Bayesian Action-Perception Computational Model: Interaction of Production and Recognition of Cursive Letters

Abstract : In this paper, we study the collaboration of perception and action representations involved in cursive letter recognition and production. We propose a mathematical formulation for the whole perception-action loop, based on probabilistic modeling and Bayesian inference, which we call the Bayesian Action-Perception (BAP) model. Being a model of both perception and action processes, the purpose of this model is to study the interaction of these processes. More precisely, the model includes a feedback loop from motor production, which implements an internal simulation of movement. Motor knowledge can therefore be involved during perception tasks. In this paper, we formally define the BAP model and show how it solves the following six varied cognitive tasks using Bayesian inference: i) letter recognition (purely sensory), ii) writer recognition, iii) letter production (with different effectors), iv) copying of trajectories, v) copying of letters, and vi) letter recognition (with internal simulation of movements). We present computer simulations of each of these cognitive tasks, and discuss experimental predictions and theoretical developments.
Type de document :
Article dans une revue
PLoS ONE, Public Library of Science, 2011, 6 (6), pp.e20387. 〈10.1371/journal.pone.0020387〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00645868
Contributeur : Julien Diard <>
Soumis le : lundi 28 novembre 2011 - 17:20:42
Dernière modification le : mercredi 17 janvier 2018 - 10:44:41
Document(s) archivé(s) le : lundi 5 décembre 2016 - 08:20:24

Fichiers

gilet11.pdf
Fichiers éditeurs autorisés sur une archive ouverte

  •  gilet11s.pdf Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Collections

Citation

Estelle Gilet, Julien Diard, Pierre Bessiere. Bayesian Action-Perception Computational Model: Interaction of Production and Recognition of Cursive Letters. PLoS ONE, Public Library of Science, 2011, 6 (6), pp.e20387. 〈10.1371/journal.pone.0020387〉. 〈hal-00645868〉

Partager

Métriques

Consultations de la notice

499

Téléchargements de fichiers

239