Comparison between rough and smooth plates within the same Rayleigh-Bénard cell
Jean-Christophe Tisserand, Mathieu Creyssels, Yoann Gasteuil, Hervé Pabiou, Mathieu Gibert, Bernard Castaing, Francesca Chillà

To cite this version:
Jean-Christophe Tisserand, Mathieu Creyssels, Yoann Gasteuil, Hervé Pabiou, Mathieu Gibert, et al.. Comparison between rough and smooth plates within the same Rayleigh-Bénard cell. Physics of Fluids, American Institute of Physics, 2011, 23, pp.015105. <10.1063/1.3540665>. <hal-00646642>
Comparison between rough and smooth plates within the same Rayleigh–Bénard cell

Citation: Phys. Fluids 23, 015105 (2011); doi: 10.1063/1.3540665
View online: http://dx.doi.org/10.1063/1.3540665
View Table of Contents: http://pof.aip.org/resource/1/PHFLE6/v23/i1
Published by the American Institute of Physics.

Related Articles
Direction of scalar transport in turbulent channel flow

Effect of plumes on measuring the large scale circulation in turbulent Rayleigh-Bénard convection

Internal heating driven convection at infinite Prandtl number

Heat transfer and pressure drop through rectangular helical ducts
J. Renewable Sustainable Energy 3, 043119 (2011)

Rayleigh–Bénard convection: Improved bounds on the Nusselt number

Additional information on Phys. Fluids
Journal Homepage: http://pof.aip.org/
Journal Information: http://pof.aip.org/about/about_the_journal
Top downloads: http://pof.aip.org/features/most_downloaded
Information for Authors: http://pof.aip.org/authors
Comparison between rough and smooth plates within the same Rayleigh–Bénard cell

J.-C. Tisserand, M. Creysssel,a Y. Gasteuil, H. Pabiou, M. Gibert,b B. Castaing, and F. Chillac

Université de Lyon, ENS Lyon, CNRS, 46 Allée d’Italie, 69364 Lyon, Cedex 7, France

(Received 17 February 2010; accepted 30 November 2010; published online 20 January 2011)

In a Rayleigh–Bénard cell at high Rayleigh number, the bulk temperature is nearly uniform. The mean temperature gradient differs from zero only in the thin boundary layers close to the plates. Measuring this bulk temperature allows to separately determine the thermal impedance of each plate. In this work, the bottom plate is rough and the top plate is smooth; both interact with the same bulk flow. We compare them and address in particular the question whether the influence of roughness goes through a modification of the bulk flow. © 2011 American Institute of Physics. [doi:10.1063/1.3540665]

I. INTRODUCTION

Understanding natural heat convection is of obvious practical interest. It also represents a very actual intellectual challenge, despite the apparent simplicity of its academic version, the Rayleigh–Bénard (RB) problem. The controversy in the past ten years around the high Rayleigh number behavior of RB cells1–6 shows that the basic physical mechanisms of heat convection are not well understood.

In such a situation, tackling slightly different problems can shed new light on the main one. It is the purpose of the present paper, which explores the effect of a well defined roughness of a plate on the heat transfer between it and a fluid. Previous attempts give somewhat contradictory results7–11 We do not consider the work of Ciliberto et al.,12 inspired by a proposition of Villermaux,13 which shows that the absence of characteristic length in the roughness structure can modify the power law dependence of the Nusselt (Nu) versus the Rayleigh (Ra) number. Our work concentrates on well defined, regular, and periodic roughness.

At this stage, it is worth defining precisely the problem we consider. A Rayleigh–Bénard cell is a closed volume containing a fluid between two horizontal plates and vertical walls. With smooth boundaries, the control parameters are those defining the shape of the cell, as the aspect ratio $\Gamma = D/H$, where H is the height and D is the diameter of the cell, and two more specific ones, the Prandtl number Pr and the Rayleigh number Ra. $Pr = \nu / \kappa$, where ν is the kinematic viscosity and κ, the heat diffusivity, is characteristic of the fluid.

$$Ra = \frac{g \alpha \Delta T H^3}{\nu \kappa}$$

is the nondimensional measure of the temperature difference $\Delta T = T_h - T_c$ between the hot (T_h) and cold (T_c) plates. g is the gravitational acceleration and α the constant pressure thermal expansion coefficient. The thermal global response is given by the Nusselt number

$$Nu = \frac{Q H}{\lambda \Delta T},$$

which compares the heat flux Q to the purely diffusive one $\lambda \Delta T/H$, where λ is the fluid thermal conductivity.

Several experiments7–10 and a numerical simulation11 examine the effect of the roughness of the plates on Nu. Shen et al.7 and Du and Tong8 use perpendicular triangular grooves to define square based pyramids on their plates. With 3 mm high pyramids, they observe a short cross-over when the thermal boundary layer height ($H/2Nu$) matches the pyramids’ one. For Rayleigh numbers under the crossover, the plate works as a smooth one. Above the cross-over, Nu is simply enhanced by a constant factor compared to the smooth case. With 9 mm high pyramids, they do not observe the cross-over, only the enhanced regime, by a factor significantly larger than that in the previous case. They observe systematic plumes at the tips of the pyramids. Qiu et al.9 use the same pyramids, but sunk into the plate rather than glued. Either with 3 or 8 mm high pyramids, they observe the same power law $Nu \propto Ra^{0.35}$, with a higher prefactor in the 8 mm case.

In Ref. 10, linear triangular grooves are used. Matching the thermal boundary layer height with the grooves one occurs here at much higher Rayleigh number ($Ra = 10^{12}$ instead of $Ra = 10^9$ for Refs. 7 and 8) and they interpret the following regime ($Nu \propto Ra^{1/2}$) as the settlement of a turbulent thermal boundary layer.14,15 Note that van den Berg et al.16 obtain an equivalent result with a Taylor–Couette flow, whose equations are very similar to the Rayleigh–Bénard ones.

With a numerical simulation, Stringano et al.11 also use linear triangular grooves. As in the experimental works,7–10 a transition is observed toward an enhanced Nusselt regime when the thermal boundary layer height matches the grooves one. The behavior reported by Stringano et al.11 for this regime is $Nu \propto Ra^{0.37}$ for the full three-dimensional calculation.
and \(\text{Nu} \approx \text{Ra}^{1/2} \) for the axisymmetric approximation, without any saturation up to the maximum \(\text{Ra} \) reached, implying a much wider cross-over than that in Ref. 7. However, Stevens et al.11 suggest that the spatial resolution of this work is not high enough for large values of \(\text{Ra} \), so that the calculated \(\text{Nu} \) is not accurate enough to pin down the scaling exponent. This argument does not hold for moderate \(\text{Ra} \), just before the transition, and Stringano et al.11 reported here a Nusselt surprisingly smaller than that for the smooth case.

Note that not only the height, but also the spatial period of the roughness could determine the thermal boundary layer thickness at the transition. However, with the kind of roughness used up to now, these two lengths are closely linked. It is why we choose here a different geometry which will allow us, in a future work, to explore these two influences.

The paper is organized as follows. In Sec. II, we present the apparatus, with particular emphasis on the differences with our previous works. In Sec. III, we present the results, both raw data and the various corrections we propose. The discussion and interpretation are given in Secs. IV and V. Before we conclude (Sec. VII), we present in Sec. VI hysteric effects and long time relaxations associated with the transition observed.

II. EXPERIMENTAL SETUP AND MEASUREMENTS

The apparatus is basically similar to that described in Ref. 18. Our cell is cylindrical, \(D = 50 \text{ cm} \) in diameter. The wall is a stainless steel cylinder of thickness \(e = 2.5 \text{ mm} \) for two different heights: \(H = 1 \text{ m} \) (the tall one) or \(H = 0.2 \text{ m} \) (the small one). The plates are 3 cm thick. The top one is smooth made of copper and nickel plated. The bottom one is made of aluminium. Its roughness consists in a square array of square plots, \(d = 5 \text{ mm} \) of side and \(h_s = 2 \text{ mm} \) in height, with a period of \(2d = 1 \text{ cm} \). The working fluid is de-ionized water, which is made free of gas in situ by boiling several hours under partial vacuum. The bottom plate has a heating wire, 13.55 \(\Omega \), embedded as a spiral at the rear of this aluminium plate. It lies on a 2 cm thick isolating polytetrafluoroethylene plate, which is supported by a 3 cm thick square aluminium table through eight hollow stainless steel feet. These feet go through a copper thermal screen which surrounds the whole cell. Heat leaks from the bottom plate are modelized by linear thermal links to the screen, the aluminium table, and the top plate (respectively, 0.7, 0.5, and 0.1 \(\text{W}/\text{°C} \)). Calibration of these links allows estimating the heat leaks within 0.5\%.

The top plate is cooled through two counterflow spiral tubes, with 1 cm inner diameter, welded on the plate. Temperatures are measured through type K thermocouples. Three of them, including the control sensor, are on the top plate. Three other ones are on the bottom plate. One is stuck on the stainless steel wall to measure the bulk temperature \(T_b \). Additional control platinum thermometers are glued on both plates. Eventual differences between measured temperatures in the same plate, which never go more than 3\% of the total \(\Delta T \), are strictly proportional to the applied power. They can thus be attributed to heat conduction in the plates. For the measured Nu values, we use the sensors in the middle of the plates.

The water cooling the top plate is itself cooled through heat exchange with fresh water and temperature regulated via a 1 kW heater-cooler bath. To minimize uncontrolled heat leaks, the screen is regulated at the temperature of the middle of the cell (bulk temperature). The aluminium table is also temperature regulated.

Studies are made with water at various bulk temperatures from 25 (\(\text{Pr} = 6.2 \)) to 70 \(^\circ \text{C} \) (\(\text{Pr} = 2.5 \)). This temperature is maintained constant for a series of experiments at various applied powers. This is the temperature chosen for the copper screen and for calculating the water physical properties.

III. RESULTS

In Fig. 1 we present our data.

\[
\text{Nu}_{\text{global}} = \frac{QH}{\lambda(T_b - T_c)} \tag{3}
\]

is presented in a compensated way \(\text{Nu}_{\text{global}} \text{Ra}_{\text{global}}^{-1/3} \) to stress the differences with the smooth case. In the same figure, we plot the results of a previous work19 using the same cell, but with both plates being smooth and made of copper (3 cm thick). It is clear that both sets of results are similar up to some threshold. After this threshold, the present results are above the previous ones. The depth of the thermal boundary layer at the threshold \(\delta_b \) can be estimated as

\[
\delta_b = \frac{H}{2\text{Nu}_{\text{global}}} \approx 2 \text{ mm}, \tag{5}
\]

which is the height of our square plots. We thus perfectly agree with previous works on this point.
The measure of the bulk temperature T_b, gives both (T_b-T_c), which is the temperature drop across the boundary layer of the smooth (top) plate, and (T_h-T_b), which is the temperature drop across the boundary layer of the rough (bottom) plate. With the same information, some authors studied the asymmetric behavior of these plates. In their case, the asymmetry comes from the temperature dependence of the fluid properties. Here, it comes from the difference between the plates.

To quantify this asymmetry, they introduce the parameter χ

$$\chi = \frac{T_b - T_c}{T_h - T_b}$$

which is 1 in the symmetric case. Our values for χ are shown in Fig. 2.

Above the threshold, χ is larger than 1 as expected. Note, however, that it is lower than 1 before the threshold. In the cited works, the authors have no means to determine if the two boundary layers behave independently or if they mutually influence their behaviors through the bulk flow. Here, we can test this independency, as we know the behavior of a smooth plate.

If a symmetric cell has two independent smooth plates behaving the same as our top plate, the total temperature difference across this cell is $\Delta T_s = 2(T_h - T_c)$. Its Nusselt number is

$$\text{Nu}_s = \frac{QH}{\lambda \Delta T_s}$$

(7)

and its Rayleigh number is

$$\text{Ra}_s = \frac{g \alpha \Delta T_s H^4}{\nu K}$$

(8)

We have to add a remark here. Measuring T_b with a single probe gives a more noisy and uncertain result than averaging on many probes all around the cell. Moreover, Brown and Ahlers have shown that the large scale circulation (LSC) can sometimes be locked. This would result in an uncertainty in $T_b - T_c$ and $T_h - T_b$ equal to the temperature amplitude of the LSC, which can amount to 2%–8% of $\Delta T/2$. While not significant for our larger values of χ, it could question our result that χ is smaller than 1 before the transition.

We have reasons, however, for arguing that our uncertainty cannot be so high. First, as will be seen later, our results for the smooth plate are in good agreement with previous ones, obtained in a symmetric cell. Second, $\chi < 1$ before the transition is confirmed with a second cell, also discussed in this work, with aspect ratio much larger (2.5) and thus a completely different LSC.

In Fig. 1, we show examples of error bars taking only account of our temperature and input power measurements uncertainty. Apart from a few points, they agree with the local dispersion of our results. The few exceptions could be due to systematic errors as discussed above or to the hysteretic behavior discussed in Sec. VI.

Similar to what we make for the top smooth plate, we can define a Nusselt number for the rough bottom plate

$$\text{Nu}_r = \frac{QH}{\lambda \Delta T_r}$$

(9)

with $\Delta T_r = 2(T_h - T_b)$ and a Rayleigh number

$$\text{Ra}_r = \frac{g \alpha \Delta T_r H^4}{\nu K}$$

(10)

As the ΔT can be different because of the asymmetry, a same run corresponds to different Ra values for the two plates. We thus prefer to use as the characteristic number

$$\text{Ra}_r = \frac{\text{Ra}_s \text{Nu}_s}{N_u} = \frac{g \alpha QH^4}{\lambda \nu K}$$

(11)

which has the same value for both plates.

There are two reference behaviors for Nu versus Ra. The first one is $N_u \propto R_{a1/3}$, which corresponds to a heat flux independent of the height H of the cell. That one is equivalent to $N_u \propto R_{a1/4}$. The second one is $N_u \propto R_{a1/2}$, corresponding to a heat flux independent of the dissipative coefficients (purely inertial convection). It is equivalent to $N_u \propto R_{a1/3}$.

For clarity of the results, it will be interesting to define a reduced Nusselt

$$\text{redNu} = \frac{N_u}{R_{a1/3}} = \left(\frac{N_u}{R_{a1/4}} \right)^{4/3}$$

(12)

A purely inertial behavior gives a reduced Nusselt $\text{redNu} \propto R_{a1/9}$.

Tables I–III show part of our results (see Sec. VI for other results). Together with the raw data and the corresponding Nu for each plate, we give the corrected values corresponding to two effects. The first one is the finite conductivity of the wall, discussed in Ref. 25 or Ref. 26. The second one corresponds to the non-Oberbeck–Boussinesq (NOB) effects. We discuss them separately.

Roche et al. propose an analytical formula for the correction of the wall conduction effect.
The second correction comes from NOB effects and deserves a longer discussion.

NOB effects are extensively discussed for instance in Refs. 20–22. It appears from all these studies that the relative correction to the Nusselt number is second order in the temperature difference between the plates if the cell has symmetric plates. It would result in negligible (less than 1%) corrections with the temperature applied here. However, NOB effects result in a relative first order shift of the bulk temperature T_b from the mean temperature $T_m = (T_h + T_c) / 2$. From the work of Ref. 20 the effect is often discussed in terms of the parameter χ

$$\chi = \frac{T_h - T_b}{T_b - T_c} = 1 - c_2 \Delta T + \cdots$$

and thus

$$T_h - T_m = \frac{\Delta T}{2} \frac{1 - \chi}{(1 + \chi)} = c_2 \left(\frac{\Delta T}{2} \right)^2 + \cdots .$$

Two theories attempted in calculating χ. References 20 and 22 start from the hypothesis that the hot (bottom, δ_h) and cold (top, δ_c) thermal boundary layer thicknesses are such that their characteristic temperatures

$$\theta = \frac{\nu_l \kappa}{g \alpha \delta_c^3}$$

are equal (the fluid properties are evaluated at the mean temperature of the boundary layer). While giving good agreement with some experiments, particularly for Nusselt corrections, this basic assumption has been proved to be wrong. 22
Ahlers et al.\cite{Ahlers2004} propose to revisit thermal convection in a Blasius profile, taking into account the temperature dependence of fluid properties. They obtain χ without adjustable parameter and good agreement with their experimental results and those of Zhang et al.\cite{Zhang2004} However, they cannot propose an analytical formula and it is not clear if the Nusselt number obtained through their theory in Boussinesq conditions agrees with the observed one.

As we are concerned with linear corrections, the fluid being water, we can follow a different path. The theory of Ahlers et al.\cite{Ahlers2004} shows well that at the linear level, the temperature dependence of α might have no influence. The only influential parameters are the temperature derivatives of ν and κ. In water, κ is nearly temperature independent. Dimensional considerations then yield to

$$ c_2 = K(\Pr) \frac{d \ln(\nu)}{dT}. \quad (19) $$

Indeed, K cannot depend on the other nondimensional parameter Ra, as it has to be independent of the height H of the cell, if the two plates behave independently. Ahlers et al.\cite{Ahlers2004} propose two experimental values for c_2 at two different temperatures, thus different \Pr: $T=29$ °C, $\Pr=5.53$ and $T=40$ °C, $\Pr=4.34$. Assuming a power law dependence of $K(\Pr)$, we propose

$$ c_2 = -0.061 \Pr^{0.25} \left[\frac{d \ln(\nu)}{dT} \right]. \quad (20) $$

This formula gives also reasonable agreement with the results of Ref. 21, in spite of the very large difference in the Prandtl number ($\Pr=2550$ for glycerol).

Again, this correction is designed for smooth plates. However, we use the same formulas for rough plates. So, in both cases, the corrections for the rough plate are uncertain, except at low Ra, where the behaviors of both plates are similar. On the other hand, when different from the smooth one, the rough Nusselt number is much larger (see Sec. IV), making the corrections small.

Anyway, we use these corrections with two goals: first, to compare as finely as possible the smooth plate results with the traditional ones and second, to show that these corrections are small compared to the huge effects observed on the rough plate. Figure 3 resumes the applied factors for the Nusselt of the smooth plate.

Finally, we renounce to apply any correction for the finite heat conductivity of the plates. Indeed, in Ref. 27, such a correction is proposed based on the experimental comparison between various plates and a numerical simulation\cite{Lohse2006} gives some support for the existence of such a correction. However, contrary to previous corrections, we have no theory or model supporting the proposed formula. Moreover, in a recent work,\cite{Stark2009} this correction proves to be inadequate, so we have no guarantee that such a correction would be meaningful in our case.

IV. DISCUSSION

The corrected values for the smooth plate are shown in Fig. 4 as $\text{Nu}_{a,\text{cor}}=\text{Nu}_{a}/\text{Ra}^{-1/3}$. They are in good agreement with previous measurements in the same cell, where both plates are smooth, shown as stars in the same figure. This agreement has many important consequences. It validates the usual approximation of two separate thermal resistances (the boundary layers), with a bulk between them approximately uniform in temperature. Certainly, the larger dispersion of the present results compared to the previous ones is partly due to some spatial variations of the bulk temperature, but this dispersion cannot hide the important trends. The small ($\Gamma=2.5$) and the tall ($\Gamma=0.5$) cell results nicely fit together, in agreement with previous observations on the poor influ-

TABLE III. Tall cell results for $T=70$ °C.

<table>
<thead>
<tr>
<th>Pr</th>
<th>Ra</th>
<th>Nu_a (raw)</th>
<th>Nu_a (raw)</th>
<th>Nu_a</th>
<th>Nu_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.48</td>
<td>2.22×10^{15}</td>
<td>829</td>
<td>1184</td>
<td>809</td>
<td>1141</td>
</tr>
<tr>
<td>2.49</td>
<td>8.70×10^{14}</td>
<td>687</td>
<td>851</td>
<td>662</td>
<td>818</td>
</tr>
<tr>
<td>2.49</td>
<td>7.36×10^{14}</td>
<td>657</td>
<td>817</td>
<td>632</td>
<td>785</td>
</tr>
<tr>
<td>2.48</td>
<td>6.03×10^{14}</td>
<td>624</td>
<td>780</td>
<td>599</td>
<td>749</td>
</tr>
<tr>
<td>2.49</td>
<td>4.67×10^{14}</td>
<td>589</td>
<td>726</td>
<td>564</td>
<td>697</td>
</tr>
<tr>
<td>2.49</td>
<td>2.64×10^{14}</td>
<td>514</td>
<td>590</td>
<td>490</td>
<td>563</td>
</tr>
<tr>
<td>2.49</td>
<td>1.98×10^{14}</td>
<td>473</td>
<td>549</td>
<td>450</td>
<td>524</td>
</tr>
<tr>
<td>2.49</td>
<td>1.31×10^{14}</td>
<td>428</td>
<td>482</td>
<td>406</td>
<td>458</td>
</tr>
<tr>
<td>2.49</td>
<td>9.71×10^{13}</td>
<td>395</td>
<td>439</td>
<td>373</td>
<td>416</td>
</tr>
<tr>
<td>2.49</td>
<td>6.37×10^{13}</td>
<td>357</td>
<td>368</td>
<td>336</td>
<td>346</td>
</tr>
<tr>
<td>2.49</td>
<td>5.01×10^{13}</td>
<td>339</td>
<td>337</td>
<td>318</td>
<td>316</td>
</tr>
<tr>
<td>2.49</td>
<td>3.67×10^{13}</td>
<td>315</td>
<td>298</td>
<td>295</td>
<td>277</td>
</tr>
<tr>
<td>2.49</td>
<td>2.34×10^{13}</td>
<td>277</td>
<td>262</td>
<td>258</td>
<td>243</td>
</tr>
<tr>
<td>2.49</td>
<td>1.67×10^{13}</td>
<td>267</td>
<td>220</td>
<td>249</td>
<td>201</td>
</tr>
<tr>
<td>2.49</td>
<td>1.34×10^{13}</td>
<td>256</td>
<td>211</td>
<td>238</td>
<td>192</td>
</tr>
<tr>
<td>2.49</td>
<td>1.01×10^{13}</td>
<td>240</td>
<td>200</td>
<td>223</td>
<td>182</td>
</tr>
<tr>
<td>2.49</td>
<td>6.91×10^{12}</td>
<td>221</td>
<td>183</td>
<td>204</td>
<td>166</td>
</tr>
<tr>
<td>2.49</td>
<td>3.58×10^{12}</td>
<td>191</td>
<td>153</td>
<td>176</td>
<td>137</td>
</tr>
<tr>
<td>2.49</td>
<td>2.14×10^{12}</td>
<td>169</td>
<td>139</td>
<td>159</td>
<td>128</td>
</tr>
<tr>
<td>2.49</td>
<td>1.30×10^{12}</td>
<td>144</td>
<td>114</td>
<td>135</td>
<td>114</td>
</tr>
<tr>
<td>2.49</td>
<td>7.35×10^{11}</td>
<td>114</td>
<td>86</td>
<td>106</td>
<td>87</td>
</tr>
<tr>
<td>2.49</td>
<td>4.24×10^{11}</td>
<td>89</td>
<td>64</td>
<td>80</td>
<td>65</td>
</tr>
<tr>
<td>2.49</td>
<td>2.69×10^{10}</td>
<td>54</td>
<td>29</td>
<td>44</td>
<td>30</td>
</tr>
</tbody>
</table>

This formula gives also reasonable agreement with the results of Ref. 21, in spite of the very large difference in the Prandtl number ($\Pr=2550$ for glycerol).

The influence of the Prandtl number is clear, in reasonable agreement with previous studies. It is also clear that the present smooth plate results show no signature of the transition observed in the global results (see Fig. 1). It shows that the two boundary layers are independent of each other. This conclusion could not have been reached with a symmetric cell.

In contrast, the rough plate results (Fig. 5) show a clear transition when the thermal boundary layer approximately matches the height of the grooves. It corresponds to a different value of Ra_* for each set of data due to the different value of H in the tall cell (1 m) and in the small cell (20 cm). Note, however, as remarked in Sec. I, that we do not check the relative influence of the height and the period of the grooves.

Before the transition, the Nusselt number is slightly reduced compared to the smooth case, as in Ref. 11. To qualify the behavior after the transition, we prefer to write: close to $Nu \propto Ra^{1/2}$ (or $Ra^{1/3}$), with no visible saturation. The comparison is shown in Fig. 5. The Ra interval is too small and our uncertainty too large for any significant measure of the exponent.

The comparison between the tall and small cells allows to finely check the eventual influence of the bulk flow. Indeed, reducing H by a factor of 5 lowers Ra by 125 and thus the Reynolds number by approximately 10. For clarity, we present the results as the ratio between the rough and smooth reduced Nusselt, which coincides with the ratio of the corresponding ΔT to the power $-4/3$, namely, $(\Delta T_s/\Delta T_r)^{4/3}$. It thus exactly represents the enhancement factor due to the roughness. As the abscissa, we take Ra_*, in the definition of which we use the tall cell height $H=1$ m. We multiply it by the Prandtl number Pr as we remark that it merges nicely the different temperatures. However, it well corresponds to our observed Prandtl dependence of the smooth plate Nusselt. So, this Pr factor should be interpreted as the rough plate Nusselt being Pr independent after the transition.

This plot confirms the previous analysis and shows that the enhancement factor is the same in both cells, tall and small. This, and the absence of any signature of the transition on the smooth plate, shows that the bulk flow has a negligible influence on the Nusselt number.

With our roughness profile, the contact area between the plate and the fluid is 1.4 larger than that with a smooth plate (1.4 is the area ratio). We see in Fig. 6 that the enhancement factor goes over this number without apparent saturation. An enhancement factor larger than the area ratio is also noticed in Ref. 8. However, they report a Nusselt behavior parallel to the smooth one, as if the enhancement reached a saturation. Indeed, as their grooves are 9 mm high rather

FIG. 4. (Color online) The reduced Nusselt number for the smooth plate. Open symbols: small cell. Full symbols: tall cell. Up triangles: $T=70 \, ^\circ C$, $Pr=2.5$. Circles: $T=40 \, ^\circ C$, $Pr=4.3$. Down triangles: $T=25 \, ^\circ C$, $Pr=6.2$. Stars correspond to a previous work with symmetric smooth plates (Ref. 19). The shown error bars take into account our uncertainties on temperature and input power measurements.

FIG. 5. (Color online) The reduced Nusselt number for the rough plate. The continuous line corresponds to $Nu \propto Ra^{1/2}$. Open symbols: small cell. Full symbols: tall cell. Up triangles: $T=70 \, ^\circ C$, $Pr=2.5$. Circles: $T=40 \, ^\circ C$, $Pr=4.3$. Down triangles: $T=25 \, ^\circ C$, $Pr=6.2$. The shown error bars take into account our uncertainties on temperature and input power measurements.

FIG. 6. (Color online) Ratio between the smooth and rough reduced Nusselts. The dashed line at 1.4 corresponds to the total area of the rough plate divided by the smooth one. The full line corresponds to a $(Ra, Pr)^{4/3}$ behavior, i.e., the ratio between a $Nu \propto Ra^{1/2}$ one for the rough plate and $Nu \propto Ra^{1/3}$ for the smooth one. The shown error bars take into account our uncertainties on temperature measurements.
Comparison between a rough and a smooth plate

V. INTERPRETATION

What could be the interpretation of our results? It seems clear that the total area enhancement, the aspect ratio, is not a good reference. If the ratio between rough and smooth Nusselt has to saturate, its value after saturation has to rely on a different basis.

Let us first examine the possibility that no saturation occurs. This is indeed the interpretation of Roche et al.10 for their experiment. They argue that the roughness of the plate fixes the size of the viscous sublayer of a turbulent thermal boundary layer, transforming the \(\text{Nu} \times [\text{Ra}/(\ln \text{Ra})]^{1/2} \) behavior predicted by Kraichnan14 in a pure \(\text{Nu} \times \text{Ra}^{1/2} \) one (note that the Pr dependence for the rough plate cannot be deduced from the Kraichnan work). However, they have the argument that a previous experiment in a similar cell35 with smooth plates, gives a behavior compatible with the Kraichnan one. Here, the smooth plate remains in the same regime, showing no trace of a transition to turbulence. Moreover, changing the height of the cell by a factor of 5 lowers the Reynolds number of the cell by a factor of 10 and that based on the height \(h_o \) of the roughness by a factor of 2. It has no influence on the behavior of the rough plate.

Despite the \(\text{Nu} \times \text{Ra}^{1/2} \) behavior, a transition to a turbulent state is thus improbable, while we cannot totally exclude it: some Taylor–Couette results16 suggest that in the presence of boundary roughness, turbulence can occur for even smaller values of the Reynolds numbers than that of the small cell.

For an alternative explanation, we prefer to focus on the fact that part of the fluid, close to the plate, within the notches between the plots, cannot be taken by the flow and remain at rest until its buoyancy destabilization. Before this buoyancy destabilization, it thus reduces the heat exchange as it prevents the convection to go closer to the plate. After the buoyancy destabilization, on the opposite, it vigorously contributes to the heat exchange. This part, the shaded one in the Fig. 7, occupies a fraction \(\sigma \) of the plate. We shall call it the “sensitive area.” Figure 7 suggests that \(\sigma=1/4 \). The rest of the plate contributes to the Nusselt number in the same way as that for the smooth plate. Thus, \(\text{Nu}_s=\sigma \text{Nu}_{\text{sens}}+(1-\sigma)\text{Nu}_s \) and

\[
\text{Nu}_{\text{sens}}=\frac{1}{\sigma} \text{Nu}_s - \left(1 - \frac{1}{\sigma}\right)\text{Nu}_s = 4\text{Nu}_s - 3\text{Nu}_s. \tag{21}
\]

We thus consider that \(4\text{Nu}_s - 3\text{Nu}_s \) gives us an experimental estimation of the heat conductivity of this sensitive area. We can compare it with our model in two separate cases, before and after the buoyancy destabilization of the fluid within the notch.

Such a destabilization is similar to that of a Rayleigh–Bénard cell of height \(2h_o=4 \) mm. The Rayleigh number \(\text{Ra}_{\text{notch}} \) of such a cell is related to \(\text{Ra}_s \) as

\[
\text{Ra}_{\text{notch}} = \frac{g\alpha\Delta T_s (2h_o)^3}{\nu\kappa} = \left(\frac{2h_o}{H}\right)^3 \text{Ra}_s. \tag{22}
\]

We thus expect this destabilization to occur for \(\text{Ra}_{\text{notch}} \) being a few thousand, taking into account the limited aspect ratio of this cell: 5/4. Indeed, we obtain a critical value of \(R_s=6 \times 10^3 \) for \(\text{Ra}_{\text{notch}} \), fairly coherent with this interpretation.

For \(\text{Ra}_{\text{notch}} > R_s \), the heat conductivity of the notch should be similar to that of such a cell. We estimate the Nusselt number of the notch as

\[
\text{Nu}_{\text{notch}} = \frac{2h_o}{H} \text{Nu}_{\text{sens}}. \tag{23}
\]

Figure 8 compares the obtained experimental values for \(\text{Nu}_{\text{notch}} \) to another experiment (full symbols), where the aspect ratio is even smaller (1/2).35 The critical Rayleigh number of this experiment is thus larger (\(3 \times 10^3 \)) and we renormalize its Rayleigh numbers by a factor of 5 to fit with ours.

For \(\text{Ra}_{\text{notch}} < R_s \), the quiescent fluid of height \(h_o \) should be topped with a smooth type boundary layer of height \(\delta \). The thermal conductivity of the sensitive area is thus equivalent to a layer of quiescent fluid, of total height \(h_o + \delta \), and we can write

\[
\text{Nu}_{\text{notch}} = \frac{2h_o + \delta}{H} \text{Nu}_{\text{sens}}. \tag{24}
\]

FIG. 7. (Color online) Schematic view of the rough plate. The shaded part is the fluid at rest, not washed by the flow (arrow). Also shown is the equivalent Rayleigh–Bénard cell whose buoyancy destabilization corresponds to the transition of the rough plate. \(d=5 \) mm is the half period of the roughness. \(2h_o=4 \) mm is twice the height of the notch.

FIG. 8. (Color online) Effective Nusselt of the water between plots on the rough plate. Full triangles: small cell data, with proper height renormalization. Small black circles: data of Ref. 35 with renormalization of Ra to take account of the different aspect ratio (0.5 vs 1.25 here). Open triangles down: \(2h_o\text{Nu}_{\text{sens}}/HN \). Continuous line: \(1/(1+N) \), with \(N=6 \times 10^{-3}\text{Ra}_{\text{notch}}^{1/3} \).

\[
\text{Nu}_{\text{sens}} = \frac{1}{\sigma} \text{Nu}_s - \left(1 - \frac{1}{\sigma}\right)\text{Nu}_s = 4\text{Nu}_s - 3\text{Nu}_s. \tag{21}
\]

We thus consider that \(4\text{Nu}_s - 3\text{Nu}_s \) gives us an experimental estimation of the heat conductivity of this sensitive area. We can compare it with our model in two separate cases, before and after the buoyancy destabilization of the fluid within the notch.

Such a destabilization is similar to that of a Rayleigh–Bénard cell of height \(2h_o=4 \) mm. The Rayleigh number \(\text{Ra}_{\text{notch}} \) of such a cell is related to \(\text{Ra}_s \) as

\[
\text{Ra}_{\text{notch}} = \frac{g\alpha\Delta T_s (2h_o)^3}{\nu\kappa} = \left(\frac{2h_o}{H}\right)^3 \text{Ra}_s. \tag{22}
\]

We thus expect this destabilization to occur for \(\text{Ra}_{\text{notch}} \) being a few thousand, taking into account the limited aspect ratio of this cell: 5/4. Indeed, we obtain a critical value of \(R_s=6 \times 10^3 \) for \(\text{Ra}_{\text{notch}} \), fairly coherent with this interpretation.

For \(\text{Ra}_{\text{notch}} > R_s \), the heat conductivity of the notch should be similar to that of such a cell. We estimate the Nusselt number of the notch as

\[
\text{Nu}_{\text{notch}} = \frac{2h_o}{H} \text{Nu}_{\text{sens}}. \tag{23}
\]

Figure 8 compares the obtained experimental values for \(\text{Nu}_{\text{notch}} \) to another experiment (full symbols), where the aspect ratio is even smaller (1/2).35 The critical Rayleigh number of this experiment is thus larger (\(3 \times 10^3 \)) and we renormalize its Rayleigh numbers by a factor of 5 to fit with ours.

For \(\text{Ra}_{\text{notch}} < R_s \), the quiescent fluid of height \(h_o \) should be topped with a smooth type boundary layer of height \(\delta \). The thermal conductivity of the sensitive area is thus equivalent to a layer of quiescent fluid, of total height \(h_o + \delta \), and we can write

\[
\text{Nu}_{\text{notch}} = \frac{2h_o + \delta}{H} \text{Nu}_{\text{sens}}. \tag{24}
\]
\[\text{Nu}_{\text{sens}} = \frac{H}{2(h_0 + \delta)} = \frac{H}{2h_0} \frac{N}{1 + N} \]

(24)

with \(N = h_0 / \delta \). To estimate \(\delta \), we take it equal to the boundary layer thickness on the adjacent areas, which behaves as a smooth plate. For such a smooth plate, according to the results of Fig. 4, \(\text{Nu} = 6 \times 10^{-2} \text{Ra}^{1/3} \). Thus,

\[N = \frac{h_0}{\delta} = \frac{2h_0 H}{H 2 \delta} = 6 \times 10^{-2} \text{Ra}^{1/3} \frac{2h_0}{H} \]

\[= 6 \times 10^{-2} \text{Ra}^{1/3} \text{notch} \]

(25)

In Fig. 8, we compare \(2h_0 \text{Nu}_{\text{sens}} / HN \) and \(1 / (1 + N) \) with \(N = 6 \times 10^{-2} \text{Ra}^{1/3} \text{notch} \) (open symbols). We clearly miss of low Ra data to be categoric, but the agreement is fair.

To conclude, the enhancement factor observed for the rough plate Nusselt compared to the smooth one is consistent with the buoyancy destabilization of the fluid captured inside the notches. This model not only justifies the general observation that the depth of the boundary layer fits the height of the notches. This model also gives the right value of the enhancement factor after the transition. For much higher Ra, number, it would predict that the rough plate comes back to the same Nusselt as that of the smooth one. However, in the mean range, a turbulent transition will probably occur.

Note that if this interpretation is correct, the Ra\(^{1/2} \) dependence of the rough plate Nusselt is fortuitous. Such a power law behavior cannot be predicted by our model.

VI. HYSTERESIS AND RELAXATION

In this section, we discuss some occurrences of hysteretic behavior of the rough plate, as for instance shown in Fig. 9.

In this example, the transition discussed in Sec. VI does not occur at the usual Ra value. Rather, when growing Ra, by small steps, the rough plate continues in a \(\text{Nu} \approx \text{Ra}^{1/3} \) mode, up to Ra values twice as large before raising its reduced Nusselt. Yet, instead of going to its equilibrium value within 1 h or so, the rough plate Nusselt slowly drops in a relaxation way during several days. We can follow such a relaxation during half a month, which is shown in Fig. 10. The applied power is 3300 W, corresponding to the highest Ra value at \(T_h = 70^\circ \text{C} \). The squares correspond to the evolution of \(\Delta T_r = 2(T_h - T_b) \). The triangles correspond to the evolution of \(\Delta T_s = 2(T_p - T_h) \). Their constant value shows that during all the relaxation of the rough plate, the smooth one keeps a constant Nusselt.

The time dependence of \(\Delta T_r \) better fit with an exponential function of time \(t \), with time constant close to 6 days, than with a ln \(t \) behavior. A ln \(t \) behavior, corresponding to the absence of characteristic time, would have meant that the origin of the relaxation is in a complex system as the turbulent bulk flow itself. On the contrary, the origin has to be searched in a simple system.

Such observations can be interpreted in the frame of our model for the rough plate behavior. It would mean that maybe, depending on the orientation of the large scale flow, the bifurcation of the trapped quiescent fluid (shaded part in Fig. 7) to a convective state can turn to subcritical. Then, on some Ra range, each trapped part has a finite probability per unit time to become convective, resulting in an exponential relaxation of the global Nusselt number.

Note that we never observed such a hysteretic behavior with the small cell.

VII. CONCLUSION

The initial goal of this experiment is to look if the roughness of the plate can trigger the turbulence in the boundary layer. While not directly answering the question, our results give many interesting hints.

The Nusselt number of the top smooth plate is spectacularly similar to that obtained with two symmetric smooth plates. Its behavior seems insensitive to the transition experienced by the opposite rough plate. This is to be noted as, on the other hand, this behavior slightly differs from a pure Ra\(^{1/3} \) one, which means that the bulk flow has some influence on it. However, this result is consistent with many works (e.g., Ref. 36) showing the poor influence of the large
scale motion on the Nusselt number. Even those suggesting such an influence show that it is very tiny (close to 1%).

Moreover, this work strongly corrects common intuitive feelings about the influence of roughness. At least close to the Rayleigh number where its effect appears, the increase in contact area with the fluid (the area ratio) is not a reference. The enhancement factor of the Nusselt number overcomes this limit without apparent saturation. If this saturation exists and if the Nusselt number returns to a $N_{Nu} \propto Ra^{1/3}$ mode, the cross-over range is much larger than that suggested in Ref. 7. Our model, focusing on the destabilization of quiescent preserved fluid zones, has the advantage to capture most of the characteristics of the enhancement factor, including probably the hysteretic behavior.

If this interpretation is correct, the $Ra^{1/2}$ behavior of the rough plate’s Nusselt number Nu_r is fortuitous. A turbulent transition, which would more naturally explain it, is improbable. The main objection against it is that reducing the height of the cell by a factor of 5, and thus the Reynolds number based on the roughness size h_B by more than a factor 2, has no influence on this behavior. We cannot totally exclude it, however. The Taylor–Couette results suggest that turbulence may occur for even smaller values of this Reynolds number. The final answer will come at larger values of the Rayleigh number based on h_B by the occurrence or not of a saturation in $Nu_r/Ra^{1/3}$.

To resume, the independent behavior of both plates shows that the thermal exchange between a solid boundary and a fluid is largely a local process. However, the discrepancy between the Nusselt enhancement factor and the area ratio shows the limits of this locality. It shows how important it is to understand the coherence of the flow along the plate.

ACKNOWLEDGMENTS

We thank M. Moulin and F. Vittoz for technical assistance. This work has been partly supported by the Agence Nationale pour la Recherche under Contract No. ANR-07-BLAN-0181.