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Abstract

The paper describes a learning method on sliding windows for estimating ap-

parent motion on long temporal satellite sequences acquired over oceans. A ”full

model”, which is defined on the pixel grid, is chosen to describe the dynamics

of motion fields and images, based on heuristics of divergence-free motion and

advection of image brightness by the velocity. The image sequence is split into

small temporal windows that half overlap in time. Image assimilation in the full

model is applied on the first window to retrieve its motion field. This makes it

possible to define subspaces of motion fields and images and a ”reduced model” is

defined by applying the Galerkin projection of the full model on these subspaces.

Data assimilation in the reduced model is applied on this second window. The

process is iterated for the next window until the end of the whole image sequence.

Each reduced model is then learned from the previous one. The main advantage

of the approach is the small computational requirements of the assimilation in the

reduced models that make it feasible to process in quasi-real time image acqui-

sitions. Twin experiments have been designed to quantify the full model and the

learning method on sliding windows and demonstrate the quality of the motion

fields estimated by the approach.

Keywords: Motion Estimation, Data Assimilation, Model Reduction, Galerkin

projection

1 Introduction

Motion estimation from an image sequence has been intensively studied since the be-

ginning of image processing (Horn and Schunk, 1981; Isambert et al., 2008). The

aim is to retrieve the velocity field w(x, t) visualised by a discrete image sequence

I = {Iz}z=1...Z = {I(x, tz)}z=1...Z . The application of data assimilation techniques to

motion estimation also emerged a few years ago (Papadakis et al., 2007; Titaud et al.,

2010; Béréziat and Herlin, 2011). In the case of motion estimation, these techniques

aim to find the optimal solution to the equations describing the temporal evolution of

motion fields and images and to the observation equation, which links the motion field

to the observed image data. Their major drawbacks are the memory and computer

resources required that do not allow to process long temporal sequences of large size

images. To get round this problem, reduction methods are required to apply the data

assimilation on subspaces. In (Drifi and Herlin, 2011), such reduced model has been

proposed. Coefficients characterizing image observations in the image subspace are

assimilated in the reduced model to estimate those characterizing the motion field.

In this paper, we focus on the estimation of motion on long temporal windows of

satellite images acquired over oceans. The image sequence is split into small windows

that half overlap in time. A ”full model” is chosen in order to approximately describe

the dynamics of motion fields and images. Image assimilation in the full model is

applied on the first window to retrieve its motion field. A learning process is designed

that defines a ”reduced model” from the full model in the second window. This learning

defines the subspaces used to characterize motion and images and applies the Galerkin

projection of the full model on these subspaces. Data assimilation in the reduced model

is then applied for this second window. The learning method is iterated on the next

window until the whole image sequence has been processed.

The paper describes the two main components of the learning method on sliding

windows: the full model and its image assimilation process, the learning of reduced

models and their data assimilation systems.
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Oceans are incompressible fluids and the 2D incompressible hypothesis still re-

mains a good approximation for image sequences if no or small vertical motion occurs

(no upwelling or downwelling). If the motion field is divergence-free (div(w) = 0),

it is then only characterized by its vorticity ξ, according to the Helmholtz orthogonal

decomposition (Deriaz and Perrier, 2006). An equation on the dynamics of vorticity

ξ is then included in the full model. As temporal integration of the vorticity requires

the knowledge of the velocity value at each time step, the discrete computation of w

from ξ is performed, based on an algebraic decomposition of vorticity. The transport

of image brightness by velocity, which is the usual optical flow equation, is chosen to

describe the image dynamics.

Section 2 describes the divergence-free image model used for motion estimation

on an image sequence. The algebraic method that computes w from its vorticity ξ is

also given. Section 3 explains how the solution is obtained by minimizing a cost func-

tion with a strong 4D-Var (no error on the dynamics) data assimilation method. The

derivation of a reduced model by the Galerkin projection is provided in Section 4. The

learning method used to process long temporal image sequences is fully described in

Section 5. Section 6 provides results on synthetic data for the full model and Section 7

for the learning method on a long temporal window.

2 Definition of the full model

This section describes the divergence-free model that is used to determine velocity

from images, on the pixel grid, on the first window of the long temporal sequence.

2.1 Divergence-free model

Vorticity characterizes a rotational motion while divergence characterizes sinks and

sources in a flow. A fluid motion w = (u v)T
is described by its vorticity ξ = ∂v

∂x
− ∂u

∂y
,

under the hypothesis of null divergence (Deriaz and Perrier, 2006). ξ is chosen as the

first component of the state vector X of the full model. Deriving the evolution law for ξ

requires heuristics on the velocity w. The Lagrangian constancy hypothesis,
dw

dt
= 0,

is considered in the paper that can be expanded as
∂w

∂t
+(w.∇)w = 0, or:

∂u

∂t
+u

∂u

∂x
+ v

∂u

∂y
= 0 (1)

∂v

∂t
+u

∂v

∂x
+ v

∂v

∂y
= 0 (2)

Let us compute the y-derivative of Eq. (1) and subtract it from the x-derivative of

Eq. (2), replace the quantity ∂v
∂x
− ∂u

∂y
by the vorticity ξ, and we obtain:

∂ξ

∂t
+u

∂ξ

∂x
+ v

∂ξ

∂y
+ξ

(

∂u

∂x
+

∂v

∂y

)

= 0 (3)

This is rewritten in a conservative form as:

∂ξ

∂t
+∇.(ξw) = 0 (4)
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The observations that are used for the data assimilation process are images acquired

by satellites. The second component of the state vector is chosen as a pseudo-image

Is, which has the same dynamics than the image observation. It is included in the

state vector in order to allow an easy comparison with the image observations at each

acquisition date: they have to be almost identical. The evolution law chosen for Is

verifies the heuristics for the transport of images by velocities: this is the well known

Optical Flow Constraint Equation (Horn and Schunk, 1981) expressed as:

∂Is

∂t
+∇Is.w = 0 (5)

or with the divergence-free hypothesis:

∂Is

∂t
+∇.(Isw) = 0 (6)

The divergence-free model is then defined by the state vector X = (ξ Is)
T

and its

evolution system:

∂ξ

∂t
+∇.(ξw) = 0 (7)

∂Is

∂t
+∇.(Isw) = 0 (8)

2.2 Algebraic computation of w

When the state vector is integrated in time from an initial condition, using Eqs. (7,8),

the knowledge of ξ, Is and w is required. The velocity field w should then be computed

from the scalar field ξ as follow. A stream function ϕ is first defined as the solution of

the Poisson equation:

−∆ϕ = ξ (9)

Then, w is derived from ϕ:

w =

(

∂ϕ

∂y
−

∂ϕ

∂x

)T

(10)

In the literature, Eq. (9) is usually solved in Fourier domain, with periodic boundary

conditions. An algebraic solution is proposed in order to allow Dirichlet boundary

conditions. An eigenfunction, φ, of the linear operator −∆ has to verify −∆φ = λφ with

λ the associated eigenvalue. Explicit solutions of this eigenvalue problem are the family

of bi-periodic functions φn,m(x,y) = sin(πnx)sin(πmy) with the associated eigenvalues

λn,m = π2n2+π2m2. These functions form an orthogonal basis of a subspace of L2(Ω),
space of square-integrable functions defined on the spatial domain Ω. Let (an,m) be the

coefficients of ξ in the basis (φn,m). We have ξ(x,y) = ∑
n,m

an,mφn,m(x,y). It comes:

ϕ(x,y) = ∑
n,m

an,m

λn,m

φn,m(x,y) (11)

We verify:

−∆ϕ(x,y) =−∑
n,m

an,m

λn,m

∆φn,m(x,y) = ∑
n,m

an,m

λn,m

λn,mφn,m(x,y) = ξ

At each time step, having knowledge of ξ and (φn,m), the values of (an,m) are first

computed. Then ϕ is derived by Eq. (11), using the (λn,m) values, and w by Eq. (10).
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3 Strong 4D-Var Data Assimilation

Image assimilation is applied on the first window of the long sequence with the full

model described in Section 2.

We consider the state vector X(x,y, t)= (ξ(x,y, t) Is(x,y, t))
T

defined on the space-

time domain Ω× [0, tN ]. In order to determine X on this domain, the 4D-Var framework

considers a system of three equations to be solved.

The first equation describes the evolution in time of the state vector X. This is given by

Eqs. (7,8). For sake of simplicity, we summarize the system and introduce the evolution

model M for the state vector X:

∂X

∂t
+M(X) = 0 (12)

We consider having some knowledge of the state vector value at initial date 0 which is

described by the background value Xb(x,y). As this initial condition is uncertain, the

second equation of the system involves an error term:

X(x,y,0) = Xb(x,y)+ εB(x,y) (13)

The error εB(x,y) is supposed Gaussian and characterized by its covariance matrix

B(x,y).
The last equation, named observation equation, links the state vector to the image ob-

servations I(x,y, t). It is expressed as:

I(x,y, t) = H(X(x,y, t))+ εR(x,y, t) (14)

with H the observation operator. As the component Is is directly comparable to the

observations, the operator H reduces to a projection: H(X) = HX = Is. Image acquisi-

tions are noisy and their underlying dynamics could be different from the one described

by Eq. (8). An observation error, εR, is used to model these uncertainties. It is supposed

Gaussian and characterized by its covariance matrix R(x,y, t).
For discussing how Eqs. (12,13,14) are solved by the data assimilation method,

the state vector and its evolution equation are first discretized in time with an Euler

scheme. The space variables x and y are omitted for sake of simplicity. Let dt be the

time step, the state vector at discrete index k, 0 ≤ k ≤ Nt , is denoted X(k) = X(k×dt).
The discrete evolution equation is:

X(k+1) = X(k)−dtM(X(k)) = Zk(X(k)) (15)

with Zk(X(k)) = (ξ(k)−dt∇.(ξ(k)w(ξ(k))) Is(k)−dt∇.(Is(k)w(ξ(k))))T
. We as-

sume that Nobs image observations I(ti) are acquired at indexes t1 < · · · < ti < · · · <
tNobs

. Looking for X = (X(0), · · · ,X(Nt)) solving Eqs.(15,13,14) is expressed as a con-

strained optimization problem: the cost function

J(X(0)) =
1

2

∫
Ω
(X(0)−Xb)

T B−1(X(0)−Xb)dxdy

+
1

2

Nobs

∑
i=1

∫
Ω
(HX(ti)− I(ti))

T R−1(ti)(HX(ti)− I(ti))dxdy

(16)

has to be minimized under the constraint of Eq. (15). The first term of J comes from

Eq. (13). The second term of J comes from Eq. (14), which is valid at observation

indexes ti.
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The gradient of J is obtained from the directional derivative of J and from the

definition of an auxiliary variable λ that verifies the backward equation:

λ(k) =

(

∂Zk

∂X

)∗

λ(k+1)+HT R−1(k)(HX(k)− I(k))

with λ(Nt) = 0, the term HT R−1(k)(HX(k)− I(k)) being only taken into account at

observation indexes ti. It can be proven ( (Le Dimet and Talagrand, 1986)) that the

gradient reduces to:

∇JX(0) = B−1(X(0)−Xb)+λ(0)

The cost function J is minimized using an iterative steepest descent method. At each

iteration, the forward time integration of X is performed which provides J, then a

backward integration of λ computes λ(0) and provides ∇J. An efficient solver (Zhu

et al., 1994) is used to perform the steepest descent given J and ∇J.

4 Derivation of a reduced model

This section explains the derivation by Galerkin projection of a reduced model from

the full model described in Section 2.

We assume that we have knowledge of the background value ξb of vorticity at the

beginning of the studied temporal window. The first issue is to define subspaces for

vorticity fields and images, onto which the evolution equations (7) and (8) are pro-

jected. These subspaces are defined by their respective orthogonal basis Ψξ and ΨI.

First, a Proper Orthogonal Decomposition transform (POD) is applied to the image ob-

servations I = {Iz}z=1...Z that defines Ψ′
I. Second, ξb is numerically integrated in time

with Eq. (7). It provides snapshots, on which POD is applied to obtain Ψ′
ξ. We keep

the first K modes of Ψ′
ξ and the first L modes of Ψ′

I to obtain Ψξ and ΨI.

Let ai(t) and b j(t) be the projection coefficients of ξ(x, t) and Is(x, t) on Ψξ and

ΨI. ξ(x, t) and Is(x, t) are then approximated by:

ξ(x, t)≈
K

∑
i=1

ai(t)ψξ,i(x), (17)

Is(x, t)≈
L

∑
j=1

b j(t)ψI, j(x), (18)

and replaced in Eqs. (7) and (8):

K

∑
i=1

dai

dt
(t)ψξ,i(x)+w

(

K

∑
i=1

ai(t)ψξ,i(x)

)

·∇

(

K

∑
i=1

ai(t)ψξ,i(x)

)

= 0 (19)

L

∑
i=1

dbi

dt
(t)ψI, j(x)+w

(

K

∑
i=1

ai(t)ψξ,i(x)

)

·∇

(

L

∑
j=1

b j(t)ψI, j(x)

)

= 0 (20)

This system is projected on Ψξ and ΨI:

dak

dt
(t)
〈

ψξ,k,ψξ,k

〉

+

〈

w

(

K

∑
i=1

ai(t)ψξ,i

)

·∇

(

K

∑
i=1

ai(t)ψξ,i

)

,ψξ,k

〉

= 0, (21)

dbl

dt
(t)
〈

ψI,l ,ψI,l

〉

+

〈

w

(

K

∑
i=1

ai(t)ψξ,i

)

·∇

(

L

∑
j=1

b j(t)ψI, j

)

,ψI,l

〉

= 0, (22)
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with 〈., .〉 being the scalar product in the L2(Ω) space:

〈 f ,g〉=
∫

Ω
f (x)g(x)dx. (23)

System (21,22) is simplified to get:

dak

dt
(t)+aT (t)B(k)a(t) = 0, k = 1 . . .K. (24)

dbl

dt
(t)+aT (t)G(l)b(t) = 0, l = 1 . . .L. (25)

with:

• a(t) = (a1(t) . . . aK(t))
T

,

• b(t) = (b1(t) . . . bL(t))
T

,

• B(k) a K ×K matrix :

B(k)i, j =

〈

w(ψξ,i) ·∇ψξ, j,ψξ,k

〉

〈

ψξ,k,ψξ,k

〉 ,

• G(l) a K ×L matrix :

G(l)i, j =

〈

w(ψξ,i) ·∇ψI, j,ψI,l

〉

〈

ψI,l ,ψI,l

〉

Let XR(x, t) = (a(t) b(t))T
be the state vector of the reduced model. System (24,25)

is rewritten as:
dXR

dt
+MR(XR) = 0 (26)

MR being the Galerkin projection of the full model M on Ψξ and ΨI.

5 Learning reduced models on sliding windows

This section describes the learning method on sliding windows, with the full model of

Section 2 applied on the first window and the reduced models of Section 4 applied on

the following. This learning method allows to process long temporal image sequences.

The discrete sequence I = {Iz}z=1...Z is first split into short temporal windows, with

4 to 6 images, that half overlap in time. These windows are denoted Wim, with m the

index.

Images belonging to Wi1 are assimilated in the divergence-free model described in Sec-

tion 2. This allows the retrieval of the vorticity on Wi1.

The retrieved value at the beginning of Wi2 is taken as background vorticity ξb required

to learn the reduced model on Wi2, as it has been explained in Section 4. The coeffi-

cients of projection of images belonging to Wi2 are assimilated in the reduced model

to retrieve the vorticity coefficients and compute the vorticity values and motion fields

over Wi2.

This again provides ξb for Wi3 and allows to learn the reduced model on Wi3. The

process is then iterated until the whole sequence I has been analyzed.

The method is summarized in Figure 1.

The major advantage is that full assimilation is only applied on the first temporal

window Wi1 that has a short duration. It requires, at each iteration of the optimisation
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Figure 1: Learning reduced models on sliding windows.

process, a forward integration of M and a backward integration of its adjoint (Béréziat

and Herlin, 2011). The complexity is proportional to the image size multiplied by

the number of time steps in the assimilation window. On the next window Wim, the

complexity greatly decreases as the state vector involved in the reduced models MR is

of size K +L, which is less than 10 in the experiments.

6 Results of the full model

In order to quantify the method, it is applied on synthetic data produced by twin exper-

iments.

A sequence of five synthetic observations (see Figure 3) is obtained by time inte-

gration of the divergence-free model from the initial conditions displayed in Figure 2.

For the assimilation experiment, the background of vorticity is set to zero and the

Figure 2: Pseudo-image, vorticity (positive values are drawn in white, negative ones in black)

and motion field at t = 0.

one of pseudo-image is the first observation. The result of the assimilation process is

the state vector X(k) = (ξ(k) Is(k))
T

and its associated motion vector w(k) over the

discrete assimilation window. In Table 1, the error between the motion result and the

ground truth is given for our approach and four state-of-the-art image processing meth-

ods: (Horn and Schunk, 1981; Isambert et al., 2007; Corpetti et al., 2002; Suter, 1994)

that use either a L2 regularization of motion (Horn and Schunk, 1981) or a second or-
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Figure 3: Observations.

der regularization on the divergence (Isambert et al., 2007; Corpetti et al., 2002; Suter,

1994).

Angular error (in deg.) Norm error (in %)

Method Mean Std. Dev. Min Max Mean Min Max

(Horn and Schunk, 1981) 15.26 9.65 0.33 67.12 24.98 0.85 93.10

(Corpetti et al., 2002) 12.54 9.49 0.17 68.49 20.03 0.51 87.74

(Suter, 1994) 10.41 5.34 0.06 35.58 18.07 0.09 92.31

(Isambert et al., 2007) 10.61 6.92 0.00 56.62 18.01 0.01 97.74

Our approach 0.18 0.10 0.00 0.572 0.41 0.00 19.47

Table 1: Error analysis: misfit between motion results and ground truth.

This demonstrates that our approach is almost exact for this twin experiment.

7 Results of the learning method on sliding windows

Twin experiments were also designed to quantify the learning method on sliding win-

dows and its benefit for motion estimation on long temporal image sequences.

The full model was used, with initial conditions displayed in Figure 4. Snapshots

of Is were taken to create the observation images I = {Iz}z=1...Z . Assimilation of these

data in the full and reduced models is then applied as described in Section 5 on six

windows. Results on motion estimation are given in Figure 5 and compared with the

ground truth provided by the simulation creating the observations. Each column corre-

sponds to the first frame of one of the six windows Wim.

Figure 4: Initialisation for the twin experiment. ξ(0) on the left and Is(0) on the right.

In order to demonstrate the potential of the learning method on sliding windows,

statistics on the retrieved vorticity are provided. The normalized root mean square error

(in percentage) ranges from 1.1 to 4.0% from the first to the sixth window, while the

correlation value between the retrieved vorticity and the ground truth decreases from

0.99 to 0.96.
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Figure 5: Estimated Motion (first line) compared to the ground truth (second line).

The computing time reduces from around 4 hours for the first window processed by

the full model to less than 1 minute for the next five one, processed by reduced models.

8 Conclusions

In the paper, we proposed a learning method on sliding windows for estimating motion

on long temporal image sequences with data assimilation techniques. This method

couples full and reduced models obtained by Galerkin projection and allows to process

images in quasi-real time. The method has been quantified with twin experiments to

demonstrate its potential. First, the quality of motion fields retrieved by the full model

has been assessed. Second, statistics on performances of the reduced models learned

on the sliding windows have been provided.

One perspective is to replace the POD bases Ψξ which were used to define the

reduced models by a fixed basis in order to even reduce the computational requirements

on the first part of the image sequence.
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