D. Ms-transduction-?, R. Su, . Regt, L. ?. Such, and R. , By Theorem 8.26 there is a monadic second-order relabelling ? and a transduction µ ? DTWT su such that Since T (F ) is regular, ?(T (F )) is regular by Proposition 7 This shows that L ? DTWT su (REGT) Now let L = µ(R) with µ ? By Theorem 8.6, µ is in MSOT. Since R is MS-definable, we obtain from µ by the Restriction Theorem (Theorem 7.16) an MS-transduction ? such that L = ? (T (F )). Clearly, we may assume that F is a fat signature, pp.L is VR-equational

. As-an-example, (t)|} is VR-equational, see Example 8.1. Similarly, an example of a linear VRequational set of terms is {?(c n (µ A (w))), d n (µ A (w))) | w ? A * , n = |w|}, where A is any alphabet. Since deterministic tree-walking transducers with a unary output signature are single-use

D. If and .. .. {d-1, d n are points on a circle such that, according to some orientation of the circle, d i+1 follows d i and d 1 follows d n , then C(x, y, z) expresses that, if one " walks " along the circle according to this orientation by starting at x, then one meets y before z. We denote by C(?) the ternary relation associated with ? in this way. A relation of this form is a cyclic ordering. A cyclic ordering C satisfies the following properties, for all x, y, z in its domain D, C1) C(x, y, z) ? x = y ? x = z ? y = z (C2) C(x, y, z) ? C(y

R. ?. and ?. 1}, Its domain is D U ? T U ; for every c in R 0 , we let c S be the unique element of c U (we use here (I5)) and for every we let R S be the set of tuples) ) such that, for some t ? R U , we have (t, d i ) ? in i U for each i ? [?(R)]. It is easy to check that there is a unique isomorphism between Inc(S) and U that is the identity on D U ? T U , d ?(R) ) in T S corresponds by Conditions (I1) to (I4) to a unique element t of T U . (2) It is also easy to check that if h is an isomorphism from U to Inc(S ) for an R-structure S , then the restriction of h to D U ? T U is an isomorphism from S to S . An FO-transduction can construct S from U : Conditions (I1) to (I5) are expressible by a first-order sentence ?, that can be taken as the precondition of the definition scheme to be defined), we have given a construction of S from U in STR c (R Inc ) satisfying Conditions (I1) to (I5) We omit the details of the definition scheme. CHAPTER 9, Proof: (1) Conditions (I1) to (I5) are clearly necessary. Conversely, let us assume that they hold for some R Inc -structure U . We define as follows an Rstructure S RELATIONAL STRUCTURES Hence we can construct a (k + 1)-copying MS-transduction ? 2 that associates with (H, ?) given as V G , edg H , ?? the structure T = D T)) | (x, i) ? D T , i ? 1, y = p i (x)} ? {((x, i), (x, 0)) | (x, i) ?

S. =. Let, H. ??, V. H. , and H. V. , Adj (S) ? S u be its adjacency graph Proposition 9.14) Since |E G | ? |T S |, the graph G is in US k . Thus, by Propositions 9) and 9.43 there exists a domain-preserving MS-transduction ? 1 that transforms S into one or more structures ?? satisfies the same conditions as in the above special case, with, 12 For each x ? D S , we define the enumeration p 1 (x), . . . , p l (x) of Adj ? H (x) as above. Our goal is now to define a parameterless domain-extending MS-transduction ? 2 that transforms each such structure D S , (R S ) R?R , edg H , ?? into Inc(S)

]. A. Arnniw, D. Arnold, and . Niwinski, Rudiments of µ-Calculus, 2001.

]. F. Baanip, T. Baader, and . Nipkow, Term Rewriting and All That, p.411, 1999.

]. J. Ber and . Berstel, Transductions and Context-Free Languages, Teubner Studienbücher, pp.578-588, 1979.

]. H. Bod98 and . Bodlaender, A partial k-arboretum of graphs with bounded treewidth, 187) BIBLIOGRAPHY [*Bod06] H. Bodlaender, Treewidth: characterizations, applications, and computations, Proceedings of WG 2006, 32nd International Workshop Graph-Theoretic Concepts in Computer Science, pp.1-45, 1998.

]. E. Börgg, E. Börger, Y. Grädel, and . Gurevich, The Classical Decision Problem, 1997.

]. A. Bradman, Z. Bradley, and . Manna, The Calculus of Computation: Decision Procedures with Applications to Verification, 2007.

]. H. Com+ and . Comon, Tree Automata Techniques and Applications, Online book, printable for free from: http://tata.gforge.inria, pp.227-249

]. B. Cou86 and . Courcelle, Equivalences and transformations of regular systems: applications to recursive program schemes and grammars, Theoret. Comput. Sci, vol.42, pp.1-122, 1986.

]. B. Cou90a and . Courcelle, Recursive applicative program schemes, Chapter 9 of Handbook of Theoretical Computer Science B: Formal Models and Semantics, pp.459-492, 1990.

]. B. Cou96b and . Courcelle, Basic notions of universal algebra for language theory and graph grammars, Theoret. Comput. Sci, vol.163, issue.410, pp.1-54, 1996.

]. B. Cou97 and . Courcelle, The expression of graph properties and graph transformations in monadic second-order logic, pp.313-400

]. B. Coumr, J. Courcelle, U. Makowsky, and . Rotics, On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic, Discrete Applied Mathematics, vol.108500, pp.23-52, 2001.

]. P. Derajl, M. Deransart, B. Jourdan, and . Lorho, Attribute Grammars, Lecture Notes in Computer Science, vol.323, issue.610, 1988.

]. N. Dersjou, J. Dershowitz, and . Jouannaud, Rewriting systems B: Formal Models and Semantics, Handbook of Theoretical Computer Science, issue.411, pp.243-320, 1990.

*. Diekroz, ]. V. Diekert, and G. Rozenberg, The Book of Traces, World Scientific, issue.1 2, p.424, 1995.

]. R. Die, G. Diestel, and . Theory, See : http://diestel-graph-theory.com, pp.99-135, 2010.

]. R. Dowfel, M. Downey, and . Fellows, Parameterized Complexity, pp.290-426, 1999.

]. F. Dre06 and . Drewes, Grammatical Picture Generation: A Tree-Based Approach, p.259, 2006.

]. F. Drekh, H. Drewes, A. Kreowski, and . Habel, Hyperedge replacement graph grammars, pp.95-162

]. A. Ehrhr, T. Ehrenfeucht, G. Harju, and . Rozenberg, The Theory of 2-Structures, p.188, 1999.

]. J. Eng80 and . Engelfriet, Some open questions and recent results on tree transducers and tree languages, in: Formal Language Theory: Perspectives and Open Problems, p.619, 1980.

]. J. Eng94 and . Engelfriet, Graph grammars and tree transducers, in: Proceedings CAAP, Colloquium on Trees in Algebra and Programming ) Lecture Notes in Computer Science, vol.78759, pp.15-36, 1994.

]. J. Eng97 and . Engelfriet, Context-free graph grammars, Chapter 3 of Handbook of Formal Languages, pp.125-213, 1997.

J. Engelfriet and G. Rozenberg, NODE REPLACEMENT GRAPH GRAMMARS, pp.1-94
DOI : 10.1142/9789812384720_0001

]. P. Flased, R. Flajolet, and . Sedgewick, Analytic Combinatorics, p.220, 2009.

]. J. Flugräw, E. Flum, and T. Grädel, Logic and Automata: History and Perspectives, 2008.

J. Flum and M. Grohe, Parameterized Complexity Theory, pp.427-431, 2006.

]. A. Fra and . Frank, Connectivity and network flows, Handbook of Combinatorics, pp.111-178, 1997.

]. Z. Fülvog, H. Fülöp, and . Vogler, Syntax-Directed Semantics: Formal Models based on Tree Transducers, EATCS Monographs on Theoretical Computer Science, issue.610, 1998.

]. F. Gecste, M. Gécseg, and . Steinby, Tree languages, Chapter 1 of Handbook of Formal Languages, pp.1-68, 1997.

]. D. Giares, A. Giammarresi, and . Restivo, Two-dimensional languages, Chapter 4 of Handbook of Formal Languages, pp.215-267, 1997.

]. M. Gol and . Golumbic, Algorithmic Graph Theory and Perfect Graphs, Annals of Discrete Mathematics, vol.57134, issue.135, p.475, 2004.

]. G. Gothos, P. Gottlob, S. Hlin?n´hlin?n´y, D. Oum, *. Seese et al., Width parameters beyond tree-width and their applications, Automata, Logics, and Infinite Games: A Guide to Current Research Logic, graphs, and algorithms, pp.326-362, 2002.

]. A. Hab and . Habel, Hyperedge Replacement: Grammars and Languages, Lecture Notes in Computer Science, vol.64349, pp.314-617, 1992.

]. M. Har and . Harrison, Introduction to Formal Language Theory, pp.212-550, 0199.

]. S. Hed and . Hedetniemi, References on partial k-trees, Discrete Applied Mathematics, vol.54, issue.4, pp.281-290, 1994.

]. T. Jentof, B. Jensen, . Toft, . Graph-coloring, . Problems et al., Recent developments on graphs of bounded clique-width, Discrete Applied Mathematics, vol.157, issue.474187, pp.2747-2761, 1995.

]. Kawmoh, B. Kawarabayashi, *. Mohar, ]. S. Kre, and . Kreutzer, Some recent progress and applications in graph minor theory, Graphs Combin Algorithmic meta-theorems, in: Finite and Algorithmic Model Theory, pp.1-46, 2007.

]. L. Lib06 and . Libkin, Logic for unranked trees: an overview, Logical Methods in Computer Science, vol.2, issue.410, pp.1-31, 2006.

]. J. Mak and . Makowsky, Algorithmic uses of the Feferman-Vaught Theorem, Ann. Pure Appl. Logic, vol.126, issue.424, pp.159-213, 2004.

]. B. Mohatho, C. Mohar, and . Thomassen, Graphs on Surfaces, pp.79-99, 2001.

]. R. Möhr and . Möhring, Computationally tractable classes of ordered sets, pp.105-194, 1989.

]. R. Möhrad, F. Möhring, and . Radermacher, Substitution decomposition for discrete structures and connections with combinatorial optimization, Algebraic and Combinatorial Methods in Operations Research, pp.257-355, 1984.

]. J. Sak and . Sakarovitch, Elements of Automata Theory, pp.289-588, 2009.

]. W. Tho90 and . Thomas, Automata on infinite objects, in: Handbook of Theoretical Computer Science B: Formal Models and Semantics, pp.133-192, 1990.

]. L. Aceei, Z. Aceto, A. Esik, and . Ingolfsdottir, A fully equational proof of Parikh's Theorem, Theoretical Informatics and Applications, vol.36206, pp.129-153, 2002.

]. H. Adladl, I. Adler, and . Adler, A note on clique-width and tree-width for structures, preprint, p.686, 2008.

]. A. Ahohu, J. Aho, J. Hopcroft, ]. Ullmanahoull71, J. Aho et al., A general theory of translation (617) [AhoUll70] A. Aho and J. Ullman, A characterization of two-way deterministic classes of languages, Mathematical Systems Theory J. Comput. Syst. Sci. Information and Control, vol.3610, issue.19, pp.193-221, 1969.

]. R. Alu?eralu?alu?er, P. Alur, and . Cern´ycern´y, Expressiveness of streaming string transducers, Proceedings FSTTCS 2010, K. Lodaya and M609) [AluDan] R. Alur and L. D'Antoni, Streaming tree transducers, Manuscript, pp.1-12, 2010.

]. S. Arncp, D. Arnborg, A. Corneil, and . Proskurowski, Complexity of finding embeddings in a k-tree, SIAM J. Algebraic and Discrete Methods, vol.8, pp.277-284, 1987.

]. S. Arncps, B. Arnborg, A. Courcelle, D. Proskurowski, and . Seese, An algebraic theory of graph reduction, J. ACM, vol.40, issue.431, pp.1134-1164, 1993.

]. S. Arnls, J. Arnborg, D. Lagergren, and . Seese, Easy problems for treedecomposable graphs Forbidden minors characterization of partial 3-trees, J. Algorithms Discrete Mathematics, vol.12, issue.499129, pp.308-340, 1990.

]. E. Bacbod06, H. Bachoore, and . Bodlaender, A branch and bound algorithm for exact, upper, and lower bounds on treewidth, Proceedings of Algorithmic Aspects in Information and Management, Second International Conference, pp.255-266, 2006.

]. E. Bacbod07, H. Bachoore, and . Bodlaender, Weighted treewidth: algorithmic techniques and results, Proceedings ISAAC'07, pp.893-903, 2007.

M. Bauderon and B. Courcelle, Graph expressions and graph rewritings, Mathematical Systems Theory, vol.27, issue.2, pp.87-127, 1987.
DOI : 10.1007/BF01692060

]. C. Beeekm, A. Beeri, S. Eyal, T. Kamenkovich, and . Milo, Querying business processes with BP-QL Monadic second order logic and node relations on graphs and trees, in: Structures in Logic and Computer Science, Information SystemsBloEng97] R. Bloem and J. Engelfriet Lecture Notes in Computer Science, vol.33, issue.1261, pp.477-507, 0618.

]. R. Bloeng00, J. Bloem, and . Engelfriet, A comparison of tree transductions defined by monadic second order logic and by attribute grammars, J. Comput. Syst. Sci, vol.61, issue.575, pp.1-50, 2000.

]. A. Blu06 and . Blumensath, A model-theoretic characterisation of clique width, Ann. Pure Appl. Logic, vol.142, pp.321-350, 2006.

]. A. Blu10 and . Blumensath, Guarded second-order logic, spanning trees, and network flows, Logical Methods in Computer Science, vol.6673, p.686, 2010.

]. A. Blucou06, B. Blumensath, and . Courcelle, Recognizability, hypergraph operations, and logical types, Information and Computation, vol.204314, issue.646, pp.853-919, 2006.

]. A. Blucou10, B. Blumensath, and . Courcelle, On the monadic second-order transduction hierarchy, Logical Methods in Computer Science, vol.6, issue.22, pp.1-28, 2010.

]. H. Bod89 and . Bodlaender, Achromatic number is NP-complete for cographs and interval graphs (474) [Bod96] H. Bodlaender, A linear-time algorithm for finding treedecompositions of small treewidth, Inf. Process. Lett. SIAM J. Comput, vol.25, issue.56, pp.31-135, 1989.

]. H. Bodfkkt, F. Bodlaender, A. Fomin, D. Koster, D. Kratsch et al., On exact algorithms for treewidth Approximating treewidth, pathwidth, frontsize, and shortest elimination tree, Proceedings, pp.672-683, 1995.

]. H. Bodklo, T. Bodlaender, and . Kloks, Efficient and constructive algorithms for the pathwidth and treewidth of graphs, J. Algorithms, vol.21, pp.358-402, 1996.

]. H. Bodkos10, A. Bodlaender, . Kosterbodkos11-]-h, A. Bodlaender, and . Koster, Treewidth computations I Treewidth computations II. Lower bounds, Information and Computation Reduction algorithms for graphs of small treewidth, Press. (501) [BodvAnt] H. Bodlaender and B. Van Antwerpen-de Fluiter Tree-walking automata cannot be determinized, pp.259-275, 2001.

]. I. Bontal, J. Boneva, and . Talbot, Automata and logics for unranked and unordered trees, Conference on Rewriting Techniques and Applications, pp.500-515, 2005.

]. R. Bor, . Borieborpt-]-r, R. Borie, C. Parker, and . Tovey, Automatic generation of lineartime algorithms from predicate calculus descriptions of problems on recursively constructed graph families Dauchet and B. Warin, A Kleene Theorem for a class of planar acyclic graphs Müller and I. Todinca, On treewidth approximations, Algorithmica Information and Computation Discrete Applied Mathematics, vol.1412, issue.187, pp.123-137, 1992.

]. A. Braell, J. Brandstädt, H. Engelfriet, V. Le, and . Lozin, Clique-width for 4-vertex forbidden subgraphs, Theory of Computing Systems, vol.39, issue.187, pp.561-590, 2006.

]. J. Büc, ]. Büchibuitv, J. Bui-xuan, M. Telle, ]. R. Vatshellecardf et al., Boolean-width of graphs, Parameterized and Exact Computation, 4th International Workshop (IWPEC) An implementation of deterministic tree automata minimization, Implementation and Application of Automata The algebraic theory of context-free languages, 12th International Conference Computer Programming and Formal Systems, pp.66-92, 1960.

]. M. Chuclsv, G. Chudnovsky, X. Cornuéjols, P. Liu, K. Seymour et al., Recognizing Berge graphs The strong perfect graph theorem, Combinatorica, vol.2512, issue.475, pp.143-186, 2005.

M. Chytil and V. Jákl, Serial composition of 2-way finitestate transducers and simple programs on strings Polynomial time recognition of clique-width ? 3 graphs, Proceedings ICALP'77 , A. Salomaa and M. Steinby eds, pp.135-147, 1977.

]. D. Corps, Y. Corneil, L. Perl, S. J. Stewart, and . Comput, A linear time recognition algorithm for cographs, 433) [CorRot] D. Corneil and U. Rotics, On the relationship between cliquewidth and treewidth, pp.926-934, 1985.

]. B. Cou87 and . Courcelle, An axiomatic definition of context-free rewriting and its application to NLC graph grammars

]. B. Cou89a and . Courcelle, On recognizable sets and tree automata, in: Resolution of Equations in Algebraic Structures

]. B. Cou90b and . Courcelle, The monadic second-order logic of graphs I: Recognizable sets of finite graphs, Information and Computation, vol.85, issue.354, pp.12-75, 1990.

]. B. Cou91 and . Courcelle, The monadic second-order logic of graphs V: On closing the gap between definability and recognizability, Theoret. Comput. Sci, vol.80, issue.574, pp.153-202, 1991.

]. B. Cou92 and . Courcelle, The monadic second order logic of graphs VII: Graphs as relational structures (574) [Cou93] B. Courcelle, Graph grammars, monadic second-order logic and the theory of graph minors Recognizable sets of graphs: equivalent definitions and closure properties, 188) [Cou94a] B. Courcelle, pp.3-33, 1992.

]. B. Cou94b and . Courcelle, The monadic second-order logic of graphs VI: On several representations of graphs by relational structures The monadic second-order logic of graphs VIII: Orientations, 423) [Cou95a] B. Courcelle, pp.117-149, 1994.

]. B. Cou95b and . Courcelle, Structural properties of context-free sets of graphs generated by vertex replacement, Information and Computation The monadic second-order logic of graphs X: Linear orderings, 314) [Cou96a] B. Courcelle, pp.275-293, 1995.

]. B. Cou99 and . Courcelle, The monadic second-order logic of graphs XI: Hierarchical decompositions of connected graphs

]. B. Cou00 and . Courcelle, The monadic second-order logic of graphs XII: Planar graphs and planar maps The monadic second-order logic of graphs XIV: Uniformly sparse graphs and edge set quantifications, 12) [Cou03] B. Courcelle, pp.1-32, 2000.

]. B. Cou06a and . Courcelle, Clique-width of countable graphs: a compactness property The monadic second-order logic of graphs XV: On a conjecture by D. Seese, Discrete Mathematics Journal of Applied Logic, vol.27612, issue.337, pp.127-148, 2004.

]. B. Cou06b and . Courcelle, The monadic second-order logic of graphs XVI: Canonical graph decompositions, Logical Methods in Computer Science, vol.212, pp.1-46, 2006.

]. B. Cou08a and . Courcelle, Circle graphs and monadic second-order logic, Journal of Applied Logic, vol.612, pp.416-442, 2008.

]. B. Coudur10, I. Courcelle, and . Durand, Verifying monadic second-order graph properties with tree automata See: http://www.labri.fr/perso/courcell/ ArticlesEnCours/BCDurandLISP.pdf (501) [CouDur11] B. Courcelle and I. Durand, Automata for the verification of monadic second-order graph properties, In preparation, 3rd European Lisp Symposium, pp.7-21, 2010.

]. B. Coueng, J. Courcelle, . Engelfrietcouer-]-b, J. Courcelle, G. Engelfriet et al., A logical characterization of hypergraph languages generated by hyperedge replacement grammars Handle-rewriting hypergraph grammars, Mathematical Systems Theory J. Comput. Syst. Sci, vol.28188, issue.644, pp.515-552, 1993.

]. B. Coufra, P. Courcelle, and . Franchi-zannettacci, Attribute grammars and recursive program schemes I, II, Theoret, 610) [CouGK] B. Courcelle, C. Gavoille and M. Kanté, Compact labelings for efficient first-order model-checking, pp.163-191, 1982.

]. B. Cougkt, C. Courcelle, M. Gavoille, A. Kanté, . Twiggcoukan-]-b et al., Optimal labelling for connectivity checking in planar networks with obstacles , Submitted, LaBRI Graph operations characterizing rank-width and balanced graph expressions, Proceedings of WG Equivalent definitions of recognizability for sets of graphs of bounded tree-width, Lecture Notes in Computer Science Math. Struct. Comput. Sci, vol.4769293, issue.6, pp.66-75, 1996.

]. B. Coumak, J. Courcelle, and . Makowsky, Fusion in relational structures and the verification of monadic second-order properties, Math. Struct. Comput. Sci, vol.12, pp.203-235, 2002.

]. B. Coumakr, J. Courcelle, U. Makowsky, and . Rotics, Linear time solvable optimization problems on graphs of bounded clique-width, Theory of Computing Systems Monadic second-order evaluations on tree-decomposable graphs, 499) [CouMos] B. Courcelle and M. Mosbah, pp.125-150, 1993.

]. B. Couola, S. Courcelle, and . Olariu, Upper bounds to the clique-width of graphs, Discrete Applied Mathematics, vol.101144, issue.150, pp.77-114, 2000.

]. B. Couoli, F. Courcelle, and . Olive, Une axiomatisation au premier ordre des arrangements de pseudo-droites euclidiennes, Annales de l'Institut Fourier 49 (1999) 883?903. (622) [CouOum] B. Courcelle and S. Oum, Vertex-minors, monadic second-order logic and a conjecture by Seese, J. Comb. Theory B, vol.97, issue.353, pp.91-126, 2007.

]. B. Cousén, G. Courcelle, and . Sénizergues, The obstructions of a minorclosed set of graphs defined by a context-free grammar (314) [CouTwi] B. Courcelle and A. Twigg, Constrained-path labellings on graphs of bounded clique-width, Discrete Mathematics Theory of Computing Systems, vol.182188, issue.497, pp.29-51, 1998.

]. B. Couvan, R. Courcelle, and . Vanicat, Query efficient implementation of graphs of bounded clique-width, Discrete Applied Mathematics, vol.131497, pp.129-150, 2003.

]. J. Enghey92, L. Engelfriet, and . Heyker, Context-free hypergraph grammars have the same term-generating power as attribute grammars (616) [EngHey94] J. Engelfriet and L. Heyker, Hypergraph languages of bounded degree, MSO definable string transductions and two-way finite state transducers, pp.161-210, 1992.

]. J. Enghoo07, H. J. Engelfriet, and . Hoogeboom, Finitary compositions of two-way finite-state transductions Samwel, XML transformation by tree-walking transducers with invisible pebbles, Proceedings 26th PODS, L, pp.111-123, 2007.

]. J. Englm, E. Engelfriet, A. Lilin, and . Maletti, Extended multi bottom-up tree transducers: composition and decomposition (609) [EngMan99] J. Engelfriet and S. Maneth, Macro tree transducers, attribute grammars, and MSO definable tree translations, Acta Informatica Information and Computation, vol.46, issue.574, pp.561-590, 1999.

]. J. Engman00, S. Engelfriet, and . Maneth, Tree languages generated by contextfree graph grammars, Proceedings TAGT '98, pp.15-29, 2000.

]. J. Engman03a, S. Engelfriet, and . Maneth, Macro tree translations of linear size increase are MSO definable, SIAM J. Comput, vol.32, issue.609, pp.950-1006, 2003.

]. J. Engman03b, S. Engelfriet, and . Maneth, A comparison of pebble tree transducers with macro tree transducers, Acta Informatica, vol.39, pp.613-698, 2003.

]. J. Engman06, S. Engelfriet, and . Maneth, The equivalence problem for deterministic MSO tree transducers is decidable, Inf. Process. Lett, vol.100, pp.206-212, 2006.

]. J. Engoos96, V. Engelfriet, ]. J. Van-oostromengrs, G. Engelfriet, G. Rozenberg et al., Regular description of contextfree graph languages (615) [EngOos97] J. Engelfriet and V. Van Oostrom, Logical description of contextfree graph languages Tree transducers, L systems, and two-way machines, J. Comput. Syst. Sci. J. Comput. Syst. Sci. J. Comput. Syst. Sci, vol.53615, issue.55574, pp.556-574, 1980.

]. J. Engvog85, H. Engelfriet, and . Vogler, Macro tree transducers, J. Comput. Syst. Sci, vol.31, pp.71-146, 1985.

]. J. Engvog86, H. Engelfriet, and . Vogler, Pushdown machines for the macro tree transducer, Theoret. Comput. Sci, vol.42611, pp.251-368, 1986.

]. W. Espgw, F. Espelage, E. Gurski, and . Wanke, Deciding clique-width for graphs of bounded tree-width, J. Graph Algorithms Appl, vol.7, pp.141-180, 2003.

]. U. Feihl, M. Feige, J. Hajiaghayi, ]. M. Leefelrrs, and F. Fellows, Improved approximation algorithms for minimum weight vertex separators Rotics and S. Szeider, Clique-width is NP-complete, SIAM J. Comput . SIAM J. Discrete Math, vol.38, issue.150, pp.629-657, 2008.

]. G. Ferrr, A. Fertin, A. Raspaud, . Roychowdhuryfismak-]-e, J. Fischer et al., On the oriented chromatic number of grids On spectra of sentences of monadic second-order logic with counting, Grohe, Query evaluation via treedecompositions, pp.261-266, 2002.

M. Frick and M. Grohe, The complexity of first-order and monadic second-order logic revisited, Annals of Pure and Applied Logic, vol.130, issue.1-3, pp.3-31, 2004.
DOI : 10.1016/j.apal.2004.01.007

]. Z. Fülkv05, A. Fülöp, H. Kühnemann, . Voglergal-]-t, and . Gallai, Linear deterministic multi bottom-up tree transducers, Theoret. Comput. Sci. Transitiv orientierbare Graphen, Acta Math. Acad. Sci. Hungar, vol.34711, issue.12, pp.276-287, 1967.

]. Z. Galmeg, N. Galil, and . Meggido, Cyclic ordering is NP-complete, Theoret. Comput. Sci, vol.5, issue.628, pp.179-182, 1977.

]. R. Ganhli, P. Ganian, . Hlin?n´hlin?n´ygan-]-h, . Ganzingerganrub-]-t, S. Ganzow et al., Increasing modularity and language-independency in automatically generated compilers Order-invariant MSO is stronger than Counting MSO in the finite On the undecidability of finite planar cubic graphs Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph Composition and evaluation of attribute coupled grammars, Proceedings STACS'08, Leibniz International Proceedings in Informatics (LIPIcs), pp.851-867, 1962.

]. S. Ginspa, E. Ginsburg, and . Spanier, Bounded ALGOL-like languages, Trans. Amer. Math. Soc, vol.113, pp.333-368, 1964.

M. Golumbic and U. Rotics, ON THE CLIQUE-WIDTH OF SOME PERFECT GRAPH CLASSES, International Journal of Foundations of Computer Science, vol.11, issue.03, pp.423-443, 2000.
DOI : 10.1142/S0129054100000260

]. G. Gon, . Gonthiergotls-]-g, N. Gottlob, F. Leone, . Scarcellogotpwa-]-g et al., Hypertree decompositions and tractable queries Bounded treewidth as a key to tractability of knowledge representation and reasoning Monadic datalog over finite structures of bounded treewidth Back and forth between guarded and modal logics The equivalence problem for deterministic two-way sequential transducers is decidable The tree-width of clique-width bounded graphs without K n,n Some structural aspects of hypergraph languages generated by hyperedge replacement, Proc. Workshop on Graphs Proceedings STACS'87 Mona: monadic second-order logic in practice, Tools and Algorithms for the Construction and Analysis of Systems , Lecture Notes in Computer Science 1019, pp.579-627, 1938.

]. H. Her and . Herre, (423) [HliOum] P. Hlin?n´Hlin?n´y and S. Oum, Finding branch-decompositions and rank-decompositions, Bull. Academ . Polonaise des Sciences, Série Sc. Math. Astr. Phys. XXI- SIAM J. Comput, vol.3, issue.56, pp.201-208, 1973.

]. P. Hlisee, D. Hlin?n´hlin?n´y, and . Seese, Trees, grids and MSO decidability: from graphs to matroids, Theoret. Comput. Sci, vol.351, issue.575, pp.372-393, 2006.

J. Hopcroft, J. Ullmanjoha, and ]. Johnson, Clique-decomposition, NLC-decomposition and modular decomposition: relationships and results for random graphs The (16-th) NP-completeness column: An ongoing guide Recognizability equals definability for partial kpaths, Proceedings ICALP'97, pp.1793-1829, 1967.

M. Kanté and M. Rao, Hadwiger's conjecture is decidable, Result announced at the Graph Minor workshop, Banff Querying linguistic treebanks with monadic secondorder logic in linear time, Proceedings of CAI 2011501) [Kla] N. Klarlund, Mona & Fido: the logic-automaton connection in practice, pp.457-470, 1997.

J. Kneis and A. Langer, A practical approach to Courcelle's Theorem Semantics of context-free languages, Electr. Notes in Theoret. Comput. Sci. Mathematical Systems Theory, vol.251610, issue.2, pp.65-81, 1968.

]. S. Kretaz, S. Kreutzer, and . Tazari, Lower bounds for the complexity of monadic second-order logic, Proceedings of the 25th Annual IEEE Symposium on Logic in Computer Science499) [Lag] J. Lagergren, Upper bounds on the size of obstructions and intertwines, pp.189-198, 1998.

]. Lanwel, E. Lange, and . Welzl, String grammars with disconnecting or a basic root of the difficulty in graph grammar parsing Recognizability equals monadic second-order definability for sets of graphs of bounded tree-width Sonenberg, Fixed point theorems and semantics: a folk tale The complexity of graph languages generated by hyperedge replacement On some variants of the bandwidth minimization problem, Proceedings STACS'98, pp.17-30, 1982.

]. K. Lodwei, P. Lodaya, and . Weil, Series-parallel languages and the bounded-width property (188) [Loz] V. Lozin, Minimal classes of graphs of unbounded clique-width, Theoret. Comput. Sci. Annals of Combinatorics, vol.237, pp.347-380, 2000.

J. Makowsky and J. Marino, Tree-width and the monadic quantifier hierarchy, Theoretical Computer Science, vol.303, issue.1, pp.157-170, 2003.
DOI : 10.1016/S0304-3975(02)00449-8

J. Makowsky and Y. Pnueli, Arity and alternation in second-order logic, Annals of Pure and Applied Logic, vol.78, issue.1-3, pp.189-202, 1996.
DOI : 10.1016/0168-0072(95)00013-5

J. Makowsky and U. Rotics, On the classes of graphs with few P 4 's, Int. J. Found. Comput. Sci, vol.10187, pp.329-348, 1999.

]. S. Man and . Maneth, The macro tree transducer hierarchy collapses for functions of linear size increase Channel assignment on graphs of bounded tree-width, Proceedings FSTTCS 2003, pp.326-337, 2003.

J. Mezei and J. Wright, Algebraic automata and context-free sets, Information and Control, vol.11, issue.1-2, pp.3-29, 1967.
DOI : 10.1016/S0019-9958(67)90353-1

URL : http://doi.org/10.1016/s0019-9958(67)90353-1

]. T. Milsv, D. Milo, V. Suciu, and . Vianu, Typechecking for XML transformers, J. Comput. Syst. Sci, vol.66610, pp.66-97, 2003.

]. L. Moospie, F. Moonen, ]. J. Spieksmane?sv, E. Ne?et?il, L. Sopena et al., Exact algorithms for a loading problem with bounded clique width T-preserving homomorphisms of oriented graphs Expressiveness of structured document query languages based on attribute grammars, 655) [NevBus] F. Neven and J. Van den Bussche Transductions des langages de Chomsky, pp.455-465, 1968.

]. S. Oum05 and . Oum, Rank-width and vertex-minors, Journal of Combinatorial Theory, Series B, vol.95, issue.1, pp.79-100, 2005.
DOI : 10.1016/j.jctb.2005.03.003

]. S. Oum08 and . Oum, Approximating rank-width and clique-width quickly Computing rank-width exactly Approximating clique-width and branch-width, 501) [Oum09] S. Oum, pp.745-748, 2006.

]. D. Pil, C. Pilling, . Regular-equations, J. Parikh-'s-theorem, ]. N. London-mathrobsanst et al., A simple method for undecidability proofs MSOL partitioning problems on graphs of bounded treewidth and clique-width Reed, Finding approximate separators and computing tree width quickly The four-colour theorem Graph minors IV. Tree-width and well-quasi-ordering Graph minors XVI. Excluding a non-planar graph Hadwiger's conjecture for K 6 -free graphs Pure Appl, Proc. of the 1964 International Congress for Logic Decidable theories Proceedings 24-th Annual ACM Symposium on Theory of Computing Seymour, Graph minors XX. Wagner's Conjecture, pp.6-663, 1965.

]. D. See96, . Seeseshedor-]-s, M. Shelah, and . Doron, Linear time computable problems and first-order descriptions Relational structures constructible by quantifier-free definable operations, 648) [Sog] D. Soguet, Génération automatique d'algorithmes linéaires, pp.505-526, 1996.

]. E. Sop, . Sopenastomey-]-l, A. Stockmeyer, and . Meyer, The chromatic number of oriented graphs Cosmological lower bound on the circuit complexity of a small problem in logic, J. of Graph Theory J. ACM, vol.25, issue.422, pp.191-205, 1997.

]. A. Takuk, S. Takahashi, Y. Ueno, and . Kajitani, Minimal acyclic forbidden minors for the family of graphs with bounded path-width, Discrete Mathematics, vol.127128, pp.293-304, 1994.

J. Thatcher and J. Wright, Generalized finite automata theory with an application to a decision problem of second-order logic, Mathematical Systems Theory, vol.12, issue.1, pp.57-82, 1968.
DOI : 10.1007/BF01691346

]. W. Tho97b and . Thomas, Ehrenfeucht games, the composition method, and the monadic theory of ordinal words, in: Structures in Logic and Computer Science The extremal function for complete minors All structured programs have small tree-width and good register allocation, J. Comput. Syst. Sci. Lecture Notes in Computer Science J. Comb. Theory B, vol.25432, issue.81654, pp.360-376, 1982.

]. B. Tra and . Trakhtenbrot, Finite automata and the logic of monadic predicates Safe reduction rules for weighted treewidth, Doklady Akademii Nauk SSSR Algorithmica, vol.140, issue.47, pp.326-329, 1961.

. M. Vnmdb, A. Van-den-nest, W. Miyake, H. Dür, and . Briegel, Universal resources for measurement-based quantum computing, Phys. Rev

. Lett, arXiv.quant-ph/0604010 . (501) [Wan] E. Wanke, k-NLC graphs and polynomial algorithms, Discrete Applied Mathematics, vol.97, issue.499, pp.150504-251, 1994.

]. R. Wil and . Willard, Hereditary undecidability of some theories of finite structures, J. Symbolic Logic, vol.59, issue.423, pp.1254-1262, 1994.