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Abstract. Subspace learning methods are widely used in background
modeling to tackle illumination changes. Their main advantage is that
it doesn’t need to label data during the training and running phase. Re-
cently, White et al. [1] have shown that a supervised approach can im-
proved significantly the robustness in background modeling. Following
this idea, we propose to model the background via a supervised sub-
space learning called Incremental Maximum Margin Criterion (IMMC).
The proposed scheme enables to initialize robustly the background and
to update incrementally the eigenvectors and eigenvalues. Experimen-
tal results made on the Wallflower datasets show the pertinence of the
proposed approach.

1 Introduction

Many background subtraction methods have been developed in video-surveillance
to detect moving objects [2][3][4]. These methods have different common steps:
background modeling, background initialization, background maintenance and
foreground detection. The background modeling describes the kind of model
used to represents the background. Once the model has been chosen, the back-
ground model is initialized during a learning step by using N frames. Then, a
first foreground detection is made and consists in the classification of the pixel
as a background or as a foreground pixel. Thus, the foreground mask is applied
on the current frame to obtain the moving objects. After this, the background is
adapted over time following the changes which have occurred in the scene and
so on. The last decade witnessed very significant contributions in background
modeling via unsupervised subspace learning [5] due to their robustness to illu-
mination changes. The first approach developed by Oliver et al. [6] consists in
applying Principal Component Analysis (PCA) on N images to construct a back-
ground model, which is represented by the mean image and the projection matrix
comprising the first p significant eigenvectors of PCA. In this way, foreground
segmentation is accomplished by computing the difference between the input
image and its reconstruction. The main limitation of this method appears for
the background maintenance because it is computationally intensive to perform
model updating using the batch mode PCA. Moreover without a mechanism
of robust analysis, the outliers or foreground objects may be absorbed into the
background model. In this context, some authors proposed different algorithms
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of incremental PCA. The incremental PCA proposed by Rymel et al. [7] need
less computation but the background image is contamined by the foreground
object. To solve this, Li et al. [8] proposed an incremental PCA which is robust
in presence of outliers. However, when keeping the background model updated
incrementally, it assigned the same weights to the different frames. Thus, clean
frames and frames which contain foreground objects have the same contribution.
The consequence is a relative pollution of the background model. To solve this,
Skocaj et al. [9] used a weighted incremental and robust. The weights are different
following the frame and this method achieved a better background model. How-
ever, the weights were applied to the whole frame without considering the con-
tribution of different image parts to building the background model. To achieve
a pixel-wise precision for the weights, Zhang and Zhuang [10] proposed an adap-
tive weighted selection for an incremental PCA. This method performs a better
model by assigning a weight to each pixel at each new frame during the update.
Wang et al. [11] used a similar approach using the sequential Karhunen-Loeve
algorithm. Recently, Zhang et al. [12] improved this approach with an adaptive
scheme. All these incremental methods avoid the eigen-decomposition of the high
dimensional covariance matrix using approximation of it and so a low decompo-
sition is allowed at the maintenance step with less computational load. However,
these incremental methods maintain the whole eigenstructure including both the
eigenvalues and the exact matrix. To solve it, Li et al. [13] proposed a fast re-
cursive and robust eigenbackground maintenance avoiding eigen-decomposition.
This method achieves similar results than the incremental PCA [8] at better
frames rates. In another way, Yamazaki et al. [14] and Tsai et al. [15] proposed
to use the Independent Component Analysis (ICA) which is a variant of PCA
in which the components are assumed to be mutually statistically independent
instead of merely uncorrelated. This stronger condition allows remove the rota-
tional invariance of PCA, i.e. ICA provides a meaningful unique bilinear decom-
position of two-way data that can be considered as a linear mixture of a number
of independent source signals. The ICA model was tested on traffic scenes [14]
and show robustness in changing background like illumination changes. Recently,
Chu et al. [16] used a Non-negative Matrix Factorization algorithm to model dy-
namic backgrounds and Bucak et al. [17] preferred an Incremental version of
the Non-negative Matrix Factorization (INMF) which presents similar perfor-
mance than the incremental PCA [8]. In order to take into account the spatial
information, Li et al. [18] used an Incremntal Rank-(R1,R2,R3) Tensor (IRT).
Results [18] show better robustness to noise. The Table 1 shows an overview of
the background modeling based on subspace learning.
However, these different approaches are unsupervised subspace learning meth-
ods. Indeed, it doesnt need to label data. Recently, White et al. [1] proved that
the Gaussian Mixture Model (GMM) [19] gives better results when some coeffi-
cients are determined in a supervised way. Following this idea, we propose to use
a supervised subspace learning for background modeling. Thus, the Maximum
Margin Criterion (MMC) offers a nice framework. It was proposed by Li et al.
[20] and it can outperform PCA and Linear Discriminant Analysis (LDA) on
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many classification tasks [21]. MMC search for the projection axes on which the
data points of different classes are far from each other meanwhile where data
points of the same class are close to each other. As the original PCA and LDA,
MMC is a batch algorithm and so it requires that the data must be known in
advance and be given once altogether. Recently, Yan et al. [22] have proposed
incremental version of MMC which is suitable to update online the background
model.
The rest of this paper is organized as follows: In the Section 2, we firstly re-
mind the Incremental Maximum Margin Criterion (IMMC). In the Section 3,
we present our method using subspace learning via IMMC for background mod-
eling. Then, a comparative evaluation is provided in the Section 4. Finally, the
conclusion is given in Section 5.

Subspace Learning - Methods Authors - Dates

Principal Components Analysis
Batch PCA Oliver et al. (1999) [6]
Incremental PCA Rymel et al. (2004)[7]
Incremental and Robust PCA Li et al. (2003)[8]
Weighted Incremental and Robust PCA Skocaj et al. (2003)[9]
Adaptive Weighted Incremental and Robust PCA Zhang and Zhuang (2007)[10]

Independent Component Analysis
Batch ICA Yamazaki et al. (2006)[14]
Incremental ICA Tsai and Lai (2009) [15]

Independent Component Analysis
Batch NMF Chu et al. (2010)[16]
Incremental NMF Bucak et al. (2007)[17]

Independent Component Analysis
Incremental Rank-(R1,R2,R3) Tensor Li et al. (2008)[18]

Table 1. Subpace Learning for background modeling: An Overview

2 Incremental Maximum Margin Criterion (IMMC)

This section reminds briefly the principle of IMMC developed in [22]. Suppose
the data sample points u(1), u(2), ..., u(N) are d-dimensional vectors, and U is
the sample matrix with u(i) as its ith column. MMC [20] projects the data onto
a lower-dimensional vector space such that the ratio of the inter-class distance
to the intra-class distance is maximized. The goal is to achieve maximum dis-
crimination and the new low-dimensional vector can be computed as y = WT u
where W ∈ Rd×p is the projection matrix from the original space of dimension
d to the low dimensional space of dimension p. So, MMC [20] aims to maximize
the criterion:

J(W ) = WT (Sb − Sw)W (1)
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where

Sb =
c∑

i=1

pi(mi −m)(mi −m)T (2)

Sw =
c∑

i=1

piE(ui −mi)(ui −mi)T (3)

are called respectively the inter-class scatter matrix and the intra-class scatter
matrix and c is the number of classes, m is the mean of all samples, mi is the
mean of the samples belonging to class i and pi is the prior probability for a
sample belonging to class i. The projection matrix W can be obtained by solving:

(Sb − Sw)w = λw (4)

To incrementally maximize the MMC criterion, Yan et al.[22] constraint W to
unit vectors, i.e. W = [w1, w2, ...wp] and wT

k wk = 1. Thus the optimization
problem of J(W ) is transformed to:

max

p∑

k=1

wT
k (Sb − Sw)wk (5)

subject to wt
kwk = 1 with k = 1, 2, ..., p. W is the first k leading eigenvectors of

the matrix Sb − Sw and the column vectors of W are orthogonal to each other.
Thus, the problem is learning the p leading eigenvector of Sb−Sw incrementally.

2.1 Updating incrementally leading eigenvectors

Let C = Sb+Sw be the covariance matrix, then we have J(W ) = WT (2Sb−C)W ,
W ∈ Rd×p. Then maximizing J(W ) means to find the p leading eigenvectors of
2Sb − C.

The inter-class scatter matrix of step n after learning from the first n samples
can be written as below,

Sb(n) =
c∑

j=1

pj(n)(mj −m(n))(mj(n)−m(n))T (6)

and

Sb = lim
n→∞

1
n

n∑

i=1

Sb(i) (7)

On the other hand,

C = E(u(n)−m)(u(n)−m)T (8)

= lim
n→∞

1
n

n∑

i=1

(u(n)−m(n))(u(n)−m(n))T (9)
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2Sb−C should have the same eigenvectors as 2Sb−C + θI where θ is a positive
real number and I ∈ Rd×d. From (7) and (9) we have the following equation:

2Sb − C + θI = lim
n→∞

1
n

n∑

i=1

A(i) = A (10)

where A(i) = 2Sb(i)− (u(i)−m(i))(u(i)−m(i))T + θI, A = 2Sb − C + θI.
The general eigenvector form is Ax = λx, where x is the eigenvector of matrix

A corresponding to the eigenvalue λ. By replacing matrix A with the MMC
matrix at step n, an approximate iterative eigenvector computation formulation
is obtained with ν = λx.

ν(n) =
1
n

n∑

i=1

(2
c∑

j=1

pj(i)Φj(i)Φj(i)T (11)

− (u(i)−m(i))(u(i)−m(i))T + θI)x(i)

where Φj (i) = mj (i)−m (i), v (n) is the n step estimation of v and x (n) is the
n step estimation of x. Once the estimation of ν is obtained, eigenvector x can
be directly computed as x = ν/||ν||. Let x (i) = ν (i− 1) /||ν (i− 1) ||, then the
incremental formulation is the following:

ν(n) =
n− 1

n
ν(n− 1) (12)

+ 1
n (2

∑c
j=1 pj(n)αj(n)Φj(n)

− β(u(n)−m(n)) + θν(n− 1))/||ν(n− 1)||

where αj(n) = φj(n)T ν(n−1) and β(n) = (u(n)−m(n))T ν(n−1), j = 1, 2, ..., c.
For initialization, ν(0) is equal to the first data sample.

2.2 Updating incrementally the other eigenvectors

To compute the (j + 1)th eigenvector, its projection is substracted on the esti-
mated jth eigenvector from the data,

uj+1
1n

(n) = uj
1n

(n)− (uj
1n

(n)T νj(n))νj(n) (13)

where u1
1n

(n) = u1n(n). The same method is used to update mj
i (n) and mj(n),

i = 1, 2, ..., c. Since mj
i (n) and mj(n) are linear combinations of xj

li
(i), where

i = 1, 2, ..., k, and li ∈ 1,2, ...,C. Φi are linear combination of mi and m, for
convenience, only Φ is updated at each iteration step by:

Φj+1
ln

(n) = Φj
ln

(n)− (Φj
ln

(n)T νj(n))νj(n) (14)

In this way, the time-consuming orthonormalization is avoided and the or-
thogonal is always enforced when the convergence is reached.
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3 Application to background modeling

The Figure 1 shows an overview of the proposed approach. The background
modeling framework based on IMMC includes the following stages: (1) Back-
ground initialization via MMC using N frames (N = 30 pratically) (2) Fore-
ground detection (3) Background maintenance using IMMC. The steps (2) and
(3) are executed repeatedly as time progresses.

Fig. 1. Overview of the proposed approach

Denote the training video sequences S =
{
I1, ...IN

}
where It is the frame at

time t. Let each pixel (x,y) be characterized by its intensity in the grey scale
and asssume that we have the ground truth corresponding to this training video
sequences, i.e we know for each pixel its class label which can be foreground or
background. Thus, we have:

Sb =
c∑

i=1

pi(mi −m)(mi −m)T (15)

Sw =
c∑

i=1

piE(ui −mi)(ui −mi)T (16)

where c = 2, m is the mean of the intensity of the pixel x,y over the training video
and mi is the mean of samples belonging to class i and pi is the prior probability
for a sample belonging to class i with i ∈ {Background, Foreground}. Then,
we can apply the batch MMC to obtain the first leading eigenvectors which
correspond to the background. The corresponding eigenvalues are contained in
the matrix LM and the leading eigenvectors in the matrix ΦM . Once the leading
eigenbackground images stored in the matrix ΦM are obtained and the mean
µB too, the input image It can be approximated by the mean background and
weighted sum of the leading eigenbackgrounds ΦM .
So, the coordinate in leading eigenbackground space of input image It can be
computed as follows:

wt = (It − µB)T ΦM (17)
When wt is back projected onto the image space, a reconstructed background
image is created as follows:

Bt = ΦMwT
t + µB (18)
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Then, the foreground object detection is made as follows:

|It −Bt| > T (19)

where T is a constant threshold.
Once the first foreground detection is made, we apply the IMMC to update

the background model using (12) and (14). The class label for each pixel is
obtained using the foreground mask.

Remark: Note that the IMMC can be applied directly at time t=1 but it
is less robust than to use firstly the batch algorithm on N frames and then to
apply the IMMC to update the background.

4 Experimental Results

For the performance evaluation, we have compared our supervised approach
with the unsupervised subspace learning methods PCA, INMF and IRT using
the Wallflower dataset provided by Toyama et al. [23]. This dataset consists
in a set of images sequences where each sequence presents a different type of
difficulty that a practical task may meet: Moved Object (MO), Time of Day
(TD), Light Switch (LS), Waving Trees (WT), Camouflage (C), Bootstrapping
(B) and Foreground Aperture (F). The performance is evaluated against hand-
segmented ground truth. Three terms are used in evaluation: False Positive (FP)
is the number of background pixels that are wrongly marked as foreground; False
Negative (FN) is the number of foreground pixels that are wrongly marked as
background; Total Error (TE) is the sum of FP and FN. The Table 2 shows the
performance in term of FP, FN and TE for each algorithm. The corresponding
results are shown in Table 3. As we can see, the IMMC gives the lowest TE
followed by the IRT, the INMF and the PCA. Secondly, we have compared
our supervised approach with the state of the art algorithms: SG[24], MOG[25]
and KDE[26]. As we can see on the Table 2 and Table 3, our algorithm gives
better results particularly in the case of illumination changes. The results for
SG, MOG and PCA comes from [27]. The results for the INMF was provided
by their authors [17]. The KDE was implemented in Microsoft Visual C++ and
the IRT and IMMC was implemented in Matlab.

5 Conclusion

In this paper, we have proposed to model the background using a supervised
subspace learning called Incremental Maximum Criterion. This approach allows
to initialize robustly the background and to upate incrementally the eigenvectors
and eigenvalues. Experimental results made on the Wallflower datasets show the
pertinence of the proposed approach. Indeed, IMMC outperforms the supervised
PCA, INMF and IRT. For future investigations, supervised subspace learning
methods such as Linear Discriminant Analysis (LDA) and Canonical Correlation
Analysis (CCA) seem to be very interesting approaches. For example, LDA exists
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in several incremental versions as incremental LDA using fixed point method
[28] or sufficient spanning set approximations [29]. In the same way, Partial
Least Squares (PLS) methods [30] give a nice perspective to model robustly the
background.

Problem Type

Error MO TD LS WT C B FA Total

Algorithm Type Errors (TE)

SG False neg 0 949 1857 3110 4101 2215 3464

Wren et al.[24] False pos 0 535 15123 357 2040 92 1290 35133

MOG False neg 0 1008 1633 1323 398 1874 2442

Stauffer et al.[25] False pos 0 20 14169 341 3098 217 530 27053

KDE False neg 0 1298 760 170 238 1755 2413

Elgammal et al.[26] False pos 0 125 14153 589 3392 933 624 26450

PCA False neg 0 879 962 1027 350 304 2441

Oliver et al.[6] False pos 1065 16 362 2057 1548 6129 537 17677

INMF False neg 0 724 1593 3317 6626 1401 3412

Bucak et al.[17] False pos 0 481 303 652 234 190 165 19098

IRT False neg 0 1282 2822 4525 1491 1734 2438

Li et al.[18] False pos 0 159 389 7 114 2080 12 17053

IMMC False neg 0 1336 2707 4307 1169 2677 2640

Proposed method False pos 0 11 16 6 136 506 203 15714

Table 2. Performance Evaluation on Wallflower dataset[23]
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