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Abstract. Partial Differential equations (PDE), wavelets-based methods and neigh-

borhood filters were proposed as locally adaptive machines for noise removal.

Recently, Buades, Coll and Morel proposed the Non-Local (NL-) means filter for

image denoising. This method replaces a noisy pixel by the weighted average of

other image pixels with weights reflecting the similarity between local neighbor-

hoods of the pixel being processed and the other pixels. The NL-means filter was

proposed as an intuitive neighborhood filter but theoretical connections to dif-

fusion and non-parametric estimation approaches are also given by the authors.

In this paper we propose another bridge, and show that the NL-means filter also

emerges from the Bayesian approach with new arguments. Based on this obser-

vation, we show how the performance of this filter can be significantly improved

by introducing adaptive local dictionaries and a new statistical distance measure

to compare patches. The new Bayesian NL-means filter is better parametrized

and the amount of smoothing is directly determined by the noise variance (esti-

mated from image data) given the patch size. Experimental results are given for

real images with artificial Gaussian noise added, and for images with real image-

dependent noise.

1 Introduction

Denoising (or restoration) is still a widely studied and an unsolved problem in image

processing. Many methods have been suggested in the literature, and a recent outstand-

ing review of them can be found in [4]. Some of the more advanced methods are based

on PDEs [28, 29, 33, 37] and aim at preserving the image details and local geometries

while removing the undesirable noise; in general, an initial image is progressively ap-

proximated by filtered versions which are smoother or simpler in some sense. Other

methods incorporate a neighborhood of the pixel under consideration and perform some

kind of averaging on the gray values. One of the earliest examples for such filters has

been presented by Lee [23] and a recent evolution is the so-called bilateral filter [34]

with theoretical connections to local mode filtering [38], non-linear diffusion [3, 5] and

nonlocal regularization approaches [27, 12].

However, natural images often contain many structured patterns which can be mis-

classified either as details to be preserved or noise, when usual neighborhood filters

are applied. Very recently, the so-called NL-means filter has been proposed by Buades



et al. [4] that can deal with such a “structured” noise: for a given pixel, the restored

gray value is obtained by the weighted average of the gray values of all pixels in the

image; each weight is proportional to the similarity between the local neighborhood

of the pixel being processed and the neighborhood corresponding to the other image

pixels. A similar patch-based regularization approach based on the key idea of itera-

tively increasing a window at each pixel and adaptively weighting input data has been

also proposed in [21] with excellent results on a commonly-used image database [31].

The success of the NL-means filter (see [21, 22, 26, 25, 7, 16, 2]), inspired by the Efros

and Leung’s exemplar-based approach for texture synthesis [11], is mainly related to

image redundancy. A similar idea was early and independently proposed for Gaussian

[9] and impulse noise [36, 39] removal in images, and more recently for image inpaint-

ing [8]. Similarities between image patches have been also used in the early 90’s for

texture segmentation [15, 20]. More recently, other recent denoising methods demon-

strated that representations based on local image patches outperform the best denoising

methods of the state-of-the-art [1, 21, 10, 18, 13]; in [32], patch-based Markov random

field (MRF) models and learning techniques have been introduced to capture non-local

pairwise interactions, and were successfully applied in image denoising.

In this paper, we present a new Bayesian motivation for the NL-means filter briefly

described in Section 2. In Section 3, we adopt a blockwise (vectorial) representation and

introduce spatially adaptive dictionaries in the modeling for better contrast restoration

(Section 4). Using the proposed Bayesian framework, we revise the usual Euclidean

distance used for patch comparison, yielding to a filter which is better parametrized,

and with a higher performance. In Section 4, we also show how smooth parts in the im-

age can be are better recovered if the restored image is “recycled” once. Experimental

results on artificial and real images are presented in Section 5, and the performance is

very close to the most competitive denoising methods. It is worth noting that the pro-

posed modeling framework is general and could be used to restore images corrupted

by non-Gaussian noises in applications such as biomedical imaging (microscopy, ultra-

sound imagery, ...) or remote sensing.

2 Image denoising with the NL-means filter

In this section, a brief overview of the NL-means method introduced in [4] is presented.

Consider a gray-scale image z = (z(x))x∈Ω defined over a bounded domain Ω ⊂ R
2,

(which is usually a rectangle) and z(x) ∈ R+ is the noisy observed intensity at pixel

x ∈ Ω. The NL-means filter is defined as

NL z(x) =
1

C(x)

∑

y∈Ω

w(x, y) z(y) (1)

where NL z(x) at pixel x is the weighted average of all gray values in the image and

C(x) is a normalizing factor, i.e. C(x) =
∑

y∈Ω w(x, y). The weights w(x, y) defined

as

w(x, y) = exp

(
− 1

h2

∫

R2

Ga(t)|z(x + t)−z(y + t)|2dt

)
:=exp−‖z(x)−z(y)‖2

2,a

h2
(2)



express the amount of similarity between the vectorized image patches z(x) and z(y)
(or neighborhoods) of each pair of pixels x and y involved in the computation. The

decay parameter h ≈ 12σ acts as a filtering parameter. A Gaussian kernel Ga(·) of

standard deviation a is used to take into account the distance between the central pixel

and other pixels in the patch. In (2), the pixel intensities of a
√

n × √
n square neigh-

borhood B(x) centered at pixel x, are taken and reordered lexicographically to form

a n-dimensional vector z(x) := (z(xk), xk ∈ B(x)) ∈ R
n. In [4], it was shown that

7×7 patches are able to take care of the local geometries and textures seen in the image

while removing undesirable distortions. The range of the search space in the NL-means

algorithm can be as large as the whole image. In practice, it is necessary to reduce the

total number of computed weights – |Ω| weights for each pixel – to improve the per-

formance of the algorithm. This can be achieved by selecting patches in a semi-local

neighborhood corresponding to a search window ∆(x) of 21×21 pixels. The NL-means

filter we will now consider, is then defined as

NLhz(x) =
1

C(x)

∑

y∈∆(x)

e−‖z(x)−z(y)‖2/h2

z(y), C(x) =
∑

y∈∆(x)

e−‖z(x)−z(y)‖2/h2

(3)

where, for the sake of simplicity, ‖ · ‖ denotes the usual ℓ2-norm. In practice, it is

just required to set the
√

n × √
n patch size, the search space ∆(x) and the filtering

parameter h. Buades et al. showed that this filter substantially outperforms the bilateral

filter [34] and other iterative approaches [33].

Since, several accelerated versions of this filter have been proposed [26, 7]. In [4],

Buades et al. recommended the vectorial (or block-based) NL-means filter defined as

NLhz(x) =
1

C(x)

∑

y∈∆(x)

e−‖z(x)−z(y)‖2/h2

z(y), C(x) =
∑

y∈∆(x)

e−‖z(x)−z(y)‖2/h2

, (4)

which amounts to simultaneously restore pixels of a whole patch z(x) from nearby

patches. The restored value at a pixel x is finally obtained by averaging the differ-

ent estimators available at that position [4]. This filter can been considered as a fast

implementation of the NL-means filter, especially if the blocks are picked up on a sub-

sampled grid of pixels. In this paper, the proposed filter is inspired by this intuitive

vectorial NL-means filter [4], but also by other recent accelerated versions [26, 7], as

explained in the next sections. The related Bayesian framework enables to establish the

relationships between these algorithms, to justify some underlying statistical assump-

tions and to give keys to set the control parameters of the NL-means filter. It is worth

noting that this framework could be also used to remove noise in applications for which

the noise distribution is assumed to be known and non-Gaussian.

3 A Bayesian risk formulation

In a probabilistic setting, the image denoising problem is usually solved in a discrete

setting. The estimation problem is then to guess a n-dimensional patch u(x) from its

noisy version z(x) observed at point x. Typically, the unknown vectorized image patch



u(x) is defined as u(x) := (u(xk), xk ∈ B(x)) ∈ R
n where B(x) defines the

√
n×√

n
square neighborhood of point x and the pixels in u(x) are ordered lexicographically.

Let us suppose now that u(x) is unknown but we can observe z(x) = f(u(x),v(x))
where z(x) := (z(xk), xk ∈ B(x)), v(x) represents noise and f(·) is a linear or a

non-linear function related to the image formation process. The noise v(x) is a random

vector which components are iid, and u(x) is considered as a stochastic vector with

some unknown probability distribution function (pdf).

Conditional mean estimator To compute the optimal Bayesian estimator for the vec-

tor u(x), it is necessary to define an appropriate loss function L(u(x), û(x)) which

measures the loss associated with choosing an estimator û(x) when the true vector is

u(x). The optimal estimator ûopt(x) is found by minimizing the posterior expected loss

E[L(u(x), û(x))] =
∑

u(x)∈Λ

L(u(x), û(x)) p(u(x)|z(x)),

taken with respect to the posterior distribution p(u(x)|z(x)) and Λ denotes the large

space of all configurations of u(x) (e.g |Λ| = 256n if u(x) ∈ {0, · · · , 255}). The

loss function used in most cases is L(u(x), û(x)) = 1 − δ(u(x), û(x)) where the δ
function equals 1 if u(x) = û(x) and 0 otherwise. Minimizing E[L(u(x), û(x))] is

then equivalent to choose ûopt(x) = argmax p(u(x)|z(x)), with the motivation that

this should correspond to the most likely vector given the observation z(x). However,

this loss function L(u(x), û(x)) may not be the most appropriate since it assigns 0 cost

only to the perfect solution and unit cost to all other estimators. Another thought would

be to use a cost function that depends on the number of pixels that are in error such as

L(u(x), û(x)) = ‖u(x) − û(x)‖2. Assuming this quadratic loss function, the optimal

Bayesian estimator is then

ûopt(x) = arg min
bu(x)

∑

u(x)

‖u(x) − û(x)‖2 p(u(x)|z(x)) =
∑

u(x)

u(x) p(u(x)|z(x)).

Referred as the conditional mean estimator, ûopt(x) can be also written as

ûopt(x) =
∑

u(x)

u(x)
p(u(x), z(x))

p(z(x))
=

∑
u(x) u(x)p(z(x)|u(x))p(u(x))
∑

u(x) p(z(x)|u(x))p(u(x))
(5)

by using the Bayes’ and marginalization rules, and p(z(x)|u(x)) and p(u(x)) respec-

tively denote the distribution of z(x)|u(x) and the prior distribution of u(x).

Bayesian filter and image redundancy Ideally, we would like to know the pdfs

p(z(x)|u(x)) and p(u(x)) to compute ûopt(x) for each point x in the image from a

large number of “repeated” observations (i.e. images). Unfortunately, we have only one

image at our disposal, meaning that we have to adopt another way of estimating these

pdfs. Due to the fact that the pdfs p(z(x)|u(x)) and p(u(x)) cannot be obtained from

a number of observations at the same point x, we choose to use the observations at a

number of neighboring points taken in a semi-local neighborhood (or window) ∆(x).
The window ∆(x) needs to be not too large since the remote samples are likely less



significant and can originate from other spatial contexts. We then assume that this set

of nearby samples may be considered as a set of samples from p(u(x)|z(x)).
More formally, we suppose that p(u(x)|z(x)) is unknown, but we have a set {u(x1),

u(x2), · · · ,u(xN(x))} of N(x) posterior samples taken in ∆(x). In what follows,

|∆(x)| is fixed for all the pixels but the size N(x) ≤ |∆(x)| is spatially varying since

irrelevant and unlikely samples in ∆(x) are preliminarily discarded. From this set, we

start by examining the prior distribution p(u(x)). A first natural ideal would be to intro-

duce MRFs and Gibbs distributions to capture interactions between pixels in the image

patch, but the MRF framework involves the computationally intensive estimation of ad-

ditional hyperparameters which must be likely adapted to each spatial position. Due

to the huge domain space Λ, a computational alternative is then to set p(u(x)) to uni-

form, i.e. p(u(x)) = 1/N(x). This means there is no preference to choose a vector

u(xi) in the set {u(x1), · · · ,u(xN(x))} assumed to be composed of N(x) preliminar-

ily selected “similar” patches. Then, we have the following approximations (see [17]):

1

N(xi)

N(xi)
X

j=1

u(xj)p(z(xi)|u(xj))
P
→

X

u(x)

u(x)p(z(x)|u(x))p(u(x)),

1

N(xi)

N(xi)
X

j=1

p(z(xi)|u(xj))
P
→

X

u(x)

p(z(x)|u(x))p(u(x)),

and we can propose a reasonable estimator ûN (xi) for ûopt(x):

ûN (xi) =

1
N(xi)

∑N(xi)
j=1 u(xj)p(z(xi)|u(xj))

1
N(xi)

∑N(xi)
j=1 p(z(xi)|u(xj))

. (6)

Nevertheless, we do not have the set {u(x1), · · · ,u(xN(x))}, but only a spatially vary-

ing dictionary D(x) = {z(x1), · · · , z(xN(x))} composed of noisy versions is available.

A way to solve this problem will be then to substitute z(xj) to u(xj) in (6) as shown in

the next section. In a second step, this estimator will be refined by substituting the “ag-

gregated” estimator computed from ûN (xj) (see below) to u(xj). Indeed, the restored

patch at pixel xj is a better approximation of u(xj) than the noisy patch z(xj) used as

a “pilot” estimator, and the performance will be improved at the second iteration.

Aggregation of estimators The estimator (6) requires spatially sliding windows over

the whole image for image reconstruction. Hence, a set of L (constant for uniform im-

age sub-sampling) concurrent scalar values ûN,1(xi), ûN,2(xi), · · · , ûN,L(xi) is calcu-

lated for the same pixel xi due to the overlapping between patches. This set of compet-

ing estimators must be fused or aggregated into the one final estimator ũ(xi) at pixel xi.

Actually, when no estimator is a “clear winner”, one may prefer to combine the different

estimators ûN,1(xi), ûN,2(xi), · · · , ûN,L(xi) and a natural approach, well-grounded in

statistics [6], is to use a convex or linear combination of estimators [19, 10]. Here, our

aggregate estimator ũN (xi) is simply defined as the average of competing estimators:

ũN(xi) =
1

L

L∑

l=1

ûN,l(xi). (7)

In practice, patches are picked up on a sub-sampled grid (e.g. factor 3) of pixels to speed

up the algorithmic procedure (e.g. factor 8), while preserving a good visual quality.



4 Bayesian NL-means filter

As explained before, to compute ûN (xi), we first substitute z(x) to u(x) in (6). This

yields the following estimator

1
N(xi)

∑N(xi)
j=1 p(z(xi)|z(xj))z(xj)

1
N(xi)

∑N(xi)
j=1 p(z(xi)|z(xj))

≈ ûN (xi) (8)

which can be computationally calculated provided the pdfs are known. It is worth noting

that p(z(xi)|z(xj)) is not well defined if xi = xj and it could be recommended to set

p(z(xi)|u(xi)) ≈ maxxj 6=xi
p(z(xi)|z(xj)) in (8) (see [22]). The central data point

involved in the computation of its own average is then re-weighted to get the higher

weight. Actually, the probability to detect an exact copy of z(xi) corrupted by noise in

the neighborhood tends to 0 because the space of
√

n ×√
n patches is huge and, to be

consistent, it is necessary to limit the influence of the central patch.

In the remainder of this section, we shall now consider the usual image model

z(x) = u(x) + v(x) (9)

where v(x) is an additive white Gaussian noise with variance σ2. We will further as-

sume that the likelihood can be factorized as p(z(xi)|z(xj)) =
∏n

k=1 p(z(xi,k)|z(xj,k))
with xi,k ∈ B(xi) and xj,k ∈ B(xj). It follows that z(xi)|z(xj) follows a multivari-

ate normal distribution, z(xi)|z(xj) ∼ N (z(xj), σ
2
In) where In is the n-dimensional

identity matrix. From (8), the filter adapted to white Gaussian noise is then given by

1

C(xi)

N(xi)∑

j=1

e−‖z(xi)−z(xj)‖2/(2σ2)
z(xj) with C(xi) =

N(xi)∑

j=1

e−‖z(xi)−z(xj)‖2/(2σ2).(10)

If we arbitrarily set N(xi) = N to a constant value and h2 = 2σ2, this filter is nothing

else than the vectorial NL-means filter given in (4). However, it is recommended to set

h ≈ 12σ in [4] to produce satisfying denoising results. In our experiments, it is also

confirmed that h ≈ 5σ is good choice if we use (3) and (4) for denoising. Actually, the

filtering parameter h is actually set to a higher value than the expected value
√

2σ in

practical imaging. In the next sections, we shall see how this parameter can be better

interpreted and theoretically estimated.

Spatially adaptive dictionaries The filter (10) can be refined if the adaptive dictio-

nary D(xi) = {z(x1), · · · , z(xN(xi))} around xi is reliably obtained using an off-line

procedure. Since D(xi) is assumed to be composed of noisy versions of the more likely

samples from the posterior distribution p(u(xi)|z(xi)), the irrelevant image patches in

∆(xi) must be discarded in a preliminary step. Consequently, the size N(xi) is adaptive

according to local spatial contexts and a simple way to detect these unwanted samples

can be based on local statistical features between images patches. In our experiments,

we have consider two basic features, that is the mean m(z(x)) = n−1
∑n

k=1 z(xk)
and the variance var(z(x)) = n−1

∑n
k=1(z(xk) − m(z(x)))2 of a vectorized patch

z(x) := (z(xk), xk ∈ B(x)).



Intuitively, z(xj) will be discarded from the local dictionary D(xi) if the mean

m(z(xj)) is too ‘far” from the mean m(z(xi)) when z(xj) and z(xi) are compared.

More formally, if |m(z(xj)) − m(z(xi))| > λασ/
√

n, where λα ∈ R+ is chosen as a

quantile of the standard normal distribution, the hypothesis that the two patches belong

to the same “population” is rejected. Hence, setting λα = 3 given P(|m(z(xj)) −
m(z(xi))| ≤ λασ/

√
n) = 1 − α, yields to α = 2(1 − Φ(λα/

√
2)) = 0.034 where Φ

means the Laplace distribution.

Similarly, the variance var(z(xj)) is expected to be close to the variance var(z(xi))

for the central patch z(xi). A F -test4 is used and the ratio F =
max(var(z(xj)),var(z(xi)))
min(var(z(xj)),var(z(xi)))

is compared to a threshold Tβ,n−1 to determine if the value falls within the zone of

acceptance of the hypothesis that the variances are equal. The threshold Tβ,n−1 is the

critical value for the F -distribution with n − 1 degrees of freedom for each patch and

a significance level β. Typically, when 7 × 7 patches are compared, we have P(F >
T0.05,48 = 1.6) = 0.05. If the ratio F exceeds the value Tβ,n−1, the sample z(xj) is

discarded from the local dictionary D(xi).
This formal description is related to the intuitive approach proposed in [26, 7, 16] to

improve the performance of the NL-means filter.

New statistical distance measure for patch comparison In this section, we pro-

pose to revise the distance used for patch comparison, yielding to a NL-means filter

which is better parametrized. In (3) and (4), it is implicitly assumed that z(xi)|z(xj) ∼
N (z(xj),

1
2h2

In). Actually, this hypothesis is valid only for non-overlapping and sta-

tistically independent patches, but most of patches overlapped in ∆(x) since ∆(x) is

not so large (e.g 21× 21 pixels). At the opposite, if z(xj) is horizontally (or vertically)

shifted by one pixel from the location of z(xj), z(xi)|z(xj) is expected to follow a

multivariate Laplacian distribution. However, this statistical hypothesis does not hold

true for arbitrary locations of overlapping patches in ∆(x). The adjustment of the de-

cay parameter h ≈ 5σ in (3) to a value higher that the expected value
√

2σ is probably

related to the fact that the two compared patches are not independent. Note that some

pixel values are in common in the two vectors but at different locations.

Hence, p(z(xi)|z(xj)) must be carefully examined and we propose the following

definition for the likelihood: p(z(xi)|z(xj)) ∝ e−φ(‖z(xi)−z(xj)‖). Typically, we can

choose φ(t) = t2 or φ(t) = |t| (or a scaled version) to compare patches. Here, we

examine the distribution of ‖z(xi) − z(xj)‖ from the local dictionary D(xi) to deter-

mine φ. First, it can be observed that E[‖z(xi)− z(xj)‖] is non-zero in most cases and

the probability to find an exact copy of z(xi) in ∆(x) tends to 0, especially if ∆(x) is

large. The maximum of the assumed zero-mean multivariate Gaussian distribution in (3)

should be then “shifted” to E[‖z(xi)−z(xj)‖]. However, this training step could be hard

in practice since it must adapted to each spatial position, and we propose instead to use

asymptotic results. Actually, we have already assumed (z(xi,k)−z(xj,k)) ∼ N (0, 2σ2)
when two pixels taken in z(xi) and z(xj) ∈ D(xi) are compared. Hence, the normal-

ized distance dist(z(xi), z(xj)) = ‖z(xi) − z(xj)‖2/(2σ2) follows a chi-square χ2
n

distribution with n degrees of freedom. For n large (n ≥ 25), it can be proved that√
2 dist(z(xi), z(xj)) is approximately normally distributed with mean

√
2n − 1 and

4
The F -distribution is used to compare the variance of two independent samples from a normally distributed population.



unit variance:

p
(√

2 dist(z(xi), z(xj)
)
∝ exp−1

2

(√
2 dist(z(xi), z(xj)) −

√
2n − 1

)2

(11)

∝ exp−
(‖z(xi) − z(xj)‖2

2σ2
− ‖z(xi) − z(xj)‖

(σ/
√

2n − 1)
+

2n− 1

2

)
.

Accordingly, we define the likelihood as p(z(xi)|z(xj)) ∝ exp−φ(‖z(xi) − z(xj)‖)
and choose φ(t) = at2 − b|t| + c with a = 1/(2σ2), b =

√
2n − 1/σ and c =

(2n − 1)/2 depending only on the patch size n and the noise variance σ2. From our

experiments, it was confirmed that no additional adjustment parameter is necessary

provided the noise variance is robustly estimated and the performance is maximum for

the true noise variance as expected. Figure 1 (bottom-right) shows the functions e−t2/h2

and e−(|t|/σ−
√

2n−1)2/2 by setting n = 49, σ2 = 1 and h = 5σ, and then illustrates how

data points are currently weighted when the original NL-means filter and the so-called

Adaptive NL-means filter (ANL) defined as

ANLσ,nz(xi) =

N(xi)∑

j=1

exp−1

2

(‖z(xi) − z(xj)‖
σ

−
√

2n − 1

)2

z(xj)

N(xi)∑

j=1

exp−1

2

(‖z(xi) − z(xj)‖
σ

−
√

2n − 1

)2
. (12)

where N(xi) = #{D(xi)}, are applied. Note that the data at point xi should partic-

ipate significantly to the weighted average. Accordingly, since p(z(xi)|z(xj)) tends to 0

when xi = xj in (12), we arbitrarily decide to set p(z(xi)|z(xi)) ≈ maxxj 6=xi
p(z(xi)|z(xj))

as explained before (see also [22]).

Bayesian NL-means filter and plugin estimator In the previous sections, z(xj) was

substituted to u(xj) in (6) to give (8) and further (12). Now, we are free to substitute

the vector ũANL(xj) of aggregated estimators (computed from the set of restored blocks

{ANLσ,nz(xj)} , see (7)) to u(xj). This plugin ANL estimator defined as

ANLσ,nũANL(xi) =

N(xi)∑

j=1

exp−1

2

(
2 ‖z(xi) − ũANL(xj)‖

σ
−
√

2n − 1

)2

ũANL(xj)

N(xi)∑

j=1

exp−1

2

(
2 ‖z(xi) − ũANL(xj)‖

σ
−
√

2n − 1

)2
(13)

is expected to improve the restored image since ũANL(xj) is a better approximation

of u(xj) than z(xj). In (13) the restored image is recycled but the weights is a re-

scaled function (theoretically by a factor 2) of the distance between the “pilot” esti-

mator ũANL(xj) given by (12) and the input vector z(xi). The estimators are finally

aggregated to produce the final restored image (see (7)).



5 Experiments

In this section, we evaluate the performance of different versions of the Bayesian fil-

ter and the original NL-means filter using the peak signal-to-noise ratio (PSNR in db)

defined as PSNR = 10 log10(2552/MSE) with MSE = |Ω|−1
∑

x∈Ω(z0(x) − û(x))2

where z0 is the noise-free original image. We also use the “method noise” described

in [4] which consists in computing the difference between the input noisy image and

its denoised version. The NL-means filter (see (3)) was applied with h = 5σ and our

experiments have been performed with 7 × 7 patches and 15 × 15 search windows,

corresponding to the best visual results and the best PSNR values. For all the presented

results, we set T0.05,n−1 = 1.6 and λ0.034 = 3 to build spatially adaptive dictionaries.

The potential of the estimation method is mainly illustrated with the 512×512 Lena

and Barbara images corrupted by an additive white-Gaussian noise (WGN) (PSNR =

22.13 db, σ = 20). We compared the original NL-means algorithm with the proposed

modifications and Fig. 1 shows the denoising results using several filters (n = 7×7 and

N = 15×15): i) the NL-means filter NLhz when the similarity is only measured by the

Euclidean distance (see (3)); ii) the vectorial NL-means filter NLhz with sliding blocks

but no spatial sub-sampling (see (4)); iii) our Adaptive NL-means filter ANLσ,nz which

includes adaptive dictionaries and a similarity measure based on the new distance (see

(12)); iv) the plugin Adaptive NL-means filter ANLσ,nũANL (see (13)). In most cases,

the PSNR values are slightly affected if a spatial sub-sampling (by a factor 3) is used

in the implementation, but the time computing is drastically reduced (speed is 8 times

less than before): the implementation of the fast Adaptive NL-means filter took 10 sec

on a single-CPU PC 2.0 Ghz running linux, and the full Adaptive NL-means filter (with

no spatial sub-sampling) took 75 sec for denoising a 512 × 512 image (see table in

Fig. 1). In these practical examples, the use of spatially adaptive dictionaries enables

to enhance contrasts. Note that the residual noise in flat zones is more reduced with

no additional blur, when ANLσ,nũANL is applied. In Fig. 2, we modified the estima-

tion of noise variance to assess the sensitivity of this parameter on filtering results. In

general, the PSNR value is maximum with the true value (e.g. σ = 20 in Fig. 2) but

decreases if this value is under-estimated or over-estimated. In Fig. 2, the estimated

noise component is similar to a simulated white Gaussian noise but contains few geo-

metric structures if we under-estimate or over-estimate the noise variance. To evaluate

the performance of those filters, we reported the PSNR values for different versions of

the NL-means filter. In table 1, the numerical results are improved using our filter, with

performance very close to competitive patch-based denoising methods. Note that the

best results (PSNR values) were recently obtained by filtering in 3D transform domain

and combining sliding-window transform processing with block-matching [10].

In the second part of experiments, we have applied ANLσ,nũANL to restore an old

photograph (Fig. 3 - left column); in that case, the noise variance is estimated from im-

age data (see [21]). Nevertheless, in real digital imaging, images are better described by

the following model z(x) = u(x)+uγ(x) ε(x) where the sensor noise uγ(x) ε(x) is de-

fined as a function of u(x) and ε(x) is a zero-mean Gaussian noise of variance σ2. Ac-

cordingly, the noise in bright regions is higher than in dark regions (see Fig. 2 - second

column). From experiments on real digital images [14], it was confirmed that γ ≈ 0.5
(γ = 0 corresponds to WGN in the previous experiments). Accordingly, we modify the



noisy image (σ = 20) NLhz NLhz ANLσ,nz ANLσ,neuANL

Timings Lena Barbara

512 × 512 512 × 512
NLhz 58.1 sec 31.85 db 30.27 db

NLhz 96.2 sec 32.04 db 30.49 db

ANLσ,nz 75.2 sec 32.51 db 30.79 db

ANLσ,neuANL 173.3 sec 32.63 db 30.88 db

Fast ANLσ,nz 10.6 sec 32.36 db 30.61 db

Fast ANLσ,neuANL 21.2 sec 32.49 db 30.71 db
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Fig. 1. Comparisons of different NL-means filters. From top to bottom and from left to right: part of noisy images (Barbara,

Lena, σ = 20), NL-means filter, vectorial NL-means filter, Adaptive NL-means filter, plugin Adaptive NL-means filter;

numerical results for each filter; comparison of exponential weights for the original NL-means filter (blue dashed line) and

for the Adaptive NL-means filter (solid green line) (see text).

normalized distance as follows: dist(z(xi), z(xj)) = ‖z(xi) − z(xj)‖2/(2σ2
z(xj))

with σ ∈ [1.5, 3]. Moreover, this model z(x) = u(x) +
√

u(x) ε(x) has already been

considered to denoise log-compressed ultrasonic images [24]. Preliminary results of

ANLσ,nũANL with this model is shown in Fig. 3, when applied to two log-compressed

ultrasonic images and a cryo-Electronic Microscopy image (cross-section of a micro-

tubule (10-30 nm)) where brights areas are smoother than dark areas.

6 Conclusion

We have described a Bayesian motivation for the NL-means filter and justify some intu-

itive adaptations described in previous papers [4, 26, 7]. The proposed framework yields

to a filter which is better parametrized: the size of the adaptive dictionary and the noise

variance are computed from the input image, and the patch size must be large enough.

Our Bayesian approach has been used to remove image-dependent noise and could be

adapted in applications with appropriate noise distributions. A more thoroughly evalu-

ation with other methods [1, 2, 35, 16], and recent improvements of the NL-means filter

described in [5], would be also desirable.
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σ = 15 σ = 18 σ = 20 σ = 22 σ = 25
PSNR = 28.91 db PSNR = 32.03 db PSNR = 32.63 db PSNR = 32.29 db PSNR = 31.29 db

Fig. 2. Denoising with the plugin Adaptive NL-means filter ANLσ,neuANL of the artificially corrupted Lena image (WGN,

σ = 20) with different estimations of the noise variance and experiments with the “method noise” (bottom).

Image Lena Barbara Boats House Peppers

σ/PSNR 20/22.13 20/22.18 20/22.17 20/22.11 20/22.19

ANLσ,neuANL 32.63 30.88 30.16 33.24 30.75

NL-means filter 31.85 30.27 29.42 32.24 29.86

Dabov et al. [10] 33.03 31.77 30.65 33.54 30.87

Elad et al. [13] 32.38 30.83 30.36 33.20 30.82

Kervrann et al. [21] 32.64 30.37 30.12 32.90 30.59

Portilla et al. [31] 32.66 30.32 30.38 32.39 30.31

Roth et al. [32] 31.92 28.32 29.85 32.17 30.58

Rudin et al. [33] 30.48 27.07 29.02 31.03 28.51

σ/PSNR Lena Barbara Boats House Peppers

5122 5122 5122 2562 2562

5 / 34.15 37.98 36.93 36.39 38.89 37.13

10 / 28.13 35.25 33.82 33.18 35.67 33.87

15 / 24.61 33.68 32.21 31.45 34.23 32.06

20 / 22.11 32.63 30.88 30.16 33.24 30.75

25 / 20.17 31.55 29.77 29.11 32.30 29.77

50 / 14.15 27.51 24.91 25.13 27.64 23.84

Table 1. left: performance of different methods when applied to test noisy (WGN) images (NL-means filter NLhz is

implemented as in (3) and the maximum weighting w(x, y) at x = y is given by w(x, x) = maxx 6=yw(x, y)) ; right:

performance of the plugin Adaptive NL-means filter ANLσ,neuANL for different signal-to-noise ratios (WGN).
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