Let r∗(x, y), x, y ∈ E, be the jump rates of the adjoint process and let r∗A(x, y),
x, y ∈ EA, be the jump rates of its collapsed version.

In view of the previous displayed formula and by (3.3), (3.4), for x, y ∈ E \A,

r ∗
A(x, y) =

µ(y) r(y, x)

µ(x)
= r∗(y, x) = r∗A(x, y) .
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Furthermore, for y ∈ E \A, since µA(d) = µ(A), by (3.3),

r ∗
A(d, y) =

µ(y) rA(y, d)

µ(A)
=

µ(y)
∑

z∈A r(y, z)

µ(A)

=

∑

z∈A µ(z) r
∗(z, y)

µ(A)
= r∗A(d, y) .

Finally, for x ∈ E \A, by analogous reasons,

r ∗
A(x, d) =

µ(A) rA(d, x)

µ(x)
=

∑

z∈A µ(z)r(z, x)

µ(x)

=
∑

z∈A

r∗(x, z) = r∗A(x, d) ,

which proves (3.6). It follows from this result that

SA = (1/2)
{

LA + L
∗

A

}

, (3.7)

if SA stands for the generator S = (1/2)(L+ L∗) collapsed on the set A.
Fix two functions f , g : EA → R. Let F , G : E → R be defined by F (x) = f(x),

x ∈ E \A, F (z) = f(d), z ∈ A, with a similar definition for G. We claim that

〈LAf , g〉µA
= 〈LF , G〉µ . (3.8)

Conversely, if F , G : E → R are two functions constant over A, (3.8) holds if we
define f , g : EA → R by f(x) = F (x), x ∈ E \A, f(d) = F (z) for some z ∈ A.

Fix two functions f , g : EA → R. By definition of LA,

〈LAf , g〉µA
=

∑

x,y∈EA

µA(x) rA(x, y) [f(y)− f(x)] g(x) .

In view of (3.3), (3.4), this expression is equal to
∑

x∈E\A

µ(x)
{

∑

y∈E\A

r(x, y) [f(y) − f(x)] +
∑

z∈A

r(x, z) [f(d) − f(x)]
}

g(x)

+
∑

y∈E\A

∑

z∈A

µ(z) r(z, y) [f(y)− f(d)] g(d) .

Since F (x) = f(x) for x ∈ E \A, and F (y) = f(d) for y ∈ A, with similar identities
with G, g replacing F , f , the last sum is equal to

∑

x∈E\A

µ(x)
{

∑

y∈E\A

r(x, y) [F (y) − F (x)] +
∑

z∈A

r(x, z) [F (z)− F (x)]
}

G(x)

+
∑

z∈A

∑

y∈E\A

µ(z) r(z, y) [F (y)− F (z)]G(z) .

Since F is constant on A, we may add to this expression
∑

x∈A

∑

y∈A

µ(x) r(x, y) [F (y) − F (x)]G(x)

to obtain that the last displayed expression is equal to 〈LF,G〉µ, which concludes
the proof of the first assertion of (3.8). The second statement is obtained following
the computation in reverse order.

It follows from (3.6) and (3.8) that

〈L∗
Af , g〉µA

= 〈L∗F , G〉µ , 〈SAf , g〉µA
= 〈SF , G〉µ . (3.9)
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The next assertion establishes the relation between collapsed chains and capac-
ities. Fix two disjoint subsets A and B of E. Let EA,B = [E \ (A ∪ B)] ∪ {a, b},

where a 6= b are states which do not belong to E. Denote by {X
A,B

t : t ≥ 0} the
chain in which the sets A, B have been collapsed to the states a, b. Let rA,B(x, y),

pA,B(x, y), and λA,B(x), x, y ∈ EA,B, be the jump rates, the jump probabilities,

and the holding rates, respectively, of the chain X
A,B

t , and denote by µA,B its
unique invariant probability measure.

Denote by capA,B the capacity associated to the collapsed chain. We claim that

capA,B({a}, {b}) = cap(A,B) . (3.10)

Denote by P
A,B

x , x ∈ EA,B, the probability measure on D(R+, EA,B) induced by

the collapsed chain X
A,B

t starting from x. By Definition 2.1,

capA,B({a}, {b}) = MA,B(a)P
A,B

a

[

T+
a > T+

b

]

= MA,B(a)
∑

x∈EA,B

pA,B(a, x)P
A,B

x

[

Ta > Tb
]

,

whereMA,B(x) = µA,B(x)λA,B(x). SinceMA,B(a) pA,B(a, x) = µA,B(a) rA,B(a, x)
and since pA,B(a, a) = 0, by the explicit expression (3.3) for the rates of the col-
lapsed chain, the previous expression is equal to

µA,B(a)
∑

x∈E\[A∪B]

1

µ(A)

∑

z∈A

µ(z) r(z, x)P
A,B

x

[

Ta > Tb
]

+ µA,B(a) rA,B(a, b)P
A,B

b

[

Ta > Tb
]

.

By construction, P
A,B

x [Ta > Tb ] = Px[TA > TB ] for x ∈ E\[A∪B], and P
A,B

b [Ta >
Tb ] = 1 = Px[TA > TB ], x ∈ B. Hence, as µA,B(a) = µ(A), by (3.5) the last sum
is equal to

∑

x∈E\A

∑

z∈A

µ(z) r(z, x)Px
[

TA > TB
]

.

Since Px[TA > TB ] = 0, x ∈ A, and since µ(z) r(z, x) = M(z)p(z, x), this expres-
sion is equal to

=
∑

z∈A

M(z)Pz
[

T+
A > T+

B

]

= cap(A,B) ,

which concludes the proof of claim (3.10).

Lemma 3.2. Fix two disjoint subsets A, B of a finite set E. Then,

cap(A,B) = inf
F

sup
H

{

2〈L∗F , H〉µ − 〈H, (−S)H〉µ

}

.

where the supremum is carried over all functions H : E → R which are constant

at A and B, and where the infimum is carried over all functions F which are equal

to 1 at A and 0 at B. Moreover, the function FA,B which solves the variational

problem for the capacity is equal to (1/2){VA,B + V ∗
A,B}, where VA,B, V

∗
A,B are the

harmonic functions defined in (2.5).
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Proof. Fix two disjoint subsets A, B of E. By Lemma 3.1 and identity (3.10),

cap(A,B) = inf
f

〈L
∗

A,Bf , (−S)−1L
∗

A,Bf〉µA,B
, (3.11)

where LA,B is the generator of the chain {X
A,B

t : t ≥ 0} introduced right after

(3.9), S is the symmetric part of LA,B, S = (1/2)(LA,B + L
∗

A,B), and where the

infimum is carried over all function f : EA,B → R such that f(a) = 1, f(b) = 0.
By the variational formula for the norm induced by the operator (−S)−1, the

previous expression is equal to

inf
f

sup
h

{

2〈L
∗

A,Bf , h〉µA,B
− 〈h, (−S)h〉µA,B

}

,

where the supremum is carried over all functions h : EA,B → R. By (3.6), L
∗

A,B =

L∗
A,B, and by (3.7), S = SA,B, where SA,B is the generator S collapsed at A and

B. Hence, the previous displayed equation is equal to

inf
f

sup
h

{

2〈L∗
A,Bf , h〉µA,B

− 〈h, (−SA,B)h〉µA,B

}

.

Let F , H : E → R be defined by F (x) = f(x), x ∈ E \ (A ∪ B), F (z) = f(a),
z ∈ A, F (y) = f(b), y ∈ B, with a similar definition for H . By (3.8), (3.9), the last
variational problem can be rewritten as

inf
F

sup
H

{

2〈L∗F , H〉µ − 〈H, (−S)H〉µ

}

. (3.12)

where the supremum is carried over all functions H : E → R which are constant at
A and B, and where the infimum is carried over all functions F which are equal to
1 at A and 0 at B. This proves the first assertion of the lemma.

To prove the second assertion of the lemma, recall from Lemma 3.1 that

cap(A,B) = 〈L
∗

A,Bfa,b , (−S)−1L
∗

A,Bfa,b〉µA,B
,

where fa,b = (1/2){V a,b + V
∗

a,b} and V a,b, V
∗

a,b are the harmonic functions for the
collapsed process. By the first part of the proof, the right hand side is equal to

sup
H

{

2〈L∗FA,B , H〉µ − 〈H, (−S)H〉µ

}

,

where the supremum is carried over all functions H : E → R which are constant
at A and B, and where FA,B(x) = fa,b(x), x ∈ E \ (A ∪ B), FA,B(z) = 1, z ∈ A,
FA,B(y) = 0, y ∈ B. As we have already seen, by construction of the collapsed
process, for x ∈ E \ (A ∪B),

V a,b(x) = P
A,B

x [Ta < Tb ] = Px[TA < TB ] = VA,B(x) ,

with a similar identity for V
∗

a,b. In conclusion,

cap(A,B) = sup
H

{

2〈L∗FA,B , H〉µ − 〈H, (−S)H〉µ

}

,

where FA,B = (1/2){VA,B + V ∗
A,B}, concluding the proof of the lemma. �

Remark 3.3. The expression inside braces in the displayed formula of Lemma 3.2

does not change if H is replaced by H+ c, where c is a constant. We may therefore

restrict the supremum to functions H which vanish at B.



14 A. GAUDILLIÈRE, C. LANDIM

We finally turn to the case where E is denumerable. Fix two disjoint subsets A,
B of E and suppose that Bc ⊃ A is finite. Similarly to what we did earlier in this
section, we define chain where the infinite set B is collapsed to a state.

Denote by Xt the Markov process on the finite set Bc ∪ {d}, where d is an extra
site added to E to represent the collapsed, possibly infinite, set B, whose rates
r(x, y), x, y ∈ Bc ∪ {d}, are defined by

r(x, y) = r(x, y) , r(x, d) =
∑

z∈B

r(x, z) , x, y ∈ Bc ,

r(d, x) =
∑

y∈B

µ(y) r(y, x) , x ∈ Bc .
(3.13)

Note that r(d, x) is finite because
∑

y∈E µ(y) r(y, x) = M(x) < ∞, as µ is a sta-

tionary state, and that r(d, x) > 0 if there exists z ∈ B such that r(z, x) > 0. In
particular, the collapsed chain {Xt : t ≥ 0} inherits the irreducibility from the orig-
inal chain. Moreover, since

∑

x∈Bc

∑

y∈B µ(y)r(y, x) =
∑

x∈B

∑

y∈Bc µ(y)r(y, x),

µ(x) = µ(x), x ∈ Bc, µ(d) = 1 is a stationary measure.
Let Px, x ∈ Bc ∪ {d}, represent the probability measure on the path space

D(R+, B
c ∪ {d}) induced by the Markov process Xt starting from x. Clearly, for

any A ⊂ Bc,

Py

[

TB < T+
A

]

= Py

[

Td < T+
A

]

, y ∈ Bc .

Therefore, by (2.3), for any A ⊂ Bc,

cap(A,B) =
∑

y∈A

M(y)Py
[

TB < T+
A

]

=
∑

y∈A

M(y)Py
[

Td < T+
A

]

= cap(A, d) ,

(3.14)
if cap stands for the capacity of the collapsed chain.

Denote by L the generator of the collapsed chain. Fix a pair of functions f ,
h : Bc ∪ {d} → R such that h(d) = 0. Let F , H : E → R be the functions defined
by F (x) = f(x), x ∈ Bc, F (z) = f(d), z ∈ B, with a similar definition for H . We
claim that

〈Lf, h〉µ = 〈LF,H〉µ . (3.15)

Conversely, if F , H : E → R are constant on the set B and if H vanishes at B,
(3.15) holds if f , h : Bc∪{d} → R are defined by f(x) = F (x), x ∈ Bc, f(d) = F (z),
z ∈ B, with a similar definition for h.

To prove (3.15), fix a pair of functions f , h : Bc ∪ {d} → R with the above
properties. By definition of the collapsed chain and since h(d) = 0, 〈Lf, h〉µ is
equal to

∑

x,y∈Bc

µ(x) r(x, y)h(x) [f(y) − f(x)] +
∑

x∈Bc

µ(x) r(x, d)h(x) [f(d) − f(x)] .

Since r(x, d) =
∑

z∈B r(x, z) and since F is constant over B, the second term is
equal to
∑

x∈Bc

∑

y∈B

µ(x) r(x, y)h(x) [f(d)−f(x)] =
∑

x∈Bc

∑

y∈B

µ(x) r(x, y)H(x) [F (y)−F (x)] .

Hence, adding the two terms,

〈Lf, h〉µ =
∑

x∈Bc

∑

y∈E

µ(x) r(x, y)H(x) [F (y) − F (x)] = 〈LF,H〉µ
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because H vanishes on B. This proves the first assertion of claim. The converse
one is proved by following the previous computation in the reverse order.

Proof of Theorem 2.4. Fix two disjoint subsets A, B of E and assume that Bc is
finite. By (3.14), cap(A,B) = cap(A, d). On the other hand, and by Lemma 3.2
and by Remark 3.3,

cap(A, d) = inf
f

sup
h

{

2〈f , Lh〉µ − 〈h, (−L)h〉µ

}

,

where the supremum is carried over all functions h : Bc ∪ {d} → R which are
constant at A and vanish at d, and where the infimum is carried over all functions
f which are equal to 1 at A and 0 at d. Since f vanishes at d, by claim (3.15), the
right hand side of the previous is equal to

inf
F

sup
H

{

2〈L∗F , H〉µ − 〈H, (−L)H〉µ

}

where the supremum is carried over all functions H : E → R which are constant at
A and vanish at B, and where the infimum is carried over all functions F which are
equal to 1 at A and 0 at B. The expression inside braces in the previous formula
remains unchanged if we replace H by H + c, where c is a constant. We may
therefore veil the assumption that H vanishes at B. This proves the first assertion
of Theorem 2.4.

By (3.14) and by Lemma 3.2,

cap(A,B) = cap(A, d) = sup
h

{

2〈fA,d , Lh〉µ − 〈h, (−L)h〉µ

}

,

where fA,d = (1/2){VA,d + V ∗
A,d}, and VA,d, V

∗
A,d are the harmonic functions asso-

ciated to the collapsed process and to its adjoint. By (3.15),

cap(A,B) = sup
H

{

2〈L∗FA,B , H〉µ − 〈H, (−L)H〉µ

}

,

where FA,B(x) = fA,d(x), x ∈ Bc, FA,B(z) = 0, z ∈ B. By construction of the
collapsed process, VA,d = VA,B and V ∗

A,d = V ∗
A,B on Bc, where VA,B and V ∗

A,B are
the harmonic functions of the original process. �

Proof of Lemma 2.6. Fix two disjoint subsets A, B of E and assume that Bc is
finite. By Theorem 2.4, the capacity cap(A,B) is given by (3.12). By the sector
condition, the expression inside braces in this formula is bounded by

2
√

C0〈(−S)F , F 〉
1/2
µ 〈(−S)H , H〉1/2µ − 〈H, (−S)H〉µ .

The supremum over H is thus bounded by C0〈(−S)F , F 〉µ. Therefore,

cap(A,B) ≤ C0 inf
F
〈(−S)F , F 〉µ ,

where the infimum is carried over all functions F equal to 1 at A and 0 at B.
By definition of the capacity in the reversible case, the right hand side is equal to
C0cap

s(A,B). This proves the lemma in the case where the set Bc is finite. To
extend it to the general case, it remains to apply Lemma 2.3. �
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4. Flows and Proof of Theorem 2.7

We assume in this section that the state space E is finite. We first prove Theorem
2.7 in the case where the sets A and B are singletons. The proof relies on an identity,
established in Lemma 4.1 below, which provides a variational formula for the norm

〈f , {[(−L)−1]s}−1f〉
1/2
µ .

Before stating this result, we start with an elementary observation. We claim
that

two gradient flows Ψf , Ψg are equal if and only if f − g is constant . (4.1)

Indeed, if the gradient flows are equal, since Ψf − Ψg = Ψf−g, in view of (2.13),
〈(−L)(f − g), (f − g)〉µ = 0 which implies that f − g is constant. The converse is
obvious.

Recall that we denote by C the set of divergence free flows and by Φf the flow
associated to a function f : E → R introduced in (2.16).

Lemma 4.1. For every function f : E → R,

〈f , {[(−L)−1]s}−1f〉µ = 〈L∗f, (−S)−1L∗f〉µ = inf
ϕ∈C

‖Φf − ϕ‖2 .

Proof. Fix a function f : E → R. Since Φf is a flow, by (2.15) and by (4.1) there is
a function W : E → R, unique up to an additive constant, and a unique divergence
free flow ∆f such that

Φf = ΨW + ∆f .

Computing the divergences of each flow we obtain that L∗f = SW so that W =
S−1L∗f + c0 for some constant c0. Therefore, since ΨW = ΨW+c for any constant
c, ΨV , with V = S−1L∗f , is the the projection of the flow Φf on the space of
gradient flows. Moreover, by (2.13),

〈ΨV , ΨV 〉 = 〈V, (−S)V 〉µ = 〈L∗f, (−S)−1L∗f〉µ , (4.2)

because 〈L∗f, 1〉µ = 0 as µ is invariant. Furthermore, since ΨV is the projection of
the flow Φf on the space of gradient flows,

〈ΨV , ΨV 〉 = inf
ϕ∈C

〈Φf − ϕ , Φf − ϕ〉 ,

which concludes the proof of the lemma. �

Lemma 4.2. Fix a pair of points a 6= b in E. Then,

cap({a}, {b}) = inf
f

inf
ϕ∈C

‖Φf − ϕ‖2 ,

where the infimum is carried over all functions f : E → R such that f(a) = 1,
f(b) = 0. Moreover, the infimum is uniquely attained at

f = (1/2){Va,b + V ∗
a,b} , ϕ = (1/2)

{

ΦV ∗
a,b

− Φ∗
Va,b

}

, (4.3)

provided for a function g : E → R we denote by Φ∗
g the flow given by Φ∗

g(x, y) =
g(x)c∗(x, y)− g(y)c∗(y, x).

Proof. The first assertion of the lemma follows from Lemmas 3.1 and 4.1. More-
over, the function f which solves the variational problem for the capacity coincides
with the one which solves the variational problem (3.1). Hence, by Lemma 3.1,
(1/2){Va,b + V ∗

a,b} is the unique functions which attains the minimum. It remains

to show that (1/2) {ΦV ∗
a,b

− Φ∗
Va,b

} is the optimal divergence free flow.
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Let F = (1/2){Va,b + V ∗
a,b}. We claim that (L∗F )(x) = (SVa,b)(x) for all x ∈ E.

For x 6= a, b, this identity is obvious and has been derived in the proof of Lemma
3.1. For x = a, it reduces to the identity P

∗
a[T

+
b < T+

a ] = Pa[T
+
b < T+

a ] which, in
view of (2.3), is equivalent to cap({a}, {b}) = cap∗({a}, {b}). Since this identity is
the content of Lemma 2.3, and since the same argument applies to x = b, the claim
is in force. In particular, by the proof of Lemma 4.1, ΨVa,b

is the projection of the
flow ΦF on the space of gradient flows, and there is a unique divergence free flow
∆F such that

ΦF = ΨVa,b
+ ∆F , 〈ΦF −∆F , ΦF −∆F 〉 = inf

ϕ∈C
〈ΦF − ϕ , ΦF − ϕ〉 .

An elementary computations shows that ∆F = ΦF −ΨVa,b
= (1/2){ΦV ∗

a,b
−Φ∗

Va,b
},

which completes the proof of the lemma. �

We may restate the previous lemma to obtain a variational formula for the
capacity in terms of the Dirichlet form.

Lemma 4.3. Fix a pair of points a 6= b in E. Then,

cap({a}, {b}) = inf
V
D(V ) ,

where the infimum is carried over all functions V : E → R such that ΨV is the

orthogonal projection on the space of gradient flows of some flow Φf with f(a) = 1,
f(b) = 0. Moreover, the infimum is uniquely attained, up to additive constants, at

V = Va,b.

Proof. By Lemma 3.1,

cap({a}, {b}) = inf
f
〈L∗f, (−S)−1L∗f〉µ ,

where the infimum is carried over all functions f : E → R such that f(a) = 1,
f(b) = 0. To conclude the proof of the first assertion of the lemma it remains to
recall identity (4.2).

To prove uniqueness of Va,b, recall from the proof of Lemma 4.2 that SVa,b =
L∗F , where F = (1/2){Va,b+V

∗
a,b}. Hence, by the proof of Lemma 4.1, ΨVa,b

is the

orthogonal projection of ΦF . Therefore, D(Va,b) ≥ infV D(V ). On the other hand,
by (4.2) and since by Lemma 3.1, F is the optimal function, D(Va,b) ≤ infV D(V ).
This shows that Va,b is optimal.

To prove uniqueness, suppose that W is another optimal function, and that ΨW
is the orthogonal projection on the space of gradient flows of some flow Φg with
g(a) = 1, g(b) = 0. By the optimality of W and by (4.2)

cap({a}, {b}) = D(W ) = 〈L∗g, (−S)−1L∗g〉µ .

Hence, by the uniqueness of Lemma 3.1, g = F , and by the proof of Lemma 4.1,
L∗F = SW . Since L∗F is also equal to SVa,b, we obtain that SVa,b = SW , which
implies that Va,b −W is constant, as claimed. �

The flows ΦV ∗
a,b

and Φ∗
Va,b

which appear in the previous lemma have a simple

probabilistic interpretation. Denote by {Xn : n ≥ 0} the discrete time skeleton of
the chain, and recall that M(x) = µ(x)λ(x) is a stationary state for Xn, unique
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up to a multiplicative constant. For B ⊂ E, let GB be the Green function of the
process killed at B:

GB(x, y) := Ex

[

τB−1
∑

n=0

1{Xn = y}
]

,

where τB (resp. τ+B ) stands for the hitting time of (resp. return time to) B for the
discrete time chain Xn:

τB = min{n ≥ 0 : Xn ∈ B} , τ+B = min{n ≥ 1 : Xn ∈ B} .

In the same way, G∗
B, B ⊂ E, stands for the Green function of the time reversed

chain killed at B.
Denote by Px, x ∈ E, the probability on path space D(Z+, E) induced by the

Markov chain {Xn : n ≥ 0} starting from x, and by θn, n ≥ 0, the time shift by n
units of time. Fix two disjoint subsets A, B of E. By the last exit decomposition,
for every x ∈ E,

Px

[

τA < τB
]

=
∑

n≥0

Px

[

Xn ∈ A , n < τB , τ
+
B ◦ θn < τ+A ◦ θn

]

=
∑

a∈A

∑

n≥0

Px

[

Xn = a , n < τB
]

Pa

[

τ+B < τ+A
]

=
∑

a∈A

GB(x, a)Pa
[

τ+B < τ+A
]

.

Since M(x)GB(x, y) =M(y)G∗
B(y, x), it follows from the previous identity

VA,B(x) = Px

[

τA < τB
]

=
∑

a∈A

1

M(x)
G∗
B(a, x)M(a)Pa

[

τ+B < τ+A
]

. (4.4)

Denote by νA,B the harmonic measure, also called the normalized charge distri-
bution,

νA,B(a) =
1

cap(A,B)
M(a)Pa

[

τ+B < τ+A
]

.

Fix two disjoint subsets A, B of E. Denote by i(x, y) = iA,B(x, y) the current
through the arc (x, y) for the process which starts from the harmonic measure νA,B
and which is killed at B:

i(x, y) := EνA,B

[

τB−1
∑

n=0

{

1{Xn = x,Xn+1 = y} − 1{Xn = y,Xn+1 = x}
}

]

.

By the Markov property and in view of (4.4), if we denote by i∗(x, y) the current
through the arc (x, y) for the time reversed chain,

i∗(x, y) :=
∑

a∈A

νA,B(a){G
∗
B(a, x)p

∗(x, y) − G∗
B(a, y)p

∗(y, x)}

=
∑

a∈A

νA,B(a)
{ 1

M(x)
G∗
B(a, x)c

∗(x, y) −
1

M(y)
G∗
B(a, y)c

∗(y, x)
}

= cap(A,B)−1
{

VA,B(x) c
∗(x, y) − VA,B(y) c

∗(y, x)
}

.

(4.5)

Since this last expression is equal to cap(A,B)−1Φ∗
VA,B

(x, y), Φ∗
VA,B

is, up to the

multiplicative constant cap(A,B), the current through the arc (x, y) for the time
reversed Markov chain X

∗
n started from the harmonic measure νA,B and killed at B.
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Analogously, ΦV ∗
A,B

is, up to the same multiplicative constant, the current through

the arc (x, y) of the discrete time Markov chain Xn started from the harmonic
measure ν∗A,B and killed at B.

Given a function f : E → R, we may write the flow Φf as Φf = Ψf +Υf , where
Υf is the flow given by

Υf (x, y) = ca(x, y) {f(x) + f(y)} .

It turns out that the flows Ψf and Υf are orthogonal:

〈Ψf ,Υf 〉 =
1

2

∑

(x,y)∈E

1

cs(x, y)
Ψf (x, y)Υf (x, y) = 0 . (4.6)

Indeed, by definition of the flows Ψf and Υf ,

∑

(x,y)∈E

1

cs(x, y)
Ψf (x, y)Υf (x, y) =

∑

x,y∈E

ca(x, y) {f(x)
2 − f(y)2} .

Since ca(x, y) = (1/2){c(x, y) − c(y, x)} = (1/2){c(x, y) − c∗(x, y)}, the previous
expression is equal to

1

2

∑

x∈E

M(x) (I − P )f2(x) −
1

2

∑

x∈E

M(x)(I − P ∗)f2(x) = 0 ,

where P represents the operator in L2(M) defined by (Pg)(x) =
∑

y∈E p(x, y)g(y),

and where P ∗ stands for the adjoint of P in L2(M). This proves (4.2).
This orthogonality permits to restate Lemma 4.2 in a slightly different form,

quite useful in some cases.

Lemma 4.4. Fix a pair of points a 6= b in E. Then,

cap({a}, {b}) = inf
f

inf
ϕ∈C

{

D(f) + ‖Υf − ϕ‖2
}

,

where the infimum is carried over all functions f : E → R such that f(a) = 1,
f(b) = 0.

We are now ready to prove Theorem 2.7.

Proof of Theorem 2.7. We proceed in two steps, collapsing each set at a time. Fix
two disjoint subsets A, B of E and recall the notation introduced around (3.9). We
first prove that

inf
F

inf
ϕ

‖ΦF − ϕ‖2 = inf
f
inf
ψ

‖Φf − ψ‖2A , (4.7)

where the infimum on the left hand side is carried over all functions F : E → R

constant overA and flows ϕ such that (div ϕ)(x) = 0, x ∈ Ac,
∑

x∈A(div ϕ)(x) = 0;
while on the right hand side ‖ · ‖A represents the norm associated to the scalar
product introduced in (2.12) on the set EA for the process Xt and the infimum is
carried over all functions f : EA → R and divergence free flows ψ on EA.

Consider a function F : E → R constant in A and a flow ϕ on E such that
(div ϕ)(x) = 0, x ∈ Ac,

∑

x∈A(div ϕ)(x) = 0. Recall the definition of the function

f : EA → R introduced below (3.8) and let ψ be the flow on EA given by

ψ(x, y) = ϕ(x, y) , ψ(x, d) =
∑

y∈A

ϕ(x, y) , x , y ∈ Ac .
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One checks that ψ is a divergence free flow. Moreover, by Schwarz inequality,

‖Φf − ψ‖2A ≤ ‖ΦF − ϕ‖2 .

It follows from this estimate that the left hand side of (4.7) is greater than or equal
to the right hand side.

Conversely, fix a function f : EA → R and a divergence free flow ψ on EA. Let
F : E → R be the function defined above (3.8), and let ϕ be the flow in E given by

ϕ(x, y) = ψ(x, y) , x , y ∈ Ac , ϕ(z, w) = 2f(d) ca(z, w) , z , w ∈ A ,

ϕ(x, y) = ΦF (x, y) −
cs(x, y)

∑

z∈A cs(x, z)

{

∑

z∈A

ΦF (x, z)− ψ(x, d)
}

, x ∈ Ac , y ∈ A .

One checks that (div ϕ)(x) = 0, x ∈ Ac, that
∑

x∈A(div ϕ)(x) = 0, and that
‖ΦF − ϕ‖ = ‖Φf − ψ‖A. Therefore, the left hand side of (4.7) is less than or equal
to the right hand side, proving claim (4.7).

We are now in a position to prove the theorem. Fix a site x ∈ E and a set A 6∋ x.
By (3.10), cap({x}, A) = cap({x}, {d}). The assertion of the theorem when the set
B is a singleton follows from Lemma 4.2 and (4.7). The general case is proved
analogously by first collapsing the set A and then collapsing the set B. �

We conclude this section with a bound on the capacity in the denumerable case.
Assume that E is a countable set, fix a site x ∈ E and a set B 6∋ x, with Bc finite.
Then,

cap({x}, B) ≤ (4.8)

inf
F

{

D(F ) +
1

2

∑

(x,y)∈E
x,y∈Bc

ca(x, y)
2

cs(x, y)
{F (x) + F (y)− 2 }2 + 4

∑

(x,z)∈E
x∈Bc,z∈B

ca(x, z)
2

cs(x, z)

}

,

where the infimum is carried over all functions F : E → R such that F (x) = 1,
F (z) = 0, z ∈ B.

Indeed, recall the notation introduced around (3.13). Denote by E the set Bc ∪
{d}, where d is an extra site added to E. Let {Xt : t ≥ 0} be the process obtained
from Xt by collapsing the set B to the point d, and let D, E , c(x, y) and cap be the
associated Dirichlet form, oriented bonds, conductances and capacities, respectively.

By (3.14), cap({x}, B) = cap({x}, {d}). Fix a function F : E → R which
vanishes on B and is equal to 1 at x, and let f : E → R be given by f(y) = F (y),
y ∈ Bc, f(d) = 0. Since ca(x, y) is a divergence free flow, by Lemma 4.4,

cap(0, d) ≤ D(f) +
1

2

∑

(x,y)∈E

1

cs(x, y)

{

ca(x, y)[f(x) + f(y)]− 2ca(x, y)}
2 .

Clearly, D(f) = D(F ). On the other hand, by (3.13) if the arc (x, y) is contained in
Bc, we may replace cs(x, y), ca(x, y) and f by cs(x, y), ca(x, y) and F , respectively.
In contrast, for an arc (x, d), x ∈ Bc, since ct(x, d) =

∑

z∈B ct(x, z), t = a, s, and
since f(d) = 0 = F (z), z ∈ B, by Schwarz inequality,

{

ca(x, d)
[

f(x) + f(d)− 2
]

}2

=
{

∑

z∈B

ca(x, z)[F (x) + F (z)− 2 ]
}2

≤
∑

z∈B

ca(x, z)
2

cs(x, z)
[F (x) + F (z)− 2]2

∑

z∈B

cs(x, z) .
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Since 0 ≤ F ≤ 1, F (x) +F (z)− 2 is absolutely bounded by 2. Putting together all
previous estimates we derive (4.8).

5. Recurrence criteria

It is well known that in the reversible case the Dirichlet and the Thomson prin-
ciple provide powerful tools to prove the recurrence or the transience of irreducible
Markov processes evolving in countable state spaces. In this section, we examine
this matter in the non reversible case.

Consider a irreducible Markov process {Xt : t ≥ 0} on a countable state space E
satisfying the assumptions of the beginning of Section 2. We assume, in particular,
the existence of a stationary state µ.

It is well known that the Markov process Xt is recurrent if and only if there exist
a site 0 ∈ E and a sequence of finite subsets Bn containing 0 and increasing to E,
Bn ⊂ Bn+1, ∪nBn = E, such that

lim
n→∞

P0

[

TBc
n
< T+

0

]

= 0 .

By (2.3), for any finite set B containing the site 0,

1

M(0)
P0

[

TBc < T+
0

]

= cap(0, Bc) .

Hence, the Markov process Xt is recurrent if and only if there exist a site 0 ∈ E
and a sequence of finite subsets Bn containing 0 and increasing to E such that

lim
n→∞

cap(0, Bcn) = 0 . (5.1)

The proof of the recurrence is thus reduced to the estimation of the capacity between
a site and the complement of a finite set. This problem can be further simplified
by collapsing the set Bcn to a point, as we did in Section 3.

The first two results follow from the previous observation and the bounds stated
in Lemmas 2.5 and 2.6. Recall that {Xs

t | t ≥ 0} stands for the reversible version of
the process Xt whose generator is given by S.

Lemma 5.1. Let {Xt | t ≥ 0} be a irreducible Markov process on a countable state

space E which admits a stationary measure. The process is transient if so is the

Markov process {Xs
t | t ≥ 0}.

Lemma 5.2. Let {Xt | t ≥ 0} be a irreducible Markov process on a countable state

space E which admits a stationary measure. The process is recurrent if its generator

satisfies a sector condition and if the Markov process {Xs
t | t ≥ 0} is recurrent.

Cycle random walks with bounded cycles, [13], [12], mean zero asymmetric ex-
clusion process [16], or asymmetric zero range process on a finite cylinder [9] are
examples of non reversible Markov processes which satisfy the sector condition.

Lemma 5.3. Let {Xt | t ≥ 0} be a irreducible Markov process on a countable state

space E which admits a stationary measure. The process is recurrent if the Markov

process {Xs
t | t ≥ 0} is recurrent and if

∑

(x,y)∈E

ca(x, y)
2

cs(x, y)
< ∞ .
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Proof. Fix ǫ > 0 and a site 0 ∈ E. By assumption, there exists a finite set A ∋ 0
such that

∑

(x,y)∈E
{x,y}6⊂A

ca(x, y)
2

cs(x, y)
≤ ǫ .

By (2.3), for all subsets B of E such that A ⊂ Bc, Bc finite, caps(A,B) ≤
∑

x∈A caps({x}, B). Hence, since the process Xs
t is recurrent, by (5.1) and by

Lemma 2.2, there exists a finite set Bc ⊃ A such that caps(A,B) ≤ ǫ.
Denote by V sA,B : E → R the equilibrium potential associated to the reversible

processXs: V sA,B(x) = P
s
x[TA < TB]. Since D(V sA,B) = caps(A,B), by construction

of B, D(V sA,B) ≤ ǫ. Therefore, by (4.8) with F = V sA,B, cap(0, B) is bounded above
by

ǫ +
1

2

∑

(x,y)∈E
x,y∈Bc

ca(x, y)
2

cs(x, y)
{V sA,B(x) + V sA,B(y)− 2 }2 + 4

∑

(x,z)∈E
x∈Bc,z∈B

ca(x, z)
2

cs(x, z)
·

Since V sA,B is identically equal to 1 on A, the previous expression is less than or
equal to

ǫ + 4
∑

(x,y)∈E
x∈A,y∈Ac

ca(x, y)
2

cs(x, y)
+ 2

∑

(x,y)∈E
x,y∈Ac

ca(x, y)
2

cs(x, z)
·

By definition of the set A, this expression is bounded by 5ǫ, which concludes the
proof of the lemma. �

5.1. Random walks with self-similar rescaled invariant potential. In [8],
Durrett built from a random potential, with a large scale self-similarity property,
a reversible nearest-neighbor random walk on Z

d for which Sinai random walk is a
special case when d = 1. He proved that such a random walk is recurrent under
simple and natural assumptions on the scaling limit of the potential. Note, however,
that such a random walk could never be a particular case of classical randoms walks
in random environment in dimension d ≥ 2 due to the reversibility condition.

We want to point out here that the key feature of this model is not the reversibil-
ity but, as Durrett suggested, the existence of a strongly fluctuating invariant mea-
sure. The reason for the restriction to the reversible was that it allowed the use
of the Dirichlet principle. Our extended Dirichlet principle permits to reproduce
Durrett’s argument with only assumptions on the invariant measure and without
the reversibility hypothesis.

Consider a discrete time, nearest-neighbor random walk {Xn |n ≥ 1} on Z
d with

random transition probabilities p(x, y) : Ω → [0, 1], and assume the existence of a
(random) invariant measure µ. We define the invariant potential V : Zd → R by

µ(x) = e−V (x) x ∈ Z
d ,

and assume, without loss of generality, that V (0) = 0. The relation between the
random potential and the invariant measure in [8] is not exactly the same, but this
definition makes our point more clear. We can extend V into a continuous function
V : Rd → R and see it as a random variable in C(Rd,R), the space of continuous
functions from R

d to R equipped with the topology of uniform convergence on
compact sets. We assume that there exists α > 0 and a random variable W : Ω →
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C(Rd,R) such that λ−αV (λ · ) converges in law to W ( · ) when λ ↑ ∞. Hence, W
is a self-similar d-dimensional process and we have the following result.

Lemma 5.4. If there is almost surely a > 0 such that the connected component of

the origin in {x ∈ R
d : W (x) < a} is bounded, then X is almost surely recurrent.

We refer to [8] for examples of (reversible) processes which satisfy such hypothe-
ses. Even though we could relax Durrett’s reversibility hypothesis, it is not clear
how to build non artificial irreversible examples in which one has enough control on
an invariant measure to check the assumptions on V . One can start, for example,
as in [8], with a random potential V with stationary increments, and build the
reversible random walk inside this potential to have µ as invariant measure. We
may then add some irreversibility by superposing to this reversible dynamics some
drift along cycles on the level sets of V , keeping µ as an invariant measure.

Proof of Lemma 5.4. We follow closely Durrett’s proof. First, following Skorohod
[14], we can build on the same probability space random variables V1, V2, . . . with
the same law as V and such that n−αVn(n · ) converges almost surely in C(Rd,R)
to W ( · ). Define Ca, a > 0, as the bounded connected component of the origin in
{x ∈ R

d :W (x) < a}, and set

Gn = (nCa) ∩ Z
d , ∂−Gn = {x ∈ Gn : ∃y 6∈ Gn , ‖x− y‖ = 1} ,

where ‖ · ‖ stands for the Euclidean norm.
We claim that µn(∂−Gn) converges almost surely to 0, where µn(x) = e−Vn(x),

x ∈ Z
d. Indeed, by assumption there are r, R > 0 such that

Ca ⊂ [−R,R]d , W (y) ≥ a/2

for all y ∈ B(z, r), z ∈ ∂Ca, where B(x, r) stands for the ball centered at x with
radius r and ∂Ca for the boundary of Ca. Therefore, almost surely, for n large
enough,

µn(∂−Gn) =
∑

x∈∂−Gn

e−Vn(x) ≤ |Gn| e
−(a/4)nα

≤ nd(2R)de−(a/4)nα

,

which proves the claim.
For any finite subset B of Zd which contains the origin, since µ(0) = e−V (0) = 1,

we have

P0[τ
+
0 = ∞] ≤ µ(0)P0[τ

+
0 > τ+Bc ] = cap(0, Bc) .

By taking the test function 1{B} in (4.8) we obtain that cap(0, Bc) is bounded
above by

∑

x∈B,y∈Bc

cs(x, y) + 4
∑

x∈B,y∈Bc

ca(x, y)
2

cs(x, y)
≤ 5

∑

x∈B,y∈Bc

cs(x, y) ≤ 5µ(∂−B) .

Since µ(0) = 1 we also have cap(0, Bc) ≤ 1, thus cap(0, Bc) ≤ 5µ(∂−B) ∧ 1. Now,
for any k > 0,

P0(τ
+
0 = +∞) ≤ min

{

cap(0, Bc) ≥ 0 : 0 ∈ B ⊂ [−k, k]d
}

≤ min
0∈B⊂[−k,k]d

5µ(∂−B) ∧ 1.

Since Vn has the same distribution as V , taking expected values with respect to
the environment, denoted by E, by the monotone convergence theorem, we obtain
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that, for all n ≥ 1,

E
[

P0[τ
+
0 = +∞]

]

≤ lim
k→∞

E
[

min
0∈B⊂[−k,k]d

5µ(∂−B) ∧ 1
]

= lim
k→∞

E
[

min
0∈B⊂[−k,k]d

5µn(∂−B) ∧ 1
]

= E
[

lim
k→∞

min
0∈B⊂[−k,k]d

5µn(∂−B) ∧ 1
]

≤ E
[

5µn(∂−Gn) ∧ 1
]

.

Thus, by the dominated convergence theorem,

E
[

P0[τ
+
0 = +∞]

]

≤ lim
n→+∞

E
[

5µn(∂−Gn) ∧ 1
]

= E
[

lim
n→+∞

5µn(∂−Gn) ∧ 1
]

= 0 ,

which proves that the process is almost surely recurrent. �

5.2. Two dimensional random walk in asymmetric random conductances.

The most natural way to generalize the classical random conductance model on
a graph may be the following. To define the asymmetric conductances c(x, y) on
each arc (x, y) we superpose symmetric functions cs(x, y) and a divergence free flow
ca(x, y) with the restriction that |ca| ≤ cs to end with nonnegative conductances
c(x, y).

More precisely, consider a family Γ of finite cycles γ on a countable graph (E, E),
and a family of nonnegative random variables Zγ , γ ∈ Γ, such that for each (x, y) ∈
E ,

∑

γ∈Γ

Zγ |χγ(x, y)| < ∞ ,

where χγ is the divergence free flow introduced in (2.14). Define the divergence
free flow ca by

ca(x, y) =
∑

γ∈Γ

Zγ χγ(x, y) , (x, y) ∈ E .

There are two natural ways to define symmetric conductances in this context.
Consider a family of nonnegative random variables {Y(x,y) : (x, y) ∈ E} such
that Y(x,y) = Y(y,x). We may set cs(x, y) = Y(x,y) + |ca(x, y)|, or cs(x, y) =
Y(x,y) +

∑

γ∈ΓZγ |χγ(x, y)|.

In the special case of the two dimensional lattice, we can decompose each flow
associated to a finite cycle as a linear combination of elementary flows associated to
cycles of length 4. For x ∈ Z

2, denote by γx the cycle (x, x+e1, x+e1+e2, x+e2, x),
where e1, e2 stands for the canonical basis of R2. A flow χγ associated to a finite
cycle γ can be written as

χγ =
∑

x∈Zd

Wγ,γx χγx ,

where Wγ,γx = 1 (resp. −1) if the cycle γx is contained in the interior of γ and the
cycle γ runs counter-clockwise (resp. clockwise), and Wγ,γx = 0 if the cycle γx is
not contained in the interior of γ.

Denote by E expectation with respect to the random variables Zγ and assume
that

∑

γ∈Γ

E[Zγ ] |Wγ,γx | < ∞ for all x ∈ Z
d .
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In this case Wγx :=
∑

γ∈ΓZγWγ,γx is almost surely well defined for all x ∈ Z
d and

so is the divergence free flow ca given by

ca =
∑

x∈Zd

Wγx χγx . (5.2)

Note that each arc (x, y) belongs to exactly two elementary cycles, denoted by
γ±(x, y) and characterized by the fact that χγ±(x,y)(x, y) = ±1. With this notation,
for any arc (x, y), ca(x, y) =Wγ+(x,y) −Wγ−(x,y).

Lemma 5.5. Suppose that

sup
(x,y)

E
[

cs(x, y) +
[Wγ+(x,y)]

2 + [Wγ−(x,y)]
2

cs(x, y)

]

< ∞ ,

where the supremum is carried over all arcs. Then, the random walk is almost

surely recurrent.

Proof. Let Bcn = [−n, n]2, n ≥ 1, consider a function fn : Z
2 → R such that

fn(0) = 1, fn(x) = 0 for x ∈ Bn, and a divergence free flow ψn =
∑

x axχγx , where
the sum is performed over all x ∈ Z

2 for which the elementary cycle γx is contained
in Bcn. Repeating the proof of (4.8) and keeping in mind that ca is absolutely
bounded by cs, we obtain that

cap(0, Bn) ≤ D(fn) +
1

2

∑

x,y∈Bc
n

1

cs(x, y)

{

ca(x, y)[fn(x) + fn(y)]− ψn(x, y)
}2

.

Consider the divergence free flow ϕn given by

ϕn =
1

2

∑

x

Fn(γx)Wγx χγx , where Fn(γx) =
∑

z∈γx

fn(z) ,

and where the sum is carried over all sites x in Z
2 for which the elementary cycle

γx is contained in Bcn. By the previous bound,

cap(0, Bn) ≤ D(fn) +
1

2

∑

x,y∈Bc
n

1

cs(x, y)

{

ca(x, y)[fn(x) + fn(y)]− ϕn(x, y)
}2

.

As we know, D(fn) = (1/2)
∑

x,y∈Z2 cs(x, y)[fn(y)−fn(x)]
2. On the other hand,

it follows from the definitions of the asymmetric conductance and the divergence
free flow ϕn that ca(x, y)[fn(x) + fn(y)] − ϕn(x, y) is equal to Wγ+(x,y){fn(x) +

fn(y) − (1/2)Fn(γ
+(x, y))} −Wγ−(x,y){fn(x) + fn(y) − (1/2)Fn(γ

−(x, y))} if the
arc (x, y) does not belong to one side of the square Bcn. The absolute value of
this difference is bounded above by |Wγ+(x,y)|maxe∈γ+(x,y) |fn(e

+) − fn(e
−)| +

|Wγ−(x,y)|maxe∈γ−(x,y) |fn(e
+) − fn(e

−)|. If the arc (x, y) belongs to one side of
the square Bcn, taking advantage of the fact that fn vanishes outside Bcn, we obtain
a similar formula with an extra factor 2. In conclusion, cap(0, Bn) is bounded above
by

4
∑

x,y∈Z2

{

cs(x, y) +
[Wγ−(x,y)]

2 + [Wγ+(x,y)]
2

cs(x, y)

}

max
e

[fn(e
+)− fn(e

−)]2 ,

where the maximum is carried over all arcs e in γ−(x, y) ∪ γ+(x, y).
Let

fn(x) =
(

1−
log(1 + ‖x‖∞)

log(n+ 2)

)

1{[−n, n]2}(x) ,
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where ‖x‖∞ = max{|x1|, |x2|}, x = (x1, x2). It follows from this choice and from
the assumption of the lemma that

lim
n→∞

E[cap(0, Bn)] = 0 .

In particular, there exists almost surely a subsequence (Bnk
: k ≥ 1) such that

limk→∞ cap(0, Bnk
) = 0 and the almost sure recurrence follows. �

We conclude with an example which satisfies the assumptions of the previous
lemma. Suppose that the random variables Zγ are independent Poisson variables

with parameter λ|γ|, 0 < λ < 1/3, and that the random variables Y(x,y) have a
common distribution bounded away from 0 and with a finite first moment. Let ca
be given by (5.2) and let cs(x, y) = Y(x,y)+ |ca(x, y)|. We claim that the hypotheses
of the previous result are fulfilled.

Indeed, by assumption there exists δ > 0 such that cs(x, y) ≥ Y(x,y) ≥ δ > 0
almost surely. Therefore, to show that the assumptions of the previous lemma are
in force we need only to prove that

sup
(x,y)

E
[

cs(x, y)
]

< ∞ and sup
x∈Zd

E
[

W 2
γx

]

< ∞ . (5.3)

Since |ca(x, y)| ≤Wγ+(x,y) +Wγ−(x,y), for every arc (x, y),

E
[

cs(x, y)
]

≤ E
[

Y (x, y)
]

+
∑

p=±

∑

γ∈Γ

Wγ,γp(x,y)E
[

Zγ
]

.

By assumption, the first term on the right hand side is bounded uniformly over
(x, y), while the second term is less than or equal to

∑

k≥4 8k3
kλk because there

are at most 4 · 3k−1 self-avoiding walks of length k and because a cycle of length
k containing in its interior an elementary cycle must cross a line parallel to one of
the axis in at most 2k points. This proves the first bound in (5.3). To prove the
second bound, fix an elementary cycle γx. By definition of the random variables
Zγ ,

E
[

W 2
γx

]

= E
[

Wγx

]2
+

∑

γ∈Γ

λ|γ|W 2
γ,γx .

The first expectation has been estimated above, while the second one can be esti-
mated in the same way. This concludes the proof of (5.3).
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[7] J-D. Deuschel, H. Kösters: The quenched invariance principle for random walks in random
environments admitting a bounded cycle representation. Ann. Inst. Henri Poincar Probab.
Stat. 44, 574-591 (2008).

[8] R. Durrett: Multidimensional random walks in random environments with subclassical lim-
iting behavior. Comm. Math. Phys. 104, 87-102 (1986).

[9] A. Gaudillière, C. Landim: Tunneling of the condensate in totally asymmetric zero range
processes. in preparation (2011).

[10] S. Kakutani: Markov processes and the Dirichlet problem, Proc. Jap. Acad. 21, 227-233
(1945).

[11] T. Komorowski and S. Olla: A note on the central limit theorem for two-fold stochastic
random walks in a random environment. Bull. Polish Acad. Sci. Math. 51, 217-232 (2003).

[12] T. Komorowski, C. Landim, S. Olla: Fluctuations in Markov Processes, Time Symmetry and

Martingale Approximation. To appear, 2011.
[13] P. Mathieu, Carne-Varopoulos bounds for centered random walks, Annals of Probability 34,

987-1011 (2006).
[14] A. V. Skorohod: Limit theorems for stochastic processes. (Russian) Teor. Veroyatnost. i

Primenen. 1, 289-319 (1956).
[15] P. M. Soardi: Potential Theory on Infinite Networks. Lecture Notes Math. 1590. Springer,

Berlin, 1994.

[16] S. R. S. Varadhan, Self-diffusion of a tagged particle in equilibrium for asymmetric mean
zero random walk with simple exclusion, Ann. Inst. H. Poincaré Probab. Statist. 31, 273–285
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UMR 6085, Université de Rouen, Avenue de l’Université, BP.12, Technopôle du Madril-
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