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High Frequency Lead/lag Relationships

Empirical facts

Nicolas Huth∗ † Frédéric Abergel †

November 28, 2011

Abstract

Lead/lag relationships are an important stylized fact at high frequency. Some assets follow the path of
others with a small time lag. We provide indicators to measure this phenomenon using tick-by-tick data.
Strongly asymmetric cross-correlation functions are empirically observed, especially in the future/stock
case. We confirm the intuition that the most liquid assets (short intertrade duration, narrow bid/ask
spread, small volatility, high turnover) tend to lead smaller stocks. However, the most correlated stocks
are those with similar levels of liquidity. This lead/lag phenomenon is not constant throughout the day,
it shows an intraday seasonality with changes of behaviour at very specific times such as the announce-
ment of macroeconomic figures and the US market opening. These lead/lag relationships become more
and more pronounced as we zoom on significant events. We reach 60% of accuracy when forecasting the
next midquote variation of the lagger using only the past information of the leader, which is significantly
better than using the information of the lagger only. However, a naive strategy based on market orders
cannot make any profit of this effect because of the bid/ask spread.

Introduction

The standard financial theory assumes that there is no arbitrage on financial markets1[9]. In particular, it
does not allow for predictability of asset returns. As a result, lead/lag relationships (assets driving others in
advance) should not exist according to this theory. Figure 1 plots the cross-correlation function between the
daily returns of the French equity index CAC402 (.FCHI) and those of the French stock Renault (RENA.PA),
which is part of the CAC40, between 2003/01/02 and 2011/03/043. The cross-correlation function is indeed
close to a Dirac delta function (times the daily correlation). On a daily time scale, the absence of lead/lag
relationships thus seems to be quite reasonable.

The availability of high frequency financial data allows us to zoom on microscopic fluctuations of the
order flow. In this paper, we study the existence of lead/lag relationships between assets at fine time scales.
Lead/lag relationships are measured with the Hayashi-Yoshida cross-correlation estimator [12, 13]. This es-
timator deals with the issue of asynchronous trading and makes use of all the available tick-by-tick data, so
that we can theoretically measure lags down to the finest time scale. We report evidence of highly asymmet-
ric cross-correlation functions as a witness of lead/lag relationships. These are not statistical artefacts due to
differences in levels of trading activity. We provide a descriptive picture of the microstructural factors that
discriminate leaders from laggers. We find an intraday profile of lead/lag that reacts to news and market
openings. We also study how this lead/lag phenomenon evolves when we only take into account extreme
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2The Reuters Instrument Code (RIC) of each financial asset is indicated in brackets.
3The data used for figure 1 are adjusted closing prices and can be downloaded at fr.finance.yahoo.com for free.
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Figure 1: Cross-correlation function between .FCHI and RENA.PA, 2003/01/02 − 2011/03/04

events. We backtest forecasting devices using these lead/lag relationships and find that they are statistically
successful, with an average accuracy of about 60% for forecasting variations of the midquote. Interestingly,
these lead/lag relationships tend to disappear as we move to larger time scales.

This paper is organized as follows. Section 1 introduces the dataset and provides basic but insightful
statistics on the assets under focus. Section 2 describes the methodology used to measure lead/lag rela-
tionships. Section 3 presents our empirical results. Finally, section 4 concludes by summarizing the main
findings and giving the directions for further research.
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1 Data description and summary statistics

We have access to the Reuters Tick Capture Engine (RTCE) database which provides tick-by-tick data on
many financial assets (equities, fixed income, forex, futures, commodities, etc). Three levels of data are
available:

• trades files: each transaction price and quantity timestamped up to the millisecond

• quotes files: each quote (best bid and ask) price or quantity modification timestamped up to the
millisecond

• order book files: each limit price or quantity modification timestamped up to the millisecond, up to a
given depth, typically ten limits on each side of the order book.

Throughout this study, we will only use trades and quotes files. We will sample quotes on a trading
time basis so that for each trade we have access to the quotes right before this trade. Quotes files will also
be used to monitor the evolution of quotes in continuous time, for instance to get the quotes right after a trade.

When a trade walks the order book up or down by hitting consecutive limit prices, it is recorded as a
sequence of trades with the same timestamp but with prices and quantities corresponding to each limit hit.
For instance, assume that the best ask offers 100 shares at price 10 at 200 shares at price 10.01, and that a
buy trade arrives for 150 shares. This is recorded as two lines in the trades file with the same timestamp, the
first line being 100 shares at 10 and the second line 50 shares at 10.01. As a pre-processing step, we aggregate
identical timestamps in the trades files by replacing the price by the volume weighted average price (VWAP)
over the whole transaction and the volume by the sum of all quantities consumed. In the previous example,
the trade price will thus be (100∗10+50∗10.01)/(100+50) = 10.00333 and the trade quantity 100+50 = 150.

Table 1 describes the scope of assets for our empirical study. We only consider equities and equity futures.
The futures are nearby-maturity futures and are rolled the day before the expiration date. The time period
is 2010/03/01-2010/05/31 and the trading hours are specified in table 1. On each day, we drop the first and
last half hours of trading. We only consider regular trades to avoid outliers such as block trades or OTC
trades (see [4] for a more detailed description). When studying lead/lag relationships between assets traded
on different exchanges, we only consider hours of simultaneous trading.

Table 2 gives some insight into the liquidity of each of these assets. It displays the following summary
statistics4:

• the average duration between two consecutive trades 〈∆t〉

• the average tick size δ in percentage of the midquote 〈δ/m〉

• the average bid/ask spread expressed in tick size 〈s〉 /δ

• the frequency of unit bid/ask spread
〈

1{s=δ}

〉

• the frequency of trades hitting more than the best limit price available5
〈

1{trade through}

〉

[4]

• a proxy for the daily volatility expressed in tick size : 〈|∆m|〉 /δ, where ∆m is the midquote variation
between two consecutive trades

• the average turnover per trade 〈PtradeVtrade〉

Every average is computed independently on a daily basis, and then averaged over all days available :

〈x〉 = 1
ndays

∑ndays

d=1

∑

ni,d

i=1
xi,d

ni,d
.

4For assets traded in an other currency than EUR (VOD.L, FFI, NESN.VX and FSMI), we convert the average turnover
per trade in EUR by using the closing price of the corresponding exchange rate (GBP/EUR for the two first and CHF/EUR
for the two last).

5In our data, we detect a trade through as a sequence of trades with the same timestamp and at least two different consecutive
execution prices.
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Table 1: Description of the scope of assets.

RIC Description Exchange Trading hours (CET) Currency
ACCP.PA Accor Euronext Paris 09:00-17:30 EUR
AIRP.PA Air Liquide Euronext Paris 09:00-17:30 EUR
ALSO.PA Alstom Euronext Paris 09:00-17:30 EUR
ALUA.PA Alcatel Lucent Euronext Paris 09:00-17:30 EUR
AXAF.PA Axa Euronext Paris 09:00-17:30 EUR
BNPP.PA BNP Paribas Euronext Paris 09:00-17:30 EUR
BOUY.PA Bouygues Euronext Paris 09:00-17:30 EUR
CAGR.PA Crédit Agricole Euronext Paris 09:00-17:30 EUR
CAPP.PA Cap Gemini Euronext Paris 09:00-17:30 EUR
CARR.PA Carrefour Euronext Paris 09:00-17:30 EUR
DANO.PA Danone Euronext Paris 09:00-17:30 EUR
DEXI.BR Dexia Euronext Brussels 09:00-17:30 EUR
EAD.PA EADS Euronext Paris 09:00-17:30 EUR
EDF.PA EDF Euronext Paris 09:00-17:30 EUR
ESSI.PA Essilor Euronext Paris 09:00-17:30 EUR
FTE.PA France Télécom Euronext Paris 09:00-17:30 EUR
GSZ.PA GDF Suez Euronext Paris 09:00-17:30 EUR
ISPA.AS Arcelor Mittal Euronext Amsterdam 09:00-17:30 EUR
LAFP.PA Lafarge Euronext Paris 09:00-17:30 EUR
LAGA.PA Lagardère Euronext Paris 09:00-17:30 EUR
LVMH.PA LVMH Euronext Paris 09:00-17:30 EUR
MICP.PA Michelin Euronext Paris 09:00-17:30 EUR
OREP.PA L’Oréal Euronext Paris 09:00-17:30 EUR
PERP.PA Pernod Ricard Euronext Paris 09:00-17:30 EUR
PEUP.PA Peugeot Euronext Paris 09:00-17:30 EUR
PRTP.PA PPR Euronext Paris 09:00-17:30 EUR
RENA.PA Renault Euronext Paris 09:00-17:30 EUR
SASY.PA Sanofi Aventis Euronext Paris 09:00-17:30 EUR
SCHN.PA Schneider Electric Euronext Paris 09:00-17:30 EUR
SEVI.PA Suez Environnement Euronext Paris 09:00-17:30 EUR
SGEF.PA Vinci Euronext Paris 09:00-17:30 EUR
SGOB.PA Saint-Gobain Euronext Paris 09:00-17:30 EUR
SOGN.PA Société Générale Euronext Paris 09:00-17:30 EUR
STM.PA StMicroelectronics Euronext Paris 09:00-17:30 EUR

TECF.PA Technip Euronext Paris 09:00-17:30 EUR
TOTF.PA Total Euronext Paris 09:00-17:30 EUR
UNBP.PA Unibail-Rodamco Euronext Paris 09:00-17:30 EUR
VIE.PA Veolia Environnement Euronext Paris 09:00-17:30 EUR
VIV.PA Vivendi Euronext Paris 09:00-17:30 EUR

VLLP.PA Vallourec Euronext Paris 09:00-17:30 EUR
VOD.L Vodafone London Stock Exchange 09:00-17:30 GBP

NESN.VX Nestlé SIX Swiss Exchange 09:00-17:30 CHF
DTEGn.DE Deutsche Telekom XETRA 09:00-17:30 EUR

FCE CAC40 future NYSE Liffe Paris 08:00-22:00 EUR
FFI Footsie100 future NYSE Liffe London 09:00-22:00 GBP

FSMI SMI future Eurex 07:50-22:00 CHF
FDX DAX future Eurex 07:50-22:00 EUR
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Table 2: Summary statistics on the scope of assets.

RIC 〈∆t〉 (sec) 〈δ/m〉 (bp) 〈s〉 /δ
〈

1{s=δ}

〉

(%)
〈

1{trade through}

〉

(%) 〈|∆m|〉 /δ 〈PtradeVtrade〉 (EUR×103)
ACCP.PA 13.351 1.22 3.98 16 5 1.18 11
AIRP.PA 7.327 1.15 2.76 16 5 0.88 13
ALSO.PA 6.619 1.11 3.48 19 6 1.01 13
ALUA.PA 8.274 4.34 1.55 58 4 0.37 12
AXAF.PA 5.578 3.3 1.37 69 3 0.38 17
BNPP.PA 3.315 1.59 2.13 47 6 0.65 19
BOUY.PA 9.584 1.36 2.77 27 5 0.99 12
CAGR.PA 5.908 3.35 2.34 59 4 0.69 13
CAPP.PA 10.387 1.35 3.23 21 5 1.01 12
CARR.PA 7.667 1.39 2.31 34 4 0.76 16
DANO.PA 6.157 1.15 2.35 35 5 0.7 15
DEXI.BR 22.092 2.44 5.29 8 8 1.35 6
EAD.PA 12.152 3.34 1.73 50 3 0.44 12
EDF.PA 8.022 1.29 2.61 30 4 0.78 12
ESSI.PA 14.45 1.08 2.83 26 4 0.76 10
FTE.PA 6.579 2.97 1.18 83 2 0.23 20
GSZ.PA 5.425 1.85 1.76 50 4 0.47 15
ISPA.AS 3.01 1.68 2.03 39 6 0.62 22
LAFP.PA 9.033 1.6 3.17 26 5 0.98 14
LAGA.PA 17.001 1.74 2.95 22 4 0.86 8
LVMH.PA 6.101 1.16 2.64 19 6 0.88 16
MICP.PA 9.105 1.84 2.58 28 4 0.77 13
OREP.PA 10.048 1.28 2.66 19 5 0.84 16
PERP.PA 12.211 1.61 2.18 35 3 0.65 13
PEUP.PA 10.107 2.36 2.81 22 5 0.73 12
PRTP.PA 13.258 2.39 3.49 33 4 0.92 17
RENA.PA 5.794 1.51 3.16 21 6 0.99 14
SASY.PA 5.269 1.71 1.96 47 4 0.49 20
SCHN.PA 6.708 1.19 2.95 15 5 0.94 15
SEVI.PA 21.398 3.1 1.82 45 3 0.48 8
SGEF.PA 5.58 1.22 2.64 28 5 0.81 13
SGOB.PA 6.429 1.41 2.85 24 5 0.92 14
SOGN.PA 3.351 1.2 2.91 28 7 0.95 15
STM.PA 13.46 1.44 3.65 10 6 1.1 10

TECF.PA 12.488 1.7 4.17 12 5 0.99 13
TOTF.PA 3.283 1.21 1.88 48 5 0.57 22
UNBP.PA 14.968 3.53 1.39 68 2 0.35 20
VIE.PA 9.903 2.1 1.98 43 3 0.52 13
VIV.PA 7.861 2.63 1.36 70 3 0.35 18

VLLP.PA 11.353 3.36 1.68 52 3 0.47 17
VOD.L 6.766 3.47 1.13 88 2 0.26 2148

NESN.VX 12.452 9.42 1.01 99 1 0.05 70
DTEGn.DE 7.315 1.56 2.58 19 7 0.7 29

FCE0 1.803 1.32 1.21 83 3 0.4 14
FFI0 1.89 0.91 1.33 75 3 0.47 21

FSMI0 5.244 1.5 1.15 85 3 0.38 18
FDX0 1.215 0.83 1.28 74 11 0.38 24
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2 Methodology

2.1 The Hayashi-Yoshida cross-correlation function

In [12], the authors introduce a new6 estimator of the linear correlation coefficient between two asynchronous
diffusive processes. Given two Itô processes X, Y such that

dXt = µX
t dt + σX

t dW X
t

dYt = µY
t dt + σY

t dW Y
t

d
〈

W X , W Y
〉

t
= ρtdt

and observation times 0 = t0 ≤ t1 ≤ . . . ≤ tn−1 ≤ tn = T for X and 0 = s0 ≤ s1 ≤ . . . ≤ sm−1 ≤ sm = T
for Y , which must be independent from X and Y , they show that the following quantity

∑

i,j

rX
i rY

j 1{Oij 6=∅}

Oij =]ti−1, ti]∩]sj−1, sj ]

rX
i = Xti

− Xti−1

rY
j = Ysj

− Ysj−1

is an unbiased and consistent estimator of
∫ T

0
σX

t σY
t ρtdt as the largest mesh size goes to zero, as opposed

to the standard previous-tick correlation estimator[11, 23]. In practice, it amounts to sum every product of
increments as soon as they share any overlap of time. In the case of constant volatilities and correlation, it
provides a consistent estimator for the correlation

ρ̂ =

∑

i,j rX
i rY

j 1{Oij 6=∅}
√

∑

i(r
X
i )2

∑

j(rY
j )2

Recently, in [13], the authors generalize this estimator to the whole cross-correlation function. They use
a lagged version of the original estimator

ρ̂(ℓ) =

∑

i,j rX
i rY

j 1{Oℓ
ij

6=∅}
√

∑

i(r
X
i )2

∑

j(rY
j )2

Oℓ
ij =]ti−1, ti]∩]sj−1 − ℓ, sj − ℓ]

It can be computed by shifting all the timestamps of Y and then using the Hayashi-Yoshida estimator.
They define the lead/lag time as the lag that maximizes |ρ̂(ℓ)|. In the following we will not estimate the
lead/lag time but rather decide if one asset leads the other by measuring the asymmetry of the cross-
correlation function between the positive and negative lags. More precisely, we state that X leads Y if X
forecasts Y more accurately than Y does for X. Formally speaking, X is leading Y if

∥

∥rY
t − Proj(rY

t |~rX
t−

)
∥

∥

‖rY ‖
<

∥

∥rX
t − Proj(rX

t |~rY
t−

)
∥

∥

‖rX‖

⇐⇒

∥

∥εY X
∥

∥

‖rY ‖
<

∥

∥εXY
∥

∥

‖rX‖

6In fact, a very similar estimator was already designed in [7].
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where Proj(rY
t |~rX

t−
) denotes the projection of rY

t on the space spanned by ~rX
t−

:=
{

rX
s , s < t

}

. We will

only consider the ordinary least squares setting, i.e. Proj(rY
t |~rX

t−
) = µ +

∫

]0,ℓ̄]
βsrX

t−sds and ‖X‖
2

= Var(X).

In practice, we compute the cross-correlation function on a discrete grid of lags so that
∫

]0,ℓ̄]
βsrX

t−sds =
∑p

i=1 βir
X
t−ℓi

. It is easy to show (see appendix A) that

∥

∥εY X
∥

∥

2

‖rY ‖
2 = 1 − (CY X)T (CXXCY Y )−1CY X

CY X = (Cov(Yt, Xt−ℓ1
), . . . ,Cov(Yt, Xt−ℓp

))T

CY Y = Var(Yt)

CXX = (Cov(Xt−ℓi
, Xt−ℓj

), i, j = 1, . . . , p)

(CY X)T (CXXCY Y )−1CY X measures the correlation between Y and X. Indeed, X is a good predictor
of Y if both are highly correlated. If we assume furthermore that the predictors X are uncorrelated, we can
show (see appendix A) that

∥

∥εY X
∥

∥

‖rY ‖
<

∥

∥εXY
∥

∥

‖rX‖

⇐⇒

p
∑

i=1

ρ2(ℓi) >

p
∑

i=1

ρ2(−ℓi)

⇐⇒LLR :=

∑p
i=1 ρ2(ℓi)

∑p
i=1 ρ2(−ℓi)

> 1

The asymmetry of the cross-correlation function, as defined by the LLR (standing for Lead/Lag Ratio)
measures lead/lag relationships. This definition of lead/lag is closely related to the notion of Granger
causality[10]. Given two stochastic processes X and Y , X is said to cause Y (in the Granger sense) if, in
the following linear regression

Yt = c +

p
∑

k=1

aY X
k .Yt−k +

q
∑

ℓ=1

bY X
ℓ .Xt−ℓ + εY X

t

some of the estimated coefficients b̂Y X
ℓ are found to be statistically significant. Since these coefficients

are closely linked to the cross-correlation function, there is indeed a strong similarity between this approach
and ours. The Granger regression includes lags of the lagger in order to control for its autocorrelation, which
we do not take into account. Note that there is a priori no obstacle to find that X Granger-causes Y and Y
Granger-causes X. Our approach amounts to compare in some sense the signficance of all b̂Y X

ℓ to the one

of all b̂XY
ℓ .

Our indicator tells us which asset is leading the other for a given pair, but we might also wish to consider
the strength and the characteristic time of this lead/lag relationship. Therefore, the maximum level of the
cross-correlation function and the lag at which it occurs must also be taken into account.

In the following empirical study, we measure the cross-correlation function between variations of midquotes
of two assets, i.e. X and Y are midquotes. The observation times will be tick times. Tick time is defined as
the clock that increments each time there is a non-zero variation of the midquote between two trades (not
necessarily consecutive). It does not take into account the nil variations of the midquote, contrary to trading
time. Computing the Hayashi-Yoshida correlation in trade time or in tick time does not yield the same
result. Indeed, consider the trading sequence on figure 2. It is easily seen that the trade time covariance is
zero while the tick time covariance is not. Since we will be interested in forecasting the midquote variation of
the lagging asset, we prefer to use tick time rather than trade time since classification in tick time is binary:
either the midquote moves up or it moves down.
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Figure 2: Difference between the trade time and tick time Hayashi-Yoshida correlations

2.2 Simulation study: artificial lead/lag due to different levels of trading activ-
ity

When looking at two assets, a natural bet is to say that the most traded asset leads the other. In the lit-
erature, empirical research focusing on lead/lag relationships[7, 8, 14, 16, 17, 18, 19, 20, 21] often concludes
that the most liquid assets drive the others7. Intuitively, the most heavily traded assets tend to incorporate
information into prices faster than others so they should lead.

A very simple simulation framework[11, 12] provides some insight into this liquidity lead/lag effect. Let
us consider two correlated Brownian motions B1, B2 with correlation ρ on [0, T ] and two series of random
timestamps 0 = t0 < t1 < . . . < tn = T and 0 = s0 < s1 < . . . < sm = T independent of B1, B2. For
instance, let the timestamps be the jumping times of two independent Poisson processes with respective
intensities λ1 and λ2. We define two time series of price as the Brownian motions sampled along the Poisson
timestamps

X(u) = B1(t(u))

Y (u) = B2(s(u))

t(u) = max {ti|ti ≤ u}

s(u) = max {si|si ≤ u}

There should be no lead/lag relationship between X and Y since they are sampled from two synchronous
Brownian motions. The cross-correlation function should thus be a Dirac delta function with level ρ at lag
zero. Figure 3 illustrates the behaviour of the cross-correlation function computed with the previous-tick and
the Hayashi-Yoshida estimators for various levels of λ1

λ2
. We simulate two synchronously correlated Brownian

motions on [0, T = 30600] with time step ∆t = 5 and correlation ρ = 0.8. Then we sample them along two
independent Poisson time grids with parameters λ1 and λ2. We repeat this simulation 64 times and average
the cross-correlation functions computed independently over each simulation. In the Hayashi-Yoshida case,
we also plot on figure 3 the average cross-correlation function computed using the closed-form formula shown
in appendix B.

From figure 3, we observe that the cross-correlation function is always peaked at zero, whatever the
method of computation. The previous-tick correlation function goes to zero with the level of asynchrony,
but we get rid of this problem with the Hayashi-Yoshida estimator. The previous-tick correlation function
is blurred by spurious liquidity effects: the asymmetry grows significantly with λ1

λ2
, yielding he most active

Brownian motion to always lead the other. In the contrary, the Hayashi-Yoshida LLR is not impacted by the

7Liquidity does not necessarily mean more transactions, it can be measured with other microstructure statistics such as
bid/ask spread, market impact etc. . .
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Figure 3: Cross-correlation of two synchronously correlated Brownian motions sampled along Poisson time
grids for various levels of λ1

λ2
, with λ1 = 1

∆t
= 0.2 kept fixed. Top left panel: Hayashi-Yoshida cross-

correlation function and its closed-form expression (straight lines). Top right panel: Hayashi-Yoshida LLR.
Bottom left panel: Previous-tick cross-correlation function. Bottom right panel: Previous-tick LLR.

level of λ1

λ2
and it remains symmetric (see appendix B for the proof). Even though the Hayashi-Yoshida cross-

correlation remains symmetric, it is not exactly a Dirac mass. The irregular sampling creates correlation at
non-zero lags (see appendix B for the proof).
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As a result, we choose to use the Hayashi-Yoshida cross-correlation function to measure lead/lag rela-
tionships in our empirical study. This allows us to avoid being fooled by liquidity effects, yielding the most
traded assets to be automatically leaders.

3 Empirical results

3.1 Empirical cross-correlation functions

We now turn to measuring lead/lag relationships on our dataset. Figure 4 shows the tick time Hayashi-
Yoshida cross-correlation functions computed on four pairs of assets

• FCE/FSMI: future/future

• FCE/TOTF.PA: future/stock

• RENA.PA/PEUP.PA: stock/stock

• FSMI/NESN.VX: future/stock

We choose the following grid of lags (in seconds)

0, 0.01, 0.02, . . . , 0.1, 0.2, . . . , 1, 2, . . . , 10, 15, 20, 30, . . . , 120, 180, 240, 300

We consider that there is no correlation after five minutes of trading on these assets, which seems to be
empirically justified on figure 4, except for the FSMI/NESN.VX case. Figure 5 is similar to figure 4, but
zooms on lags smaller than 10 seconds. In order to assess the robustness of our empirical results against the
null hypothesis of no genuine lead/lag relationship but only artificial liquidity lead/lag, we build a surrogate
dataset. For two assets and for a given trading day, we generate two synchronously correlated Brownian
motions with the same correlation as the two assets ρ = ρ̂HY (0) on [0, T ], T being the duration of a trading
day, with a mesh of one second. Then we sample these Brownian motions along the true timestamps of the
two assets, so that the surrogate data have the same timestamp structure as the original data. The error
bars indicate the 95%-confidence interval for the average correlation over all trading days8.

For the FCE/FSMI pair (future vs future), the cross-correlation vanishes very quickly, there is less than
5% of correlation at 30 seconds. We observe that there is more correlation on the side where FCE leads
with a LLR of 1.26 and a maximum correlation at 0.2 seconds. The pair FCE/TOTF.PA involves a future
on an index and a stock being part of this index. Not surprisingly, the future leads the stock, by an average
time of 0.6 seconds. This pair shows the biggest amount of lead/lag as measured by the LLR (2.12). The
RENA.PA/PEUP.PA case compares two stocks in the French automobile industry. The cross-correlation
function is the most symmetric of the four shown, with a LLR of 1.15 and an average maximum lag of
0.95 seconds. Note that the maximum lag displays a signifcantly larger standard deviation than for the two
previous pairs. It confirms that the lead/lag effect for these two assets is not as much pronounced as for
the two pairs considered before. Finally, the FSMI/NESN.VX pair is interesting because the stock leads
the future on the index where it belongs. It might be explained by the fact NESN.VX is the largest market
capitalization in the SMI, about 25%. The asymmetry is quite strong (LLR = 0.69) and the maximum
lag is 17 seconds. However, the standard deviation of the maximum lag is pretty strong, almost half the
average maximum lag. We also see that there still exists significant correlation after five minutes. The
difference between the maximum correlation and the correlation at lag zero is 6% for FCE/FSMI, 7% for
FCE/TOTF.PA, 0.3% for RENA.PA/PEUP.PA and 2% for FSMI/NESN.VX, which confirms again that the
lead/lag is less pronounced for RENA.PA/PEUP.PA. The LLR for surrogate data is equal to one and the

8Assuming our dataset is made of D uncorrelated trading days, the confidence interval for the average correlation ρ̄D =

1
D

∑D

d=1
ρd is

[

ρ̄D ± 1.96 σD√
D

]

where σ2
D = 1

D

∑D

d=1
ρ2

d − ρ̄2
D. By doing so, we neglect the variance of the correlation estimator

inside a day.
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Figure 4: Tick time Hayashi-Yoshida cross-correlation function. Top left panel: FCE/FSMI. Top right
panel: FCE/TOTF.PA. Bottom left panel: RENA.PA/PEUP.PA. Bottom right panel: FSMI/NESN.VX.
The standard deviations are indicated between brackets.

maximum lag is statistically zero with a usual confidence level of 95% for the four pairs of assets considered.
This strong contrast between real and surrogate data suggests that there are genuine lead/lag relationships
between these assets that are not solely due to differences in the level of trading activity.
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Figure 5: Zoom on lags smaller than 10 seconds in figure 4.

12



3.2 Microstructure features of leading assets

In this section, we investigate what are the common features of leading assets. It is often claimed in the
literature [7, 8, 14, 16, 17, 18, 19, 20, 21] that the most liquid assets tend to be leaders, which sounds intuitive
because it should take more time to illiquid assets to incorporate information into prices.

In section 1, we have presented several indicators measuring liquidity from the point of view of market
microstructure. We now look for the dependency of our lead/lag indicator LLR on these liquidity indicators.
In order to make an extensive study, we have computed the LLR and six liquidity indicators9 for all pairs in
the universe made from the CAC40 components and its future, which amounts to 41 ∗ 40/2 = 820 pairs. To
be more precise, for all pairs (X, Y ), and for each indicator I, we plot the LLR against the ratio IR = IX

IY
.

Remembering that the LLR is the ratio of the squared correlations when X leads over those when Y leads, it
means that if sign(LLR − 1) = sign(IR − 1), then the higher this indicator, the more X leads and vice versa.
The results are shown in figure 6. Table 3 illustrates the discriminatory power of each of these indicators by
counting the proportion of points falling into the four quadrants delimited by the straight lines x = 1 and
y = 1.

Table 3: Discriminatory power of liquidity indicators.
N++ N−− N+− N−+ N++ + N−− N+− + N−+

〈∆t〉 7% 6% 44% 43% 13% 87%
〈δ/m〉 22% 26% 28% 24% 48% 52%
〈

1{trade through}

〉

29% 23% 22% 26% 52% 48%
〈s〉 /δ 17% 12% 33% 38% 29% 71%
〈|∆m|〉 /δ 20% 13% 31% 36% 33% 67%
〈Ptrade.Vtrade〉 35% 42% 16% 7% 77% 23%

The most discriminatory indicators are the intertrade duration, the average turnover per trade, the aver-
age bid/ask spread and the midquote volatility. The tick size and the probability of having a trade through
do not seem to play any direct role in determining who leads or lags. The most liquid assets appear to be
leaders, which is in agreement with common market knowledge. Indeed, assets which trade faster, or involve
bigger exchanges of money, or have a narrower bid/ask spread, or are less volatile tend to lead on average.
Even though the number of trade through does not emerge as a key feature at first sight, we see a decreasing
trend if we focus on the future/stock pairs, i.e. the blue points on figure 6, which means that stocks having
a bigger probability of trade through are less led by the future. This is still in agreement with the intuition
that the most liquid assets tend to lead.

On figure 7, we plot the (cross-sectional) average maximum correlation per decile of ratio of liquidity
indicators. In other words, we bin pairs of assets according to the cross-sectional distribution of ratio of
liquidity indicators, and we compute the average maximum correlation in each bin. Most of the weight of
these distributions is concentrated around where ratios of liquidity are close to 1. It means that highly
correlated stocks tend to have a similar level of liquidity, as measured by the six indicators above. As a
result, there is a trade-off in lead/lag relationships: while liquid vs illiquid pairs exhibit highly asymmetric
cross-correlation functions, they tend to be less correlated than pairs with similar liquidity.

Figure 8 provides a network of stock/stock lead/lag relationships in the CAC40 universe[18]. We use
a minimum spanning tree[5] to plot the network, which only keeps the most significant correlations by
construction. We draw a directed edge from stock X to stock Y if stock X leads stock Y , i.e. LLR =
∑

ℓ>0
ρ2(X leads Y by ℓ)

∑

ℓ>0
ρ2(Y leads X by ℓ)

> 1. The color of the edge indicates the level of LLR of the associated pair. This

network can be useful to find optimal pairs of assets for lead/lag arbitrage. Indeed, good candidates are
close nodes (high correlation) with red links (high LLR).

9We omit the probability of unit bid/ask spread because it essentially gives the same information as the average spread.
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Figure 6: Scatterplot of LLR against pairwise ratios of various liquidity indicators for all the pairs in the
CAC40 universe and its future.
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Figure 8: Lead/lag network on the CAC40 universe. The axes are arbitrary.

3.3 Intraday profile of lead/lag

A well known stylized fact about financial markets activity is that it strongly changes over the day[3]. For
instance, the intraday volatility exhibits a so-called asymmetric U-shape: massive volatility at the open,
then it decreases to reach a minimum during lunch time, it peaks at macroeconomic figures announcements,
and even experiences a change of regime (in Europe) after the opening of the US market, and finally rallies
again at the close, but it does not recover the opening level.
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We study the same phenomenon for lead/lag relationships by computing our three lead/lag indicators
(LLR, maximum lag measured in seconds and maximum correlation) into 5-minute slices from the open to
the close and averaging over all days for each slice10. Figure 9 plots the results for future/stock pairs with
whisker plots11 describing the cross-sectional distribution (i.e. the distribution among assets) for each time
slice. Figure 10 does the same for stock/stock pairs.

For future/stock pairs, the LLR is always above 1 so that the future leads stocks all day long. The LLR
is quite low at the opening and then jumps up five minutes after, it exhibits a noisy U-shape from 09:30 to
14:00; it drops between 14:20 and 14:30, between 15:15 and 15:30, and between 15:45 and 16:00; finally it
decreases half an hour before the market closes to reach its lowest level. The maximum lag is always positive
most of the time, which confirms that the future always leads stocks. We also notice that lead/lag becomes
faster at 14:30 and 16:00 (announcement of US macroeconomic figures) and 15:30 (US market opening),
where the maximum lag reaches local minima. There is a global upward trend in the maximum correlation
as we move forward on the timeline[3], still with significant peaks at the aforementioned specific event times,
and a decorrelation as the market closing approaches.

Stock/stock pairs also show a varying intraday profile of lead/lag. We first remark that lead/lag rela-
tionships are far less pronounced than in the future/stock case. Indeed, the LLR is around 1.2 on average,
while it is 2.2 for future/stock pairs. The average level of correlation is similar in both cases, though there
are seldom uncorrelated future/stock pairs in comparison with stock/stock pairs. Indeed, two stock that
belong to very different business sectors might be little correlated, but both are strongly correlated with
the future. For instance, the percentage of stock/stock pairs having a correlation less than 0.3 is 19% while
it is 7% for future/stock pairs. The LLR is at its highest level at the open, which might reflect the fact
that some corporate news are discovered when the market is closed, then it decreases until 10:00 and stays
constant until 17:00 after which it drops until the close at its lowest level. The decay of the maximum lag
is similar to the one observed for LLR and shows that stock/stock cross-correlation functions tend to be
symmetric around zero as time goes by. Finally, the maximum correlation shows the same rising profile
than for future/stock pairs. This comes from the fact that most of the correlation comes from the so-called
“market mode”[1]. However, it is reported that stock-specific correlations (i.e. once the market mode is
statistically removed) tend to decrease during the day[3].

10More precisely, since we don’t have so many data points during 5 minutes, we only consider lags no larger than a minute and
we rather compute the cross-correlation function for each day and each slice and we average these cross-correlation functions
over days, which gives us one cross-correlation function per slice. We also interpolate these cross-correlation functions with a
spline on a regular grid of lags with mesh 0.1 second (function spline of R). Then we compute the maximum lag and maximum
correlation with these smooth cross-correlation functions, but the LLR is computed using only values on the non-interpolated
grid to make it comparable with values obtained in the previous sections. The same approach is used in section 3.4 but we
consider lags up to 300 seconds.

11The whisher plots we present display a box ranging from the first to the third quartile with the median in the middle, and
whiskers extending to the most extreme point that is no more than 1.5 times the interquartile range from the box. These are
the default settings in the boxplot function of R.
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Figure 9: Intraday profile of lead/lag for future/stock pairs. Left panel: cross-sectional distribution for LLR,
maximum lag and maximum correlation. Right panel: zoom on cross-sectional medians. Blue dotted lines
are drawn 14:30 and 16:00 (announcement of US macroeconomic figures) and 15:30 (NYSE and NASDAQ
opening).
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Figure 10: Same as figure 7 for stock/stock pairs.
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3.4 Lead/lag conditional to extreme events

In the previous sections, we measured lead/lag relationships taking into account every non-zero price varia-
tion, whatever its magnitude. However, it sounds reasonable that large returns are more informative than
small ones[4]. We introduce a thresholded version of the cross-correlation estimator

ρ̂θ(ℓ > 0) =

√

NX
θ NY

0

NX,Y
θ (ℓ)

∑

i,j rX
i rY

j 1{Oℓ
ij

6=∅}1{|rX
i |≥θ}

σX
θ σY

0

ρ̂θ(ℓ < 0) =
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NY,X
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∑
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ij

6=∅}

We only take into account price variations of the leading asset that are greater or equal than some thresh-
old θ. For ℓ = 0, we compute both possibilities. Figure 10 plots the LLR, maximum lag and maximum
correlation as a function of θ = i ∗ δ/2, i = 1, . . . , 6 for future/stock and stock/stock pairs12.

The overall trend is that lead/lag becomes more and more pronounced as we focus on larger price
variations. Indeed, both the LLR and the maximum correlation increase with the threshold θ. There is
roughly two times more correlation when θ goes from 0.5 to 3. The maximum lag is quite independent from
θ. Figure 11 suggests that one should filter out insignificant moves of the leader when trying to build up a
forecast of the lagger.

3.5 Lead/lag response functions

The cross-correlation gives a lot of insight in the detection of lead/lag relationships. However, it does not
tell us the strength of the variation of the lagger following a variation of the midquote of the leader. From
a practical point of view, it is of great importance because an arbitrage strategy based on market orders is
only profitable if it generates enough profit to bypass the bid/ask spread. As a result, we study the so-called
lead/lag response functions

R
v,⋚(ℓ, θ) =

〈

vstock
t+ℓ − vstock

t |rfuture
t ⋚ θ

〉

for v being any relevant variable in the order book, such as the bid and ask quotes or the bid/ask spread.
The main issue in measuring such a function is that after a jump of the future, one can only record the
trajectory of the stock before any another jump of the future happens if we want to isolate the impact of
that particular jump. Since futures are much more actively traded than stocks, this can lead to a substantial
lack data for large lags, which is why we show the results for lags less than 10 seconds. We need to monitor
the state of the best quotes of the stock continuously so we use the quotes files (see section 1).

Figure 12 plots the response function for FCE/TOTF.PA and for v being the bid/ask quotes and the
bid/ask spread. The same graphs for FDX/DTEGn.DE, FFI/VOD.L and FSMI/NESN.VX are displayed
in appendix C. The first row of figure 12 measures how much the bid/ask quotes of TOTF.PA move away
from their initial level after a change in the midquote of the future FCE. Since TOTF.PA and FCE are
positively correlated, the deviation is positive (resp. negative) for positive (resp. negative) thresholds θ. For

12Remind that δ denotes the tick size.
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Figure 11: Lead/lag measures as a function of the threshold θ. Left panel: cross-sectional distribution for
LLR, maximum lag and maximum correlation for future/stock pairs. Right panel: Idem for stock/stock
pairs.
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Figure 12: Lead/lag response functions for FCE/TOTF.PA. Top panel: variation of the bid (dots) and ask
(triangles) quotes w.r.t. their initial level. Middle panel: variation of the bid (dots) and ask (triangles)
quotes w.r.t. the opposite best quote at inception. Bottom panel: variation of the bid/ask spread w.r.t. its
initial level. The dotted line is the average bid/ask spread of the stock at time zero.22



|θ| ≤ 2, it tends to saturate after approximately 1 second, the same order of magnitude than the lag where
the cross-correlation function reaches its maximum. The deviation is quite small, typically less than half a
tick, and it increases with |θ|, meaning that the larger the return of the future, the bigger the impact on the
stock, which sounds intuitive (see [4] for a similar study on single stock response functions). The curves for
|θ| > 2 are a bit messy because of the lack of such events but the qualitative results remain unchanged.
The middle panel plots the deviation of the bid (resp. ask) quote from the initial best opposite quote, i.e.
the ask (resp. bid) quote, after a variation of the midquote of the future. For positive θ (resp. negative),
if the bid (resp. ask) quote becomes larger (resp. smaller) than the initial ask (resp. bid) quote, then
it is possible to make money with market orders on the stock by buying (resp. selling) at time zero and
unwinding the position afterwards. On the left (resp. right) middle panel, we see that the curve with dots
(resp. triangles) is always below (resp. above) zero, so it is not possible to make money with market orders.
We would rather lose two ticks on average, which is the average bid/ask spread of TOTF.PA over this period.

Finally, the bottom panel depicts the trajectory of the bid/ask spread after a move of the future. The
variation of the spread is not so big for |θ| ≤ 2, typically smaller than five percent of the tick size. We
observe a relaxation of the spread towards its average value. For |θ| > 2, the spread narrows for small lags
before being wider a few seconds after. This can be due to high frequency market making robots of index
arbitrage traders, who try to replicate the future with stocks and post quotes accordingly. These people act
at very high frequency, often less than a second. The widening of the spread for larger lags might come from
agents who follow the evolution of the future as a signal for arbitrage strategies and send market orders on
stocks once the future has moved significantly.

3.6 Backtest of forecasting devices

The knowledge of lead/lag relationships on financial markets can be used to forecast the short-term evolution
of lagging assets and thus to build statistical arbitrage strategies. More precisely, the cross-correlation
functions shown in section 3.1 enable us to estimate the direction of the midquote move at the next tick.
This forecast is built using the past evolution of the leading asset. For instance, if we assume that X is the
leader, and that we are at time sj−1, our estimation of the next midquote return of the lagger rY

j = Ysj
−Ysj−1

is

r̂Y
j =

p
∑

k=1

βk

∑

i

rX
i 1{

O
ℓk
ij

6=∅
}

In the following, we will only be interested in the sign of the midquote return sign(r̂Y
j ), so we set βk = ρ̂(ℓk)

which is estimated on the last 20 trading days. In practice, we set the last regression lag ℓp to be the last
statistically significant lag. Since our clock is running in tick time, our classification is binary: upward or
downward move of the midquote. Note that we also need an estimate of the next tick timestamp of the
lagger to compute 1{

O
ℓk
ij

6=∅
}. We choose it to be the current timestamp plus the average duration between

two ticks over the last 20 trading days.

Once the prediction of the next midquote move is known, if it is positive (resp. negative) we buy (resp.
sell) one unit of the lagger, and then we sell (resp. buy) it back after the next tick of the lagger occurs.
Regarding the execution costs, we consider two scenarios: execution at the midquote and execution taking
into account the bid/ask spread. Midquote execution is clearly not realistic at all but it gives an upper
bound for the P&L of the strategy. Note that even with a perfect forecasting device, we need the opposite
quote to move more than the initial bid/ask spread at the next tick to make money, which is highly unlikely
according to section 3.5.

Figure 13 (resp. 14) plots the accuracy, defined as the percentage of good predictions, of our forecast-
ing device, a random forecast and a forecast based on the autocorrelation function of TOTF.PA (resp.
ESSI.PA13) over the 44 test days if we take the future FCE to be the leader. It also shows the probabil-

13We choose TOTF.PA and ESSI.PA because TOTF.PA is highly liquid in contrary to ESSI.PA.
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ity distribution of returns of the strategy14. Figure 15 shows the distribution of returns when taking into
account the bid/ask spread15. The lead/lag prediction is right in 60.3% (resp. 63.6%) of cases on average
for TOTF.PA (resp. ESSI.PA), which is much better than a random forecast16. As a result, being able to
trade at the mid price yields a profitable strategy with an average return of 0.4 (resp. 0.54) bps per trade.
The average daily return is 24.2% (resp. 6.1%) and the standard deviation is 20.2% (resp. 4.6%), thus the
annualized Sharpe ratio is 19 (resp. 21). The distribution of returns of the lead/lag strategy is significantly
different from the random strategy as judged by the Kolmogorov-Smirnov test, with a distance D = 0.0936
(resp. 0.1157)17 yielding a p-value of the order of 10−16. The lead/lag strategy also performs better than the
autocorrelation strategy (accuracy of 56.7% for TOTF.PA and 59% for ESSI.PA), itself performing better
than a purely random strategy. The Student t-test concludes that both average prediction rates are sig-
nificantly different from each other (p-value=2 × 10−11 (resp. 3 × 10−7)). This shows that using the past
information from the leader yields a significant improvement in the forecasting process. This is close to the
notion of Granger causality [10]. However, all the profit made by the lead/lag strategy is lost when taking
into account the bid/ask spread: the average return is −2.73 (resp. −3.44) bps per trade.

In order to bypass massive losses due to the bid/ask spread, we can try to predict the midquote of the
lagger at a longer horizon than the next tick. For instance, we can sample the data on a bigger tick time
basis, i.e. sampling data once the midquote has moved of θ ticks, with θ > 0.5. Typically, we need to
have a tick time bigger than the bid/ask spread, which is 1.88 (resp. 2.83) ticks on average for TOTF.PA
(resp. ESSI.PA). We can use the cross-correlation computed at this time scale to forecast the midquote of
the lagger. Figure 16 plots the accuracy and the distribution of returns for θ = i/2, i = 1, . . . , 6. Clearly,
the forecasting accuracy deteriorates and the distribution of returns gets wider as the time scale increases,
in agreement with the absence of arbitrage. Note that the median return remains negative for any θ.

14The flame-like shape of the probability distribution comes from the fact that returns can be written as m1−m0
m0

=
iδ/2
m0

where i ∈ N is the midquote variation expressed in half-ticks and m0 ∈ R+ is the midquote at the inception of the trade.
15That is buying at the ask price and selling at the bid price.
16The Student t-test for equality of the average prediction rates yields a p-value of 10−16 for both stocks.
17The sample size is 226347 (resp. 241340) returns over the 44 test days.
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Figure 13: Backtest of the lead/lag strategy (versus a random forecast and a forecast based on autocorre-
lation) on the pair FCE/TOTF.PA over the 44-day test period 2010/03/29 − 2010/05/31. Top left panel:
Forecasting accuracy lead/lag vs random. Top right panel: Density of the returns of the strategy lead/lag vs

random. Bottom left panel: Forecasting accuracy lead/lag vs autocorrelation. Bottom right panel: Density
of the returns of the strategy lead/lag vs autocorrelation.
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Figure 14: Same as figure 13 for FCE/ESSI.PA.
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Figure 15: Density of the returns of the lead/lag strategy over the 44-day test period 2010/03/29−2010/05/31
taking into account the bid/ask spread. Left panel: FCE/TOTF.PA. Right panel: FCE/ESSI.PA

4 Conclusion

We study high frequency lead/lag relationships on the French equity market. We use the Hayashi-Yoshida
cross-correlation function estimator because it bypasses the issues of asynchrony and artificial liquidity
lead/lag. Lead/lag relationships between two stocks or between an equity index future and a stock belonging
to this index show different behaviours. The later are far more pronounced than the former. From a more
general point of view, we find that the most liquid assets, in terms of short intertrade duration, high
trading turnover, narrow bid/ask spread and small volatility tend to lead the others. However, the highest
correlations on the market appear for assets displaying similar levels of liquidity. Lead/lag relationships
display a non-constant intraday profile, which is different for future/stock and stock/stock pairs. Lead/lag
becomes more pronounced, in terms of level of asymmetry and correlation, when focusing on extreme price
movements. The study of response functions shows that the average response time of a stock after a move of
the index future is of the order of one second and that there is no chance to make money from this effect with
market orders. Finally, we obtain an average prediction rate of 60% when forecasting the next midquote
variation of a stock with the past evolution of the index future. As said earlier, it does not allow making
money by sending market orders only but it could be used for other trading purposes such as market-making
or best execution.
In the future, we plan to use the branching structure of Hawkes processes to estimate lead/lag relationships.
This is inspired from the declustering algorithm introduced in [22].
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Figure 16: Top left panel: Forecasting accuracy as a function of tick time for FCE/TOTF.PA. Top right
panel: Distribution of returns per trade as a function of tick time for FCE/TOTF.PA. Bottom panel: idem
for FCE/ESSI.PA
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Appendix A: Explicit computation of LLR

We prove how to end up with the final formulation of the LLR as a ratio of squared correlations. We use the
notations introduced in section 2.1. Recall that X leads Y if X forecasts Y more accurately than Y does
for X,

∥

∥εY X
∥

∥

‖rY ‖
<

∥

∥εXY
∥

∥

‖rX‖

By definition,

εY X = Y − Xβ = Y − X(CXX)−1CY X

so that

∥

∥εY X
∥

∥

2

‖Y ‖
2 = 1 − (CY X)T (CXXCY Y )−1CY X

If we develop (CY X)T (CXXCY Y )−1CY X , we get

∥

∥εY X
∥

∥

2

‖Y ‖
2 = 1 −

p
∑

i,j=1

CY X
i CY X

j

(

CXX
)−1

ij

(

CY Y
)−1

Assuming CXX is diagonal, then we get

∥

∥εY X
∥

∥

2

‖Y ‖
2 = 1 −

p
∑

i=1

(

CY X
i

√

CXX
ii CY Y

)2

= 1 −

p
∑

i=1

ρ2(ℓi)

which ends the computation.

Appendix B: Explicit computation of E(ρ̂(ℓ))

Let us consider two standard Brownian motions B1, B2 with contemporary correlation ρ(0) = ρ ∈ [−1, 1].
These two Brownian motions are sampled along respective time grids 0 = t0 ≤ t1 ≤ . . . ≤ tn = T and
0 = s0 ≤ s1 ≤ . . . ≤ sm = T . The time grids are respectively the jumping times of two independent Poisson
processes N1 and N2 and are also independent of (B1, B2). This results in piecewise constant processes

X(u) = B1(t(u))

Y (u) = B2(s(u))

t(u) = max {ti|ti ≤ u}

s(u) = max {si|si ≤ u}

We want to compute E(ρ̂(ℓ)) for any lag ℓ. In fact, we are only interested in the covariance function
Ĉ(ℓ) = ρ̂(ℓ)σ̂X σ̂Y where σ̂2

k = 1
T

∑

i(r
k
i )2 since standard results[15] show that σ̂2

i is an unbiased and consistent
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estimator of the realized variance in this framework. Let us assume ℓ ≥ 0. We have, using the notations
from section 2.1

T.E(Ĉ(ℓ)) = E(
∑

i,j

rX
i rY

j 1{Oℓ
ij

6=∅})

= ρE(
∑

i,j

1{ℓ<sj−ti−1}(ti ∧ sj − ti−1 ∨ sj−1)+)

where x+ = x ∨ 0. Similarly,

T.E(Ĉ(−ℓ)) = ρE(
∑

i,j

1{ℓ<ti−sj−1}(ti ∧ sj − ti−1 ∨ sj−1)+)

Let us remark that for ℓ = 0 the covariance function is unbiased[12] since

E(
∑

i,j

1{0<sj−ti−1}(ti ∧ sj − ti−1 ∨ sj−1)+)

=E(
∑

i,j

(ti ∧ sj − ti−1 ∨ sj−1)+) = E(T ) = T

It is also clear that E(Ĉ(T )) = E(Ĉ(−T )) = 0.

(ti ∧ sj − ti−1 ∨ sj−1)+ is the length of the overlap between ]ti−1, ti] and ]sj−1, sj ]. If there is indeed an
overlap, it can also be seen as the duration between two consecutive events of the Poisson process resulting
from the merge of the two initial Poisson processes. A standard result on the Poisson process[6] states that
the merge of two independent Poisson processes is also a Poisson process with an intensity that is the sum
of the two. Therefore, we have, for 0 < ℓ < T

T.E(Ĉ(ℓ)) = ρE(

N
∑

k=1

1{
ℓ<τ

i2(k)
−τi

1
(k)

}(τk − τk−1))

where {τk, k = 0, . . . , N = n + m} are the jumping times of the merged Poisson process and

ip(k) = argmax
j

{τj ≤ τk−1 : τj is of type p} ∨ 0

ip(k) = argmin
j

{τj ≥ τk : τj is of type p} ∧ N

for p = 1, 2. Then, since N − 1 is Poisson distributed with parameter (λ1 + λ2)T ,

E(Ĉ(ℓ)) = ρe−(λ1+λ2)T

+∞
∑

n=1

((λ1 + λ2)T )n−1

(n − 1)!

n
∑

k=1

k−1
∑

i1=0

n
∑

i2=k

P(i1(k) = i1|N = n)P(i2(k) = i2|N = n)fk,h(n, i1, i2)

fk,h(n, i1, i2) = E((
τk

T
−

τk−1

T
)1{

h<
τi2
T

−
τi1
T

}|N = n, i1(k) = i1, i2(k) = i2)

=
(n − 1)!

∫

[0,1]4(y − x)1{h<v−u}1{u<x<y<v}ui1−1(x − u)k−i1−2(v − y)i2−1−k(1 − v)n−i2−1dxdydudv

(i1 − 1)!(k − i1 − 2)!(i2 − 1 − k)!(n − i2 − 1)!
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where h = ℓ
T

∈ [0, 1[ and the convention ((−1)!0)−1 = 1 to take into account the boundary cases i1 = 0
and i2 = n. We have used a standard result on the Poisson process[6] which tells that, conditionally to
NT = n, the arrival times t1, . . . , tn follow the distribution of the order statistics of the uniform distribution
on [0, T ]. It means that (u0 = 0, u1 = t1/T, . . . , un−1 = tn−1/T, un = 1) has the following probability density
function

p(u0, u1, . . . , un−1, un) = (n − 1)!1{0=u0<u1<...un−1<un=1}

which implies that the probability density function of (ui1
, uk−1, uk, ui2

) is

p(ui1 , uk−1, uk, ui2 ) =
(n − 1)!1{0≤ui1

<uk−1<uk<ui2
≤1}u

i1−1
i1

(uk−1 − ui1 )k−i1−2(ui2 − uk)i2−1−k(1 − ui2 )n−i2−1δ(u0)δ(un − 1)

(i1 − 1)!(k − i1 − 2)!(i2 − 1 − k)!(n − i2 − 1)!

It is easily seen that

P(ip(k) = i|N = n) = P(every jump between τk and τi−1 is of type q and τi is a jump of type p)

=
λp

λp + λq

(
λq

λp + λq

)i−k
1{k≤i≤n} + δ(i − n)(

λq

λp + λq

)n−k+1

P(ip(k) = i|N = n) = P(every jump between τi+1 and τk−1 is of type q and τi is a jump of type p)

=
λp

λp + λq

(
λq

λp + λq

)k−i−1
1{0≤i≤k−1<n} + δ(i)(

λq

λp + λq

)k

for p 6= q. Thus,

E(Ĉ(ℓ)) = ρe−(λ1+λ2)T λ1λ2

λ1 + λ2

+∞
∑

n=3

((λ1 + λ2)T )n−1

(n − 1)!

n−1
∑

k=2

k−1
∑

i1=1

n−1
∑

i2=k

λi2−k
1 λk−i1−1

2

(λ1 + λ2)i2−i1
fk,h(n, i1, i2)

+ ρe−(λ1+λ2)T λ2

λ1 + λ2

+∞
∑

n=2

((λ1 + λ2)T )n−1

(n − 1)!

n−1
∑

k=1

n−1
∑

i2=k

λi2−k
1 λk−1

2

(λ1 + λ2)i2−1
fk,h(n, 0, i2)

+ ρe−(λ1+λ2)T λ1

λ1 + λ2

+∞
∑

n=2

((λ1 + λ2)T )n−1

(n − 1)!

n
∑

k=2

k−1
∑

i1=1

λn−k
1 λk−i1−1

2

(λ1 + λ2)n−i1−1
fk,h(n, i1, n)

+ ρe−(λ1+λ2)T

+∞
∑

n=1

((λ1 + λ2)T )n−1

(n − 1)!

n
∑

k=1

λn−k
1 λk−1

2

(λ1 + λ2)n−1
fk,h(n, 0, n)

Similarly,

E(Ĉ(−ℓ)) = ρe−(λ1+λ2)T λ1λ2

λ1 + λ2

+∞
∑

n=3

((λ1 + λ2)T )n−1

(n − 1)!

n−1
∑

k=2

n−1
∑

i1=k

k−1
∑

i2=1

λk−i2−1
1 λi1−k

2

(λ1 + λ2)i1−i2
f̃k,h(n, i1, i2)

+ ρe−(λ1+λ2)T λ1

λ1 + λ2

+∞
∑

n=2

((λ1 + λ2)T )n−1

(n − 1)!

n−1
∑

k=1

n−1
∑

i1=k

λk−1
1 λi1−k

2

(λ1 + λ2)i1−1
f̃k,h(n, i1, 0)

+ ρe−(λ1+λ2)T λ2

λ1 + λ2

+∞
∑

n=2

((λ1 + λ2)T )n−1

(n − 1)!

n
∑

k=2

k−1
∑

i2=1

λk−i2−1
1 λn−k

2

(λ1 + λ2)n−i2−1
f̃k,h(n, n, i2)

+ ρe−(λ1+λ2)T

+∞
∑

n=1

((λ1 + λ2)T )n−1

(n − 1)!

n
∑

k=1

λk−1
1 λn−k

2

(λ1 + λ2)n−1
f̃k,h(n, n, 0)
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where

f̃k,h(n, i1, i2) = E((
τk

T
−

τk−1

T
)1{

h<
τi1
T

−
τi2
T

}|N = n, i1(k) = i1, i2(k) = i2)

=
(n − 1)!

∫

[0,1]4(y − x)1{h<v−u}1{u<x<y<v}ui2−1(x − u)k−i2−2(v − y)i1−1−k(1 − v)n−i1−1dxdydudv

(i2 − 1)!(k − i2 − 2)!(i1 − 1 − k)!(n − i1 − 1)!

= fk,h(n, i2, i1)

which leads

E(Ĉ(−ℓ)) = ρe−(λ1+λ2)T λ1λ2

λ1 + λ2

+∞
∑

n=3

((λ1 + λ2)T )n−1

(n − 1)!

n−1
∑

k=2

k−1
∑

i1=1

n−1
∑

i2=k

λk−i1−1
1 λi2−k

2

(λ1 + λ2)i2−i1
fk,h(n, i1, i2)

+ ρe−(λ1+λ2)T λ1

λ1 + λ2

+∞
∑

n=2

((λ1 + λ2)T )n−1

(n − 1)!

n−1
∑

k=1

n−1
∑

i2=k

λk−1
1 λi2−k

2

(λ1 + λ2)i2−1
fk,h(n, 0, i2)

+ ρe−(λ1+λ2)T λ2

λ1 + λ2

+∞
∑

n=2

((λ1 + λ2)T )n−1

(n − 1)!

n
∑

k=2

k−1
∑

i1=1

λk−i1−1
1 λn−k

2

(λ1 + λ2)n−i1−1
fk,h(n, i1, n)

+ ρe−(λ1+λ2)T

+∞
∑

n=1

((λ1 + λ2)T )n−1

(n − 1)!

n
∑

k=1

λk−1
1 λn−k

2

(λ1 + λ2)n−1
fk,h(n, 0, n)

We now need to compute the integral function fk,h(n, i1, i2). After integrating over y, we have

fk,h(n, i1, i2) =
(n − 1)!

∫

[0,1]3 1{h<v−u}1{u<x<v}ui1−1(x − u)k−i1−2(v − x)i2−k+1(1 − v)n−i2−1dxdudv

(i1 − 1)!(k − i1 − 2)!(i2 + 1 − k)!(n − i2 − 1)!

=
(n − 1)!

∫

[0,1]2(
∫ v

u
(x − u)k−i1−2(v − x)i2−k+1dx)1{h<v−u}1{u<v}ui1−1(1 − v)n−i2−1dudv

(i1 − 1)!(k − i1 − 2)!(i2 + 1 − k)!(n − i2 − 1)!

We use the following lemma that can be proven by successive integration by parts.

Lemma 1. Let k ∈ N
∗, (i1, i2) ∈ N

2 such that i1 + 1 < k ≤ i2. Let (u, v) ∈ R
2 such that u ≤ v. Then,

∫ v

u

(x − u)k−i1−2(v − x)i2−k+1dx =
(k − i1 − 2)!

∏k−i1−2
p=0 (i2 − k + 2 + p)

(v − u)i2−i1

Using this lemma, we get

fk,h(n, i1, i2) =
(n − 1)!

∫

[0,1]2 1{h<v−u}1{u<v}ui1−1(v − u)i2−i1(1 − v)n−i2−1dudv

(i1 − 1)!(i2 + 1 − k)!(n − i2 − 1)!
∏k−i1−2

p=0 (i2 − k + 2 + p)

=
(n − 1)!

∫ 1

h
(
∫ v−h

0
ui1−1(v − u)i2−i1du)(1 − v)n−i2−1dv

(i1 − 1)!(i2 − i1)!(n − i2 − 1)!

We now use the following lemma, that can also be proven by successive integration by parts.

Lemma 2. Let (i1, i2) ∈ N
2 such that i1 < i2. Let (h, v) ∈ R

2 such that 0 ≤ h < v. Then,

∫ v−h

0

ui1−1(v − u)i2−i1du =
(i1 − 1)!

∏i1

p=1(i2 − i1 + p)
vi2 −

i1
∑

p=1

∏p−1
m=1(i1 − m)

∏p
m=1(i2 − i1 + m)

hi2−i1+p(v − h)i1−p
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We now have

fk,h(n, i1, i2) = −
(n − 1)!

(i1 − 1)!(i2 − i1)!(n − i2 − 1)!

i1
∑

p=1

∏p−1
m=1(i1 − m)

∏p
m=1(i2 − i1 + m)

hi2−i1+p

∫ 1

h

(1 − v)n−i2−1(v − h)i1−pdv

+
(n − 1)!

i2!(n − i2 − 1)!

∫ 1

h

(1 − v)n−i2−1vi2dv

We need to use the two following lemmas. The first one can be proven by the change of variable u = v−h
1−h

and the second one by succcessive integration by parts.

Lemma 3. Let (p, i1, i2, n) ∈ N
4 such that 0 < p ≤ i1 < i2 < n. Let h ∈ R such that h < 1. Then,

∫ 1

h

(1 − v)n−i2−1(v − h)i1−pdv =
(n − i2 − 1)!(i1 − p)!

(n − p − (i2 − i1))!
(1 − h)n−p−(i2−i1)

Lemma 4. Let (i2, n) ∈ N
2 such that i2 < n. Let h ∈ R such that h < 1. Then,

∫ 1

h

(1 − v)n−i2−1vi2dv =

i2
∑

p=0

∏p
m=1(i2 + 1 − m)

∏p
m=0(n − i2 + m)

hi2−p(1 − h)n−i2+p

As a result, we have for h ∈ [0, 1[

fk,h(n, i1, i2) = − (n − 1)!

i1
∑

p=1

hi2−i1+p(1 − h)n−p−(i2−i1)

(n − p − (i2 − i1))!(i2 − i1 + p)!

+ (n − 1)!

i2
∑

p=0

hi2−p(1 − h)n−i2+p

(i2 − p)!(n − i2 + p)!

=(n − 1)!

i2
∑

p=i1

hi2−p(1 − h)n−i2+p

(i2 − p)!(n − i2 + p)!

=(n − 1)!

i2−i1
∑

p=0

hi2−i1−p(1 − h)n−(i2−i1)+p

(i2 − i1 − p)!(n − (i2 − i1) + p)!

=gh(n, i2 − i1)

where gh(n, i) = (n − 1)!
∑i

p=0
hi−p(1−h)n−i+p

(i−p)!(n−i+p)! = (n − 1)!
∑i

k=0
hk(1−h)n−k

k!(n−k)! . Note that gh(n, n) = 1
n

∀h.

Therefore, the average covariance reads

E(Ĉ(ℓ)) = ρe
−(λ1+λ2)T (S1(ℓ) + S2(ℓ) + S3(ℓ) + S4(ℓ))

S1(ℓ) =
λ1λ2

λ1 + λ2

+∞
∑

n=3

((λ1 + λ2)T )n−1

(n − 1)!

n−1
∑

k=2

k−1
∑

i1=1

n−1
∑

i2=k

λ
i2−k
1 λ

k−i1−1
2

(λ1 + λ2)i2−i1
gh(n, i2 − i1)

S2(ℓ) =
λ2

λ1 + λ2

+∞
∑

n=2

((λ1 + λ2)T )n−1

(n − 1)!

n−1
∑

k=1

n−1
∑

i2=k

λ
i2−k
1 λk−1

2

(λ1 + λ2)i2−1
gh(n, i2)

S3(ℓ) =
λ1

λ1 + λ2

+∞
∑

n=2

((λ1 + λ2)T )n−1

(n − 1)!

n
∑

k=2

k−1
∑

i1=1

λn−k
1 λk−i1−1

2

(λ1 + λ2)n−i1−1
gh(n, n − i1)

S4(ℓ) =

+∞
∑

n=1

((λ1 + λ2)T )n−1

n!

n
∑

k=1

λn−k
1 λk−1

2

(λ1 + λ2)n−1
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Let us consider the case λ1 6= λ2 first. Then,

S1(ℓ) =
λ1λ2

λ1 + λ2

+∞
∑

n=3

((λ1 + λ2)T )n−1

(n − 1)!

n−2
∑

i1=1

n−1
∑

i2=i1+1

λi2
1 λ−i1−1

2

(λ1 + λ2)i2−i1
gh(n, i2 − i1)

i2
∑

k=i1+1

(
λ2

λ1
)k

=
λ1λ2

λ2
1 − λ2

2

+∞
∑

n=3

((λ1 + λ2)T )n−1

(n − 1)!

n−2
∑

i=1

n−1−i
∑

j=1

λj
1 − λj

2

(λ1 + λ2)j
gh(n, j)

Similarly,

S1(−ℓ) =
λ1λ2

λ2
2 − λ2

1

+∞
∑

n=3

((λ1 + λ2)T )n−1

(n − 1)!

n−2
∑

i=1

n−1−i
∑

j=1

λj
2 − λj

1

(λ1 + λ2)j
gh(n, j)

= S1(ℓ)

and more generally we have Si(−ℓ) = Si(ℓ) for i ∈ {1, 2, 3, 4}. Therefore the covariance function is
symmetric on average, i.e. E(Ĉ(−ℓ)) = E(Ĉ(ℓ)). Let us carry on the computations,

S1(ℓ) =
λ1λ2

λ2
1 − λ2

2

+∞
∑

n=3

((λ1 + λ2)T )n−1
n−2
∑

i=1

n−1−i
∑

k=1

hk(1 − h)n−k

k!(n − k)!

n−1−i
∑

j=k

λj
1 − λj

2

(λ1 + λ2)j
+

(1 − h)n

n!

n−1−i
∑

j=1

λj
1 − λj

2

(λ1 + λ2)j

=
λ1

λ1 − λ2

+∞
∑

n=3

(λ1 + λ2)T )n−1
n−2
∑

k=1

hk(1 − h)n−k

k!(n − k)!
(n − 1 − k)(

λ1

λ1 + λ2
)k

−
λ1

λ1 − λ2

+∞
∑

n=3

(λ1 + λ2)T )n−1(
λ1

λ1 + λ2
)n

n−2
∑

k=1

hk(1 − h)n−k

k!(n − k)!

n−1−k
∑

i=1

(
λ1 + λ2

λ1
)i

+
λ2

1

λ2
1 − λ2

2

+∞
∑

n=3

(λ1 + λ2)T )n−1 (1 − h)n

n!
(n − 2)

−
λ1

λ1 − λ2

+∞
∑

n=3

(λ1 + λ2)T )n−1 (1 − h)n

n!
(

λ1

λ1 + λ2
)n

n−2
∑

i=1

(
λ1 + λ2

λ1
)i

−
λ2

λ1 − λ2

+∞
∑

n=3

(λ1 + λ2)T )n−1
n−2
∑

k=1

hk(1 − h)n−k

k!(n − k)!
(n − 1 − k)(

λ2

λ1 + λ2
)k

+
λ2

λ1 − λ2

+∞
∑

n=3

(λ1 + λ2)T )n−1(
λ2

λ1 + λ2
)n

n−2
∑

k=1

hk(1 − h)n−k

k!(n − k)!

n−1−k
∑

i=1

(
λ1 + λ2

λ2
)i

−
λ2

2

λ2
1 − λ2

2

+∞
∑

n=3

(λ1 + λ2)T )n−1 (1 − h)n

n!
(n − 2)

+
λ2

λ1 − λ2

+∞
∑

n=3

((λ1 + λ2)T )n−1 (1 − h)n

n!
(

λ2

λ1 + λ2
)n

n−2
∑

i=1

(
λ1 + λ2

λ2
)i
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S1(ℓ) =
λ1

λ2(λ1 − λ2)T
(eλ1ℓ(eλ1(T −ℓ) − 1 − λ1(T − ℓ)) −

1

2
(λ1(T − ℓ))2)

−
λ2

λ1(λ1 − λ2)T
(eλ2ℓ(eλ2(T −ℓ) − 1 − λ2(T − ℓ)) −

1

2
(λ2(T − ℓ))2)

+
λ1(eλ1ℓ − 1) − λ2(eλ2ℓ − 1)

(λ2
1 − λ2

2)T
(1 + e

(λ1+λ2)(T −ℓ)((λ1 + λ2)(T − ℓ) − 1))

+

λ2
2

λ1
(eλ2ℓ − 1) −

λ2
1

λ2
(eλ1ℓ − 1)

(λ2
1 − λ2

2)T
(e(λ1+λ2)(T −ℓ) − 1 − (λ1 + λ2)(T − ℓ))

−
λ2

1 + λ2
2

λ1λ2(λ1 + λ2)T
(e(λ1+λ2)(T −ℓ) − 1 − (λ1 + λ2)(T − ℓ) −

((λ1 + λ2)(T − ℓ))2

2
)

+
(e(λ1+λ2)(T −ℓ)((λ1 + λ2)(T − ℓ) − 2) + (λ1 + λ2)(T − ℓ) + 2)

(λ1 + λ2)T

Similarly, one can prove that

S2(ℓ) =
(e(λ1+λ2)(T −ℓ) − 1)

(λ1 − λ2)T
(eλ1ℓ − 1 −

λ2

λ1
(eλ2ℓ − 1))

−
(eλ1(T −ℓ) − 1)(eλ1ℓ − 1) + eλ1(T −ℓ) − 1 − λ1(T − ℓ) − λ2

λ1
((eλ2(T −ℓ) − 1)(eλ2ℓ − 1) + eλ2(T −ℓ) − 1 − λ2(T − ℓ))

(λ1 − λ2)T

+
(e(λ1+λ2)(T −ℓ) − 1 − (λ1 + λ2)(T − ℓ))

λ1T

S3(ℓ) =
λ1

λ2
S2(ℓ)

S4(ℓ) =
eλ1T − eλ2T

(λ1 − λ2)T

The case λ1 = λ2 = λ coincides with the limit λ2 → λ1. In this case, we have

E(Ĉ(ℓ)) = ρe
−2λT (S1(ℓ) + 2S2(ℓ) + S4(ℓ))

S1(ℓ) = e
λT (

2

λT
+ 1) − e

λℓ(
2

λT
+

ℓ

T
+ (1 −

ℓ

T
)(3 + λℓ)) −

2λ(T − ℓ)2

T

+ (1 + e
2λ(T −ℓ)(2λ(T − ℓ) − 1))(

eλℓ(1 + λℓ) − 1

2λT
)

+ (e2λ(T −ℓ) − 1 − 2λ(T − ℓ))(
3 − eλℓ(3 + λℓ)

2λT
)

−
(e2λ(T −ℓ) − 1 − 2λ(T − ℓ) − 2(λ(T − ℓ))2)

λT

+
e2λ(T −ℓ)(λ(T − ℓ) − 1) + λ(T − ℓ) + 1

λT

S2(ℓ) =
(e2λ(T −ℓ) − 1)

T
(eλℓ(ℓ +

1

λ
) −

1

λ
) +

e2λ(T −ℓ) − 1 − 2λ(T − ℓ)

λT

− e
λT (1 +

1

λT
) +

eλℓ

T
(

1

λ
+ ℓ) + 2(1 −

ℓ

T
)

S4(ℓ) = e
λT

Appendix C: Lead/lag response functions
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Figure 17: Same as figure 12 for FDX/DTEGn.DE.
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Figure 18: Same as figure 12 for FFI/VOD.L.

39



0 2 4 6 8 10

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

0.
01

0

Deviation from the same side at inception

Lag (seconds)

D
ev

ia
tio

n 
(in

 ti
ck

 s
iz

e)

Threshold = 0.5
Threshold = 1
Threshold = 1.5
Threshold = 2
Threshold = 2.5
Threshold = 3

0 2 4 6 8 10

−
0.

04
−

0.
03

−
0.

02
−

0.
01

0.
00

0.
01

0.
02

0.
03

Deviation from the same side at inception

Lag (seconds)
D

ev
ia

tio
n 

(in
 ti

ck
 s

iz
e)

Threshold = −3
Threshold = −2.5
Threshold = −2
Threshold = −1.5
Threshold = −1
Threshold = −0.5

0 2 4 6 8 10

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Deviation from the opposite side at inception

Lag (seconds)

D
ev

ia
tio

n 
(in

 ti
ck

 s
iz

e)

Threshold = 0.5
Threshold = 1
Threshold = 1.5
Threshold = 2
Threshold = 2.5
Threshold = 3

0 2 4 6 8 10

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Deviation from the opposite side at inception

Lag (seconds)

D
ev

ia
tio

n 
(in

 ti
ck

 s
iz

e)

Threshold = −3
Threshold = −2.5
Threshold = −2
Threshold = −1.5
Threshold = −1
Threshold = −0.5

0 2 4 6 8 10

1.
00

1.
01

1.
02

1.
03

1.
04

Bid/ask spread trajectory

Lag (in seconds)

B
id

/a
sk

 s
pr

ea
d 

(in
 ti

ck
 s

iz
e)

Threshold = 0.5
Threshold = 1
Threshold = 1.5
Threshold = 2
Threshold = 2.5
Threshold = 3

0 2 4 6 8 10

1.
00

0
1.

00
5

1.
01

0
1.

01
5

1.
02

0
1.

02
5

Bid/ask spread trajectory

Lag (in seconds)

B
id

/a
sk

 s
pr

ea
d 

(in
 ti

ck
 s

iz
e)

Threshold = −3
Threshold = −2.5
Threshold = −2
Threshold = −1.5
Threshold = −1
Threshold = −0.5

Figure 19: Same as figure 12 for FSMI/NESN.VX.
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