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Abstract

The purpose of this article is to analyze the impact of an index segmentation

on the ray dispersion in the geometrical approach. The presented study re-

veals that a periodic index segmentation of the waveguide along with a trans-

verse gaussian index variation exhibits complex ray dynamics that strongly

modify ray dispersion properties.
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1. Introduction

A Periodic Segmented Waveguide (PSW) is characterized by an array

of high index region along the direction of propagation and by a transverse

index profile of high index segments which depends on the waveguide fab-

rication process. Those waveguides are well known to be very interesting

for many purpose such as mode tapers or mode filters [1–4], they have also

been used to achieve efficient nonlinear guided wave interaction using the
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Quasi Phase Matching (QPM) or Balanced Phase Matching (BPM) schemes

[5–7] that take advantage of a periodic reversal of the nonlinear coefficient

associated with such waveguides. More recently, it has been shown that mul-

timode PSW can be a practical support for classical chaos investigation in

the geometrical limit [8]. The ray dynamics in the simple and ideal 2D case

of a PSW characterized by a transverse gaussian index profile is responsible

for the emergence of a genuine chaotic behavior of the ray dynamics which

is much more complex than that encountered with the usually considered

parabolic index profile [9–11]. Such a complex behavior is actually compara-

ble to what has already been studied in a periodically perturbed waveguide

[12, 13] or more generally, the analysis shows a dynamic that can be found

in usual periodically forced nonlinear pendulum. PSW ray dynamics exhibit

resonances, frequency locking, as well as a chaotic behavior and as a conse-

quence of this complex aspect of the system, the transit time of rays (e.g.

the ray dispersion) in the waveguide is expected to be different as in non

segmented waveguide. As observed in previous work [14], it is shown, here,

that the dispersion is determined by the topology of the phase space.

After a description of the system used, numerical results of ray dispersion

value for two waveguides configurations will then be discussed and finally,

conclusions and perspectives will be drawn.

2. Dispersion calculation

A schematic representation of a PSW is sketched in figure 1. The PSW

presents a transverse gaussian index profile in the high index segments that

is, for example, naturally encountered with the proton exchange technique
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waveguide fabrication on LiNbO3 substrate [16]. The duty-cycle of a PSW

is usually define as DC = d/Λ and a step index profile is assumed along the

propagation direction z as it has been done in previous works [8–10]. It can

be mentioned that a smoother profile will not change qualitatively the results.

Assuming that light wavelength is very small compared to the dimensions of

a highly multimode waveguide, ray optics approximation can be used. A ray

is define as the path along which light energy is transmitted from one point

to another in the optical system with a velocity equal to c/n(x) where c is

the speed of light in the vacuum and n(x) is the transverse index profile. In

low index segments, the index profile is constant and n(x) = n2 whereas the

index profile of the high index segments is given by :

n (x) = n2 + δne−
x
2

w
2 (1)

where w is the width of the waveguide, δn = n1 − n2, n2 is the substrate

index and n1 is the maximum index induced by the waveguide fabrication

process. We consider here dielectric waveguides characterized by a low index

contrast δn ≪ 1, which allows us to neglect the reflections of rays at each

interfaces.

A ray path in a 2D medium can be described by the following equation in

cartesian coordinates [15]:

d2x

dz2
=

1

2β2

dn2 (x)

dx
(2)

where, x and z are the transversal and longitudinal coordinates respectively,

n(x) is the transverse index profile, β = n (xi) cos θi is the invariant of the ray

path, xi being the initial position of the ray and θi being the incident angle of

the ray respect to z axis. The ray path can be calculated by analyzing high
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and low index segments separately and using the law of refraction at each

interface. In the low index segment, the solution is trivial and corresponds

to a straight line. In the high index segment characterized by a transverse

gaussian index profile, the ray equation (2) is now :

d2x

dz2
= −2n2δn

β2w2
xe−

x
2

w
2 (3)

in the limit of usual classical assumption δn ≪ 1. Ray paths of a PSW with a

gaussian index profile is plotted on figure 2 for two different initial conditions

(θi = 0◦, xi = 1.7µm) and (θi = 0◦, xi = 0). When θi 6= 0◦ or xi 6= 0, ray

trajectory oscillate with a period of oscillation Zp whereas the trajectory

is a straight line when θi = 0◦ and xi = 0 [17]. It is important to note

that the gaussian shape profile makes equation (3) nonlinear with respect

to variable x, whereas, for example, for a parabolic index profile, equation

(3) is reduced to a linear equation [8]. For a parabolic PSW, the presence

of a linear term in the RHS of equation (3) makes the system analogous

to a parametric system [18]. This kind of system can exhibits parametric

resonances which are responsible for a ray divergence whatever may be the

initial conditions, a feature that has already been study in a previous work [9].

For a gaussian index PSW, the situation is different because the nonlinear

term in the RHS of equation (3) saturates the parametric instability and

leads to nonlinear resonances which occur when the segmentation period Λ

and the period of ray oscillation Zp are in a rational ratio [8]. The presence

of nonlinear resonances makes the ray dispersion behavior more interesting

and some results will be shown in the next sections.

Ray dispersion, also often call intermodal dispersion, is caused by the fact

that different rays take different times to propagate along different paths from
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the input to the output of the waveguide. For our purpose, we define the ray

dispersion in time ∆t in ps/km as the transit time difference between optical

path of the considering ray and the straight ray propagating in the center of

the waveguide (see figure 2). ∆t is defined by :

∆t =
1

c

(

n1L −
∫

n(x)ds

)

(4)

where L is the length of the waveguide and ds ≃
√

dx2 + dz2 is an arc length

along the ray path. In order to get an deeper insight of the ray dynamics and

dispersion properties, Poincaré sections were used. Poincaré section consists

on a projection at each period of the ray trajectory on to the phase plane

(x, θ) where x is the transverse position of the ray and θ is the angle that

makes the ray with the propagation axis. Along with the Poincaré section,

a dispersion map were used where ∆t values are reported on a graph for

different initial conditions except for diverging rays (e. g. rays that escape

from the waveguide, ∆t → ∞). Two different transverse index profiles are

considered here, a symmetric and a non symmetric one.

2.1. Symmetric PSW

The figure 3(a) represents the Poincaré section for initial conditions taken

in the range of [−3µm, +3µm] for xi and in the range of [−4◦, +4◦] for θi.

Poincaré sections reveal the mixed aspect of the system characterized by the

coexistence of a regular or a chaotic behavior of the ray trajectory depending

on initial condition. Non divergent rays are characterized by a concentric

close circle present on the center of the Poincaré section and also around 4

fixed points, these 4 fixed points are resonances of the system. Resonances

occur when Zp and Λ are comensurable which is the case here where Zp/Λ ≃
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4. Divergent rays are represented by dots which are mainly present on the

peripheral part of the graph. The figure 3(b) represents the corresponding

dispersion map for the same PSW, where ∆t values are represented in a

grey level. Uniform grey level regions represent equivalent transit time for

trajectories. As it has been mentioned previously, ∆t are not reported on

the graph for diverging rays trajectories in order to keep a clearer picture.

These two graphs are similar, the 4 resonances of the Poincaré section are still

visible on the dispersion map where 4 wide uniform grey regions are present

at the same location. It means that the transit time is similar for rays that

have been launched on these resonances. It has to be mentioned that this

correspondence between Poincaré section and dispersion map appears for any

kind of waveguide configuration. So, a complex Poincaré section structure

will lead to a complex dispersion map and then to a non classical dispersion

behavior which has been pointed out in previous work [14]. The figure 4 is

a slice at θ = 0◦ of the dispersion map for the same waveguide and for the

corresponding equivalent continuous waveguide. A PSW can be represented

by a continuous equivalent waveguide with an index neq(x) = n2+δn(x)×DC

[9, 10, 19]. The incident angle is fixed and initials conditions are taken such

as only the position of the incident ray varies. For the equivalent continuous

waveguide, the absolute value of the dispersion increase monotonically as the

position of the incident ray moves away from the center of the waveguide.

This behavior is not the same with the PSW where the dispersion curve is

not monotonic. For stable trajectories, |x| ≤ 0.5µm, characterized by a close

circle curve on the Poincaré section, dispersion value are approximatively the

same as the one of the continuous equivalent waveguide. For |x| > 0.5µm,
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the dispersion curve exhibits plateau with a an apex on the edge. The width

of the plateau corresponds to the width of the resonance on the Poincaré

section. Away from the resonance, the dispersion curve of the PSW goes

back to the dispersion curve of the equivalent continuous waveguide.

The ray dispersion behavior is related to the presence of resonances.

When Zp and Λ are not commensurable, no resonance occurs and ray disper-

sion is comparable with that of a classical continuous waveguide. Resonances

occur when Zp and Λ are commensurable and then, as long as the ratio Zp/Λ

is constant, rays trajectories are synchronized to the segmentation period

(this phenomenon is also call frequency locking). The ray is catch by the

resonance and a slight modification of the guiding condition does not change

ray path and, therefore, the transit time remains almost constant. The range

where the initial conditions can be taken without modifying the value of the

ray dispersion is determined by the width of the resonance. A strong res-

onance represented by large islands in the Poincaré section permits a quite

large variation of angle or position for the initial conditions without changing

∆t value.

Singularities in the ray dispersion can be clearly identified with the help

of the Poincaré section which is fixed for a given waveguide configuration,

but they can occur for a given input condition and changing the waveguide

parameters. The figure 5 represents ray dispersion values for different seg-

mentation periods Λ as a function of the index difference δn. Dispersion

behavior of a PSW deviate from that of the continuous equivalent waveguide

model. Ray dispersion is not monotonic as a function of δn and ∆t can

decrease whereas δn increase which is not intuitive.
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2.2. Asymmetric PSW

The introduction of an asymmetric index profile in the transverse direc-

tion (figure 6) emphasizes the non classical dispersion behavior. It has to be

said that a non symmetrical as well as a symmetrical gaussian index profile

can be technologically achieved. Figure 7(a) represents the Poincaré section

of a waveguide with an asymmetrical gaussian index profile and shows a more

complex topology regarding the previous one (figure 3). The corresponding

dispersion map is represented in figure 7(b) and it is similar to the Poincaré

section. Figure 8 represents 3 different slices for x = 0, x = 1 and x = 1.5µm

of the dispersion map(figure 7(b)). The presence of resonances show them-

selves through appearance of plateaus as in the symmetrical waveguide pro-

file. Stochastic ray dispersion values can be seen between plateaus or on the

edge of the curve. These random dispersion values are due to the fact that

resonances lies in a stochastic sea which can clearly be seen with the Poincaré

section (figure 7 (a)). Like in the symmetric waveguide, the dispersion value

is frozen if initial conditions are taken in a resonance on the Poincaré sec-

tion but chaotic elsewhere. Figure 9 represents ray dispersion values for two

different segmentation periods Λ = 5µm and Λ = 10µm as a function of the

index difference δn for a given input condition. Dispersion values seem to

be randomly distributed around a mean value and the deviation from the

continuous equivalent waveguide model is then much important.

3. Conclusions and perspectives

A simple ray propagation model has been used to provide a numerical

study of the dispersion property of a PSW characterized by a gaussian in-
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dex segment profile. The analysis has shown a non standard behavior of

the ray dispersion which is related to the complex topology of the Poincaré

section and that can not be found in usual waveguides. The deviation from

a classical ray dispersion behavior is enhanced with the introduction of an

asymmetric transverse index profile. Beside the academic interest that repre-

sent a non standard ray dispersion behavior in a multimodes PSW, it might

be interesting to consider devices with a periodic index segmentation and

with a transverse gaussian index variation. According to the analysis pre-

sented here, these devices may exhibit resonances which could help to reduce

pulse dispersion in highly multimode communication components for exam-

ple. However, deeper analysis has to be performed in order to fully investigate

the potential of those waveguide, in particular the extension of the analysis to

the optical wave domain has to be done. From a technological point of view,

no major difficulty seems to exist to achieve an experimental study of our

theoretical predictions considering the fact that the waveguide configuration

proposed here is based on well known and widely used fabrication process.
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Figure captions

Fig. 1 : Schematic of the investigated longitudinally periodic waveguide

with a period Λ and the transverse gaussian index profile of the high index

segments. Everywhere else, the index is constant and is equal to the substrate

index n2.

Fig. 2 : Typical ray path in a transverse gaussian index profile PSW. If

θi 6= 0◦ or xi 6= 0, the ray path oscillate with a period Zp which depends on

initial conditions whereas the ray path is a straight line if θi = 0◦ and xi = 0.

Fig. 3 : Poincaré section of a PSW with the following parameters :

DC = 0.5, Λ = 50.7µm, δn = 0.029, w = 3.5µm (a) and the corresponding

dispersion map for the same waveguide (b).

Fig. 4 : Dispersion curve as a function of the position of the input ray

for θ = 0◦ for a PSW (continuous line) and for the equivalent continuous

waveguide (doted line).

Fig. 5 : Dispersion values as a function of the index difference δn for

different periods for a given input condition (θi = 0◦ and xi = 1.5µm), others

PSW parameters are DC = 0.5, w = 5µm.

Fig. 6 : Schematic of the investigated longitudinally periodic waveguide

with an asymmetric gaussian index profile, w1 6= w2. Outside of the high

index segments, the index is constant and equal to the substrate index n2.

Fig. 7 : Poincaré section of a PSW with the following parameters :

DC = 0.5, Λ = 18µm, δn = 0.02, w2 = 10 × w1 = 4.3µm (a) and the

corresponding dispersion map (b).

Fig. 8 : Dispersion curve as a function of the position of the input ray

for θ = 0◦ for a PSW (continuous line) and for the equivalent continuous
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waveguide (doted line).

Fig. 9 : Dispersion values as a function of the index difference δn for two

different periods for a given input condition (θi = 0◦ and xi = 0.5µm), others

PSW parameters are DC = 0.5, w2 = 6 × w1 = 5µm
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