N

N

A constraint language for algebraic term based on
rewriting theory

Frangois Prugniel, Pierre-Etienne Moreau, Horatiu Cirstea

» To cite this version:

Frangois Prugniel, Pierre-Etienne Moreau, Horatiu Cirstea. A constraint language for algebraic term
based on rewriting theory. [Research Report] 2011, pp.8. hal-00646343

HAL Id: hal-00646343
https://inria.hal.science/hal-00646343

Submitted on 29 Nov 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/hal-00646343
https://hal.archives-ouvertes.fr

A constraint language for algebraic term based
on rewriting theory

Francois Prugniel, Pierre-Etienne Moreau, and Horatiu Cirstea

LORIA, Vandoeuvre-les-Nancy, France

Abstract

A key feature of Model Driven Engineering is the ability to define meta-
models, but also constraints that have to be satisfied by their instances.
Constraints are expressed in OCL (Object Constraint Language), which
became a standard. OCL Constraints offer the possibility to capture prop-
erties which cannot be easily encoded in the meta-model.

In the programming language community, instead of meta-models, we
generally use grammars or algebraic signatures to define the syntax of the
programs or abstract syntax trees (AST) we consider. But unfortunately,
even when considering rich formalisms such as many-sorted signatures
with subtyping or dependent types, they are not expressive enough to
encode in a simple way some subsets of terms we want to consider. For
instance arithmetic expressions which have at most two levels of plus op-
erator, this includes a, a + b, (a + b) + (b + ¢), but not a + (b + (¢ + d))
for instance. There is a need for a constraint language dedicated to tree
based data structures such as terms and AST.

In this paper we present both a language to express constraints on
trees, and a compilation scheme that shows how to translate constraints
into an executable formalism based on term rewriting and strategies.

1 Introduction

Since a few years, a huge need for model, model transformation and constraint
checking appear, especially on critical systems domain. With his OCL [1], the
Object Management Group developed a powerful language to constrain UML
diagrams but not really adapted for algebraic signatures. Moreover, existing
OCL cores are static for the most of them. They check constraints on a static
instance of models and those which check constraints at execution are unus-
able on real conditions because execution time explodes with the checking of
invariants at each changing state.

Starting from OCL experiences, we propose a new constraint language de-
signed for algebraic signatures, based on rewriting pattern-matching and strate-
gies, inspired by OCL and XPath [5]. Our aim is to provide a way to constrain

a signature and the key to check the constraints. For this, we developed a
constraint language which allows structural properties checking and dynamic
typing. Contrary to OCL, we choose to let the user choose when he wants to
check constraints by simply calling methods. This way, he can control increased
execution time due to checking.

This kind of language has several applications, particularly for compiler or
model transformation. By specifying constraints at each phase of compilation or
model transformation, we can check the good sequence of process. It is a major
asset for debugging and a great step to obtain trustworthy compiler. Moreover,
we think we can develop our theory for the models by using term-graph [3].

In this paper, we will give our motivations and the essential notations in a
first part. In a second part, we will detail our grammar, with explanation about
our choices and semantics. In a third part, we will show you some translation
schemes through an example.

2 Background

Motivation

Our goal is to develop a constraint mechanism for algebraic term. Indeed, the
model community has OCL but there are no constraint mechanism for algebraic
signature. To allow verification of structural properties and dynamic typing
for algebraic signature, we are working on a constraint language based on the
rewriting theory which permits to specify constraints during the conception
and to verify them at execution. A strength of OCL is its simple syntax which
permit at each actor of a project to write and to understand constraints. As an
incomprehensible language to non-expert users will never be used, we want to
create a language which is expressive and easy enough to be understandable by
each actor of a project. We take the good ideas from OCL that are usable with
algebraic signature, like the context or the navigation. We add the predicates
from XPath and some custom mechanisms to obtain a new constraint language
for algebraic signature.

Notations

We introduce here the semantics of our notations in this paper.

The names in italic and red are non terminal, the names in blue are terminal.
The ’[]’ notation means ’optionally’, the ’()*’ notation means ’0 or more’ and the
’()+’ notation means ’1 or more’. The TopDown strategy, which is uses to check
a constraint, is a way to visit the term where we check the logical expression.
It is a depth-first search. That means we traverse the tree from the root and
explores as far as possible along each branch before backtracking.

We compile the constraints from our language to Tom [4], an extension of
Java which adds pattern-matching and strategies for algebraic signatures. In
our translation patterns, the keyword Strategy designates the strategy which

Bw oo e

will check the constraint and it is follows by its name to make a method. The
visit keyword designates node’s sort where we will check the constraint. The
_ (resp. _*) corresponds to a generic variable (resp. list of variables). The
t [a=b] means that we look for slot a in term t and b can be a variable name to
take the contains of the slot or a term. The a << b means that b filters a. To
make the difference between terms and other things, we put a ¢ before them.

Example grammar

Forest = forest (Treex)

Tree = tree(root : Node)

Node = node(value : Integer, 1 : Node, r : Node)
| leaf(value : Integer)

Figure 1: Example grammar

In this paper, we consider a grammar (Fig. 1) which represents binary tree
and a collection of these trees. We assume that each node on trees has an integer
on label and for each node, the value of the left son is greater than the value of
the right son. The root of a tree also has the highest value.

3 Partial concrete syntax
In this part, we will present the important parts of our concrete syntax. We

chose not to show you our abstract syntax to focus on our effort to make a
language simple but powerful for the user.

Basic structure

Constraints = context Context : ConstraintExpressions
ConstraintEzpressions == (DefExpr)* (ConstraintExpr)+
ConstraintExpr u= ConstraintName : (LetExpr)* Logical Expr ;

Figure 2: Basis of the concrete syntax

Fundamentally, a constraint is composed of a context and a logical expres-
sion. To factorize constraints, we allow the possibility to write several logical
expressions with a same context (Fig. 2). Each constraint has a ConstraintName
which is a string starting by a letter. That point permits to identify them for
calling them latter. We also add two writing short-cut mechanisms : DefExpr
and LetFzpr. They permit to put recurring expressions on variables, valid for
each constraint with the same context in the first case and only valid for the
Logical Ezpr associated for the second.

All about the context

Context = Type | :: OperatorName (| Predicat |)* (. SlotName (| Predicat])*)* |

Figure 3: Concrete syntax for Context

Asin OCL, each constraint need a context (Fig. 3). It represents the starting
point in the term to check the logical expression. That means during checking
we traverse the term with a TopDown strategy and at each node which matches
with context, we check the constraint on the sub-term with this node as root.
A context is at least a sort from the grammar to constrain. Next, we can refine
context with an operator name and go down recursively with a slot name. The
user must check the coherence of his context. For this, we added a predicate
mechanism, which comes from XPath. For the moment, we only allow the
possibility to precise the name of the constructor which interests the user for
a given slot name. That means we ignore the other cases. For example, if we
want to select as context the value of the left of a tree with a depth of 1, we
have to write : Tree: :tree[root=node].root[1=1leaf].l.value. Here, we are
looking for a constructor tree of sort Tree where the root slot is a node with
a leaf as left son. We are thinking about an extension of the expressiveness of
predicates. If the context is wrong, the constraint won’t be checked, so we plan
to warn users about contexts which never match during the checking process.

Build a logical expression

LogicalEzpr == LogicalEzpr LogicalOperator Logical Expr
| IfExpr | ! Logical Expr
| Boolean | Comparative Expr

Figure 4: Concrete syntax for logical expression

Checking a constraint is the same as evaluating a logical expression on a
sub-term. These expressions (Fig. 4) can be several things, like two logical
expressions linked by a logical operator (equality, non equality, conjunction,
disjunction or implication). We can also negate a logical expression or use
boolean. We also have a conditional expression (if then else) which must ensure
a boolean result, so the else part is obligatory. An other possibility is the
comparison of two Ezpr. These expressions can be constants (double, string,
etc.), calculation between two Ezpr, term built on grammar, path to reach a
specific node or list of nodes from the current one in order to use them directly
or to call a method from the API on it. In the case of a path, the keyword self
refers to the current context. For the case of term built on grammar, we have
two ways to write them. The first, with parenthesis, implies to write the whole
term and the second uses the notation with brackets presented before.

We have two kinds of method which can be called on Ezpr : the Operation
and the IteratorOperation. This distinction comes from OCL. The Operation
rule represents usual methods from the most of programming languages, which
take some parameters to return a result. The second kind, IteratorOperation
rule, is specific to the lists and we have to determine one or more iterators to
go through them. Two examples of IteratorOperation are exists and forall,
which are really useful in constraints.

If for example we want to make a logical expression which means that if, in
the context of a Node, the current node is a node, its value is greater than the
ones of its children and in the other case, its value is greater than 0, we will
have this logical expression :
if self=‘node[] then self.getValue()>1l.getValue() &&
self.getValue()>r.getValue() else self.getValue()>0 fi

Navigate through the tree

Navigation is a powerful notion in OCL which allows to reach any classifier linked
to the context’s classifier. We adapted this concept for algebraic signature. We
use a similar concept to go down in nodes from a context. The ’.” is used to
reach a son of the current node by its slot name. It also permits to invoke
method on a node. The ’->’ is used to invoke method on a list. This notation
is not essential but we choose to use it to make the constraints reading more
comfortable. The third notation, ’:’, was added because in algebraic signature,
each sort can have several constructors with slots. Using slot name only to
navigate on tree is insufficient, that is why we added the possibility to precise
that we are interested by only one kind of constructor on a slot. To use this
notation, we have to add ’:” followed by a constructor name after a slot name.
That means that we just ignore the other cases where the logical expression will
not be evaluated. The last notation, ’...”, allows to reach a node under an other
one by skipping some levels between them. We call it in-depth navigation. This
concept will be translates on a TopDown strategy and we consider that we treat
each result alone while strategy takes care of the application at each concerned
node. Regarding this last notation, its semantics is not totally fixed. We are
thinking about cases where we have to prohibit it and about the interest to
precise how much levels we can skip.

To illustrate these notations, let use imagine we are on the context of
Tree: :tree. We want to build a path to reach each leaf under the current node
(tree) if the root is a node. We will have this : self.root:node. ..leaf.

4 Some translation pattern by examples

Since our semantic is not completely fixed, we don’t have all translation patterns
yet from our language to rewriting theory and strategies. In this part, we will
present a few constraints examples with their translation. The general idea is
that we don’t want to know if a constraint is true but where it is false, without

Lo B R N I

e e
N]

forgetting to verify if a constraint was checked at least one time. The second
point is not visible in our example but this will be a feature of our checker.

Natural constraints

We chose 3 constraints on our example grammar (Fig. 1) to expose some pos-
sibilities of our language and some translation patterns.

e For a node of sort Node, the value of the left son is higher than the one
of the right son and if a son of a node is a leaf, both are leaf. (1)

e We want that all trees have a depth greater than or equals 1. So, for all
trees in Forest, the root is a node. (2)

e For a tree of sort Tree, the value of the root is the highest. We can
obviously ignore the case where the root is a leaf. (3)

Constraints and translations

In translations each strategy is executed on a TopDown way and has the name
of the linked constraint. We do not want to rewrite our term, we want to use the
power of pattern-matching and strategies to detect mistakes with constraints to
report them to users. So, for each place where the constraint is broken, we call
the method error ().

Context Node:: node
leaf : 1.getValue() > r.getValue() &&
‘1

if 1 = ‘leaf[]*‘ then r = ‘leaf[] else r = ‘node[] fi;
Strategy leaf
visit Node {
node[l=var 1, r=var r] — {
if (!(var_l.getValue() > var_r.getValue())) { error();}
match {

leaf [] << var_1 && !(leaf[] << var_r) —> { error(); }
'(leaf[] << var 1) && !(node[] << var r) —> { error (); }

Figure 5: Constraint (1) and its translation

The first constraint (Fig. 5) highlights three points. In the visit part, we
have to know all the needed variables to write the rules. Inside the rule of the
strategy, we can see two parts, one for each conjunction of the logical expression.
As we want that the two conditions of the constraint are true, we can check them
alone. Finally, we can see the need of an API with the getValue(). Indeed,
1l.value and r.value are node in our tree and we can’t compare them, so we
have to extract the numeric values to do it. To check if the second part of the
constraint is broken, we negate the two cases. On the first hand, if var_1 filters
leaf constructor but var_r does not, we break the first case. On the second

[I NC N R

hand, if var_1 does not filter leaf constructor and var_r does not filter node
constructor, we break the second case.

Context Forest:: forest
forall _depth_1 : self—>forall(t : Tree | t —

‘tree[root=node[]] ‘);

Strategy forall depth 1
visit Forest {
forest (_*, t, _x) — {
match {
!'(tree[root=node[]] << t) —> { error; }

Figure 6: Constraint (2) and its translation

In the second constraint (Fig. 6), we want to ensure that all trees in forest
have a depth of at least 1, that means the root of each tree is a node. All
elements of the list are concerned, so we have to check all of them and for each
tree in the forest, check if the root is a node or not. For this, we use pattern-
matching which explores all trees in forest. If we put the exists method instead
of the forall, we have to check if we have a list which does not has an element
according to the constraint. So, in this case, we don’t check all elements of the
list but the list itself.

Context Tree::tree[root=node]
highest _value : self.getValue() > self...leaf.getValue()
&& self.getValue() > self...node.getValue()

Strategy highest_value
visit Tree {
tree[root=self@node []] —> {
TopDown(highest value 1(self)).visit(self);
TopDown(highest value 2(self)).visit(self);

Strategy highest value 1(Node node)
visit Node {
leaf@leaf[] — {
if (node.getValue() > leaf.getValue()) { error(); }

}
Strategy highest value 2(Node node)
visit Node {
node2@node [] —> {
if (node.getValue() > node2.getValue()) { error(); }
}
}

Figure 7: Constraint (3) and its translation

In this third constraint (Fig. 7), we want to ensure that the value of the root
is the highest. For this, we have to present the alias notation from Tom in our
translation : node2@node[] means we make a variable node2 which contains
the node[] term. The use of a predicate on the context appears on the rule of

the strategy highest value : we don’t want all the root but only the ones which
are node. We also use the in-depth navigation twice. Each one is translated on
a strategy, calls on a TopDown way on self. We also have to give them the
root node, i.e self, to do the comparison. We can point out that our language
is clearer than the translated version.

5 Conclusion and Future work

We presented a language which allows to write constraints on algebraic signa-
tures. We picked up ideas from OCL and XPath to propose a language easy to
come to grips with, even for users who don’t know rewriting. Our current aim is
to finish formalization of our grammar, its semantics and translation patterns.
When this is done, we will include our language in Tom [4]. Tom is a way to
make programs based on algebraic signatures, especially compiler. With this
extension, we plan to constrain the Tom compiler itself.

As said in introduction, we think we can use works on term-graph [3] to adapt
our theory to graphs and models. This kind of extension will allow an alternative
to OCL, with several similarities but a lower complexity and less ambiguities [2].
Furthermore, it will be applicable to model transformation, in order to propose
a way to check if a transformation is correct. This should be really useful for
critical systems domain which makes a lot of model transformations to prove
correctness of their applications.

References

[1] Object constraint language omg available specification version 2.0, 2006.

[2] D. Akehurst, P. Linington, and O. Patrascoiu. Ocl 2.0 - implementing the
standard for multiple metamodels. Proceedings of the UML’08 workshop,
Electronic Notes in Theoretical Computer Science:19, November 2003.

[3] Emilie Balland and Paul Brauner. Term-graph rewriting in tom using rela-
tive positions. Electr. Notes Theor. Comput. Sci., 203(1):3-17, 2008.

[4] Emilie Balland, Paul Brauner, Radu Kopetz, Pierre-Etienne Moreau, and
Antoine Reilles. Tom: Piggybacking rewriting on java. In RTA, pages 36—
47, 2007.

[5] Michael Kay. XSLT 2.0 and XPath 2.0 Programmer’s Reference (Program-
mer to Programmer). Wrox Press Ltd., Birmingham, UK, UK, 2008.

